
Contributions to middleware architectures
to prototype distribution infrastructures

Jérôme Hugues, Laurent Pautet
{hugues, pautet}@enst.fr

École Nationale Supérieure des Télécommunications
CS & Networks Department

46, rue Barrault
F-75634 Paris CEDEX 13, France

Fabrice Kordon
Fabrice.Kordon@lip6.fr

Laboratoire d’Informatique de Paris 6/SRC
Université Pierre & Marie Curie

4, place Jussieu
F-75252 Paris CEDEX 05, France

Abstract— Distributed applications require specific middleware
support for semantics and run-time constraints for a wide
range of hardware or software configurations. However, their
full specifications and existing implementations show they share
functional notions and run-time mechanisms. Thus, distribu-
tion infrastructures could be prototyped from a given set of
middleware components. Generic middleware proposes patterns
to describe distribution models; configurable middleware con-
structs to abide to run-time constraints. We have introduced
the schizophrenic middleware concept as a comprehensive solution
to rapidly implement different distribution models. PolyORB,
our implementation of a schizophrenic middleware, supports
CORBA, SOAP, the Ada 95 Distributed System Annex and
Message Oriented Middleware distribution models. In this paper,
we describe existing generic and configurable middleware; we
introduce PolyORB’s key concepts and design; then we compare
our platform design to existing generic and configurable mid-
dleware, and discuss their respective use to prototype specific
distribution models.

I. I NTRODUCTION

Middleware provides implementation guidelines as well as
frameworks to ease the development of large heterogeneous
distributed systems; thus they are commonly accepted devel-
opment platforms. Since there is no “one size fits all” architec-
ture, choosing the adequate middleware in its most appropriate
configuration is a key design point that may dramatically
impact the design and performance of an application.

Consequently applications need to rapidly tailor middleware
to the specificdistribution model they require. A distribution
model is defined by the combination of distribution mecha-
nisms made available to the application. Common examples
of such mechanisms are Remote Procedure Call (RPC), Dis-
tributed Objects or Message Passing. Thereafter a distribution
infrastructure or middleware refers to software that supports
one (or several) distribution model.

Besides, multiplicity in distribution models, each of which
introduces its own semantics, API or protocol, creates a new
layer of heterogeneity among distribution infrastructures. This
leads to theMiddleware to Middleware problematic [1]: the
limitation on interactions between application components

built around heterogeneous middleware and their reuse. Thus
prototyping processes should also address the construction of
new applications from various existing components.

Rapid System Prototyping [2] provides a definition canvas
to express implementation and maintenance processes of com-
plex applications. In this paper we show how various archi-
tectures may address the emerging need to rapidly prototype
and deploy dedicated middleware.

A first solution is to reuse or adapt existing software com-
ponents: recurring middleware functionalities can be factored
out to define a general distribution framework or generic
middleware. Their complete instantiation provides a single
distribution model, called apersonality. Thus, interoperability
issues are not addressed by this approach. This restricts
prototyping capabilities to a limited set of distribution models
and reduce components reuse.

We have introduced theschizophrenic middleware con-
cept [3] as a global solution to both distribution models
interoperability and prototyping. Schizophrenic middleware
extends generic middleware to allow the simultaneous support
of multiple interacting personalities within the same middle-
ware instance. Its modular design expresses both concerns for
genericity of middleware components and their interaction,
enabling interoperability between distribution models. Poly-
ORB1, our implementation of a schizophrenic middleware,
is a proof of concept. It provides CORBA [4], SOAP [5],
a Message Oriented Middleware (MOMA) and the Ada 95
Distributed System Annex [6] personalities. Current imple-
mentation status demonstrates interoperability between these
heterogeneous distribution models (see [7] and [8]).

In this paper, we assess the use of our middleware Poly-
ORB to prototype distribution infrastructures and the effective
results we achieved. We propose a new architecture expressing
genericity, configurability and interoperability requirements.
The implementation of several personalities confirms our de-
sign choice: schizophrenic middleware, and more specifically

1available athttp://libre.act-europe.fr



PolyORB, helps in the rapid design and implementation of
distribution models.

We first give an overview of generic and configurable mid-
dleware. We then introduce the schizophrenic middleware con-
cept and the current status of PolyORB; and demonstrate how
we prototyped one PolyORB personality. We then compare
the design of significant middleware architectures, focusing
on their capabilities to prototype a specific distribution model.

II. CONFIGURABLE AND GENERIC MIDDLEWARE

An analysis of middleware implementations shows they rely
on similar abstractions and run-time mechanisms to provide
their services. Several projects focused on distribution infras-
tructure design, leading to the definition ofconfigurable and
generic middleware: middleware that expose constructs and
concepts to enable their modification and adaptation.

A. Configurable middleware

Configurable middleware enables an application to select
the actual components and specific run-time policies to address
its requirements. We present two of them: TAO, The ACE
ORB, and GLADE, the first validated implementation of the
Distributed Systems Annex of Ada 95.

1) TAO: The ACE ORB (TAO) [9] is a free, scalable and
configurable ORB based on theACE communication and
synchronization library. TAO is highly dedicated to avionic,
multimedia or simulation applications. TAO architecture is
based on design patterns; and can therefore be configured with
the appropriate components to address a specific application
domain and to ensure performance, determinism or scalability
properties. Moreover, TAO provides an IDL compiler that
optimize the generated stubs and skeletons depending on user
requirements; but also control on the scheduler policy in order
to enforce real-time properties or to satisfy Quality of Service
(QoS) requirements. A typical example is the use of minimal
perfect hashing functions to allow the ORB to handle incoming
requests in a constant time [10].

2) GLADE: The normalized Ada 95 distribution model is a
subset of the classical language entities. It provides distribution
capabilities to some language constructs and adds support for
remote subprograms, as well as remote or shared objects. As
the language semantics is preserved, DSA users can design,
implement and test their applications in a non-distributed
environment, and then smoothly switch to a distributed de-
ployment.

GLADE includes the deployment tool GNATDIST [11]. It
provides a comprehensive framework integrated to the GNAT
Ada 95 front-end for GCC and its compilation tool set. This
enables the end user to control middleware configuration.
GNATDIST description language eases the mapping of the
distributed application components onto logical nodes; the
parameterization of the communication subsystem or the re-
source allocation and tasking policies.

B. Generic middleware

Generic middleware extends the configurability concept.
Middleware implementations have similar design, thus a spe-
cific distribution model may be built around canonical ele-
ments using a functionality-oriented approach; these elements
are then adapted to conform to a specific distribution model
during apersonalization process.

Several projects demonstrate that middleware functionalities
can be described as a set of generic services, independent
from any distribution model; and propose architectures based
on a set of abstract interfaces. A personality is then defined
as the combination of concrete modules that implement these
interfaces and provide access to generic middleware services.

1) UIC: The Universal Interoperable Core [12] provides
only abstract interfaces. Their implementation provides control
over the distribution model; specific implementations of COR-
BA client-side mechanisms have been proposed for hand-held
devices, with hard constraints on memory resources.

2) Quarterware: This middleware [13] proposes a similar
approach, extended to the CORBA, RMI and MPI models.
These models have been implemented using a restricted set
of components that can be extended to implement a specific
model; or specialized for optimization and high-performance.

3) Jonathan: Its architecture [14] emphasizes onperson-
alities that are adaptations of the core system Jonathan: a
framework of configurable components and abstract interfaces.
Dedicated instantiations of Jonathan provides a CORBA per-
sonality (David), a RMI personality (Jeremie) or specialized
personalities for multimedia systems.

C. Needs for prototyping

These various architectures demonstrate that middleware
can be described by a set of canonical elements: design
patterns or abstract interfaces. This allows for the adaptation
of their distribution model to user requirements. Hence they
are solutions to prototype specific distribution models.

However the underlying prototyping process is not clearly
specified and remain complex: it requires the implementation
of most of the middleware functions. This process is also
expensive in time or complexity. Moreover, the result of
the personalization process is a dedicated monolithic mid-
dleware; this limits reuse of the prototyped elements. So,
such approaches are only partial solutions to prototyping of
distribution infrastructure. This point is discussed further in
section V-C.



III. SCHIZOPHRENIC MIDDLEWARE

Configurable and generic middleware ease middleware
adaptation; they make one step towards distribution infrastruc-
tures prototyping. However they lack flexibility: configurable
middleware provides adaptation hooks to abide to application
constraints; generic middleware a solution to tailor a distribu-
tion model.

We claim that a flexible architecture combining configura-
bility, genericity but also interoperability capabilities into a
common middleware architecture is required to fully prototype
a distribution infrastructure and to address both application and
distribution model requirements. This requires an architecture
that emphasizes on separation of concerns.

Compilers theory describes a flexible architecture, sepa-
rating machine code generation from source code: a front-
end module analyzes source code; a back-end assembles
machine code; both of them interact using different neutral
representations of the code and the interface of an intermediate
layer. Projects like the free software GNU Compiler Collection
(GCC)2 clearly demonstrates component reuse capabilities
while providing support for multiple languages and targets.

Similarly, we separate concerns between a distribution
model API and protocol, and their implementation related
mechanisms; and propose an original middleware architec-
ture [7]. We now present this architecture, and the design of
our implementation: PolyORB.

A. Decoupling middleware set functionalities

Schizophrenic middleware refines the definition and role
of personalities, and introducesapplication-level, protocol-
level personalities and a Neutral Core Middleware. The latter
provides support for interaction between multiple personalities
(figure 1).

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

personality

personality
Application

Protocol

personality
Application

personality
Protocol

Neutral Core Middleware

Fig. 1. Schizophrenic architecture

2Free software compiler front-ends and back-ends available at
http://gcc.gnu.org

1) Application personalities: they constitute the adapta-
tion layer between application components and middleware
through a dedicated API or code generator; they provide
services similar to those provided by a compiler front-
end: translation of high-level constructs into simpler one. They
provide APIs to register application components with the core
middleware; they interact with the core layer in order to allow
the exchange of requests between entities.

• On the client side, they map requests made by client com-
ponents from their personality-specific representation to a
personality-independent one. This neutral representation
is then processed by the Neutral Core Middleware; results
are translated back from neutral to personality-specific
form.

• On the servant side, they receive requests for local objects
from the core middleware, assign them to actual objects
for evaluation, and return results.

2) Protocol personalities: they handle the mapping of
personality-neutral requests (representing interactions between
application entities) onto messages exchanged through a cho-
sen communication network and protocol; similarly to a com-
piler back-end which transforms intermediate code representa-
tion into low level mnemonics. Requests can be received either
from application entities (through an application personality
and the neutral core) or from another node of the distributed
application. They can also be received from another protocol
personality: in this case the application node acts as a proxy
performing protocol translation between third-party nodes.

3) The Neutral Core Middleware (NCM): it acts as an adap-
tation layer between application and protocol personalities.
It manages execution resources and provides the necessary
abstractions to transparently pass requests between protocol
and application personalities in a neutral way. It is completely
independent from both application and protocol personalities.
This enables the selection of any combination of application
and/or protocol personalities; as the GCC compiler allows the
selection of any given pair of front-end/back-end.

DSACORBA

SOAPGIOP

Application
personalities

Protocol
personalities

Neutral Core
middleware

(1)
(2)

(3)

Fig. 2. Interaction between PolyORB’s personalities

Figure 2 summarizes the different ways various PolyORB’s
personalities can exchange requests through the neutral core
middleware. This naturally leads to interoperability: entities
registered to an application personality are available to any
client using a middleware for which the corresponding proto-
col personality exists (1), or to another coexisting application
or protocol personalities (2, 3); the NCM acts as a gateway
between inter-operating personalities.



B. PolyORB building blocks

Schizophrenic middleware requires a flexible implementa-
tion and the identification of the functionalities involved in
request processing to ease the prototyping of new personalities
and their interaction.

1) Key patterns: Design patterns are used to facilitate code
maintenance and readability. TAO has demonstrated how de-
sign patterns can be powerful tools to implement middleware
[9]. We use patternsFacade, Reactor and configuration pat-
terns for the real-time profile defined in our previous projects
GLADE [15]. We also defined specific patterns to allow
dynamic extension and specialization of objects:Annotation
adding external informations to objects;Component adding
new method to objects.

To allow a greater flexibility, Neutral Core Middleware
(NCM) is built around dynamic constructs: invocation and im-
plementation of the registered servants are based on CORBA
Dynamic Invocation Interface (DII) and Dynamic Skeleton
Invocation (DSI) models; exchanged data are mapped onto
an all-purpose self-defined type, analog to CORBA Any’s.

2) Basic services: PolyORB personalities and NCM are
built on top of seven basic services embodying client/server
interactions found in the RPC or ORB distribution models. A
more complete description can be found in [3].

• AddressingEach entity is given a unique identifier within
the entire distributed application.

• Binding Middleware establishes and maintains associa-
tions between interacting objects and resources allowing
this interaction (e.g. a socket, a protocol stack). This
service is inspired in part by the ODP binding [16].

• Representation Request parameters must be translated
into a representation suitable for transmission over net-
work.

• Protocol Middleware implements a protocol for the trans-
mission of requests amongst nodes.

• Transport A communication channel is established be-
tween a node and an object to transmit requests.

• Activation Middleware ensures that a concrete entity
implementing objects is available to execute the request.

• Dispatching Middleware assigns execution resource to
process every incoming request.

Figure 3 illustrates how these different services cooperate to
transmit one request from one personality to another when a
DSA application interacts with a CORBA object using SOAP
protocol. The client gets a reference on the object (1); the core
middleware creates a binding object (2); a dynamic gateway
to the CORBA object through which the client communicates;
the request is then formatted and sent to the remote node (3,
4 and 5); upon reception, remote node middleware ensures
that a concrete entity implementing the object is available to
execute the request (6) and assigns execution resources (7).

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

servant

object

process

obj. ref

marshaling

request

access pt

Neutral core
middleware

personalityprotocol

applicationCORBADSA application
client server

ne
tw

or
k

request
receiving &

unmarshaling

addressing (1)

binding(2)

representation(3)

protocol(4)

transport(5)

activation(6)

dispatching(7)
surrogate

SOAP

personality personality

Fig. 3. Invocation request path

3) Advanced services: They provide solutions to distribu-
tion higher level problems and abstractions on top of which
personalities mandatory functionalities can be implemented.

• Naming services provide association between entities
references and symbolic names, e.g. JNDI API using
an external naming service, or the Ada 95 Distributed
System Annex (DSA) internal naming scheme.

• Termination services determine consensus on whether a
distributed application has completed its task or not. Such
a service is useful in a DSA implementation.

• Shared Dataservices provide transparent access to data
shared by different nodes in a distributed application.
Such a service is also present in the DSA specification.

• Synchronizationservices provide mechanisms to coordi-
nate actions of different nodes (e.g. distributed mutexes).

• Interface repository services provide a database describ-
ing the interface of application entities (e.g. the set of
interactions that they support), and the types of their
parameters. It thus provides mechanisms to implement
the CORBA Interface Repository.

The composition of these basic and advanced services
allows for the implementation of different distribution models.
We now detail how the use of these services in PolyORB’s
architecture enables prototyping capabilities.

IV. PROTOTYPING A DISTRIBUTION MODEL

We identified different services that provide foundations to
define a middleware architecture geared towards distribution
prototyping. In this section we highlight : facilities PolyORB
provides to ease components reuse; its services combination
to prototype MOMA, the Message Oriented Middleware per-
sonality for PolyORB, and an assessment of components reuse
in implemented personalities.

A. PolyORB services

PolyORB’s services propose a canonical view of the mech-
anisms within distributed applications and an implementation
canvas for distribution models.



Neutral Core Middleware (NCM) provides an implementa-
tion of all services, which can be reused or adapted when
implementing personalities. Moreover, the addition or spe-
cialization of services directly within NCM is encouraged to
increase code reuse and to provide facilities for personalities.
Hence, we propose either minimal services implementation
as for protocol-related services, or complete and detailed for
key mechanisms (PolyORB proposes different tasking run-
time and object activation policies).

Besides, composition of personalities within the same mid-
dleware instance allows interoperability between different dis-
tribution models: the NCM acts as a dynamic gateway (see
[7] for more details). This enables the reuse of existing legacy
applications into new distributed applications at a limited
cost. PolyORB directly provides gateway mechanisms between
the various personalities. The personalities we implemented
demonstrate full interoperability and can be deployed in the
various scenarios presented in figure 2.

B. Prototyping a PolyORB’s personality: MOMA

Message Oriented Middleware (MOM) provides message
passing mechanisms between client nodes similar to e-mail or
newsgroups; they support different delivery policies, persis-
tence capabilities . . . Typical MOM such as WebSphere MQ
are widely used in large scale information systems [17].

We propose Message Oriented Middleware for Ada
(MOMA) as a new PolyORB personality, it is an Ada 95
implementation of the Sun’s Java Message Service API
(JMS) [18]. JMS provides a standardized API for common
message passing models; and a complete MOM specification
for the Java platform. It precisely describes the different steps
involved in MOM messages life-cycle when creating, sending,
receiving, reading or destroying messages. Yet JMS only spec-
ifies an API, it does not address the underlying required layers
of any distributed infrastructure such as transport protocols,
data representation, etc. This is delegated to theJMS Provider:
a distribution system on top of which the API is implemented.
This decoupling between API and distribution infrastructure
enhances separation of concerns and allow the prototyping of
a wide range of provider.

JMS model is organized around different collaborating
objects to exchange messages: producers, consumers, pools,
and configuration objects: connections and sessions. We now
describe the mapping this model to PolyORB’s architecture.

Mapping MOMA functionalities to PolyORB: JMS API
provides object primitives to allow clients to interact with
message pools through requests (e.g. to post and receive
messages); a provider supports distribution functions for
client/server communications, and implementation of message
pools. The MOMA provider is the combination of of two
personalities and the core middleware:

• application personality implements MOMA objects (pro-
ducers, consumers,. . . ) andclient API.

• protocol personality addresses transport mechanisms.

Application personality: Interactions between a client and
a message pool are similar to method calls on remote objects in
a distributed application. We thus defined an application per-
sonality implementing message transport mechanisms based
on aservant-like pattern: clients invoke specific methods to ex-
change messages on MOMA objects, which are implemented
as PolyORB’s servant remotely available.

Protocol personality: We focus on the application level
MOM functionalities. Thus we only require a protocol per-
sonality that provides the mechanisms required to transport
requests between a MOM client and a message pool. Any of
PolyORB’s existing protocol personalities is one candidate; we
reuse the GIOP protocol personality in our test configurations.

Our MOM architecture built on top of PolyORB’s Neutral
Core Middleware (NCM) provides the minimal set of func-
tionalities to support MOM primitives. The core layer and
existing personalities provided support for distribution mech-
anisms, from protocol to request broker and object activation.
Hence, we focused directly on MOM distribution logic and the
implementation of the different required servants. Our design
and the previous work done on PolyORB infrastructure clearly
eased and accelerated the prototyping of this personality.

C. Prototyping middleware with PolyORB

In this section we summarize the lessons learnt when proto-
typing different distribution models as PolyORB personalities.

1) Application personalities: They provide support for a
distribution model API or mechanism to applications com-
ponents; PolyORB now proposes three different application
personalities based either on code generation only (DSA), an
API only (MOMA) or both (CORBA).

• DSA: The Ada 95 Distributed system annex proposes a
RPC-like distribution model; thus it can be mapped onto
PolyORB’s interaction model and basic services. As for
the CORBA application personality, most of its entities
are directly mapped onto PolyORB entities. Code gener-
ation creates the appropriate calls to PolyORB NCM.

• MOMA: We showed in the previous section how this
personality reuses all of NCM and protocol personality
services to provide a MOM API.

• CORBA: PolyORB invocation model is notionaly equiv-
alent to CORBA DSI/DII mechanisms, theactivation
service and the CORBA Portable Object Adapter have
the same role. Hence, CORBA mapping to PolyORB
internal structure is straight forward. Most of CORBA
entities such as Objects, POA were directly wrapped on
PolyORB own entities in both the generated code from
an IDL and the CORBA API.



Creating an application personality implies to map a spe-
cific API and semantics onto PolyORB’s invocation model
presented in III-B.2. This model is versatile enough to express
the various distribution models we considered. Basic services
allow a rapid prototyping of distribution model internals,
advanced services provide a canvas to design higher level
functionalities that implements advanced features of a distri-
bution model. This clearly eases the rapid prototyping process
of infrastructure that supports a given distribution model.

2) Protocol personalities: They provide support for a given
data exchange mechanism. PolyORB proposes GIOP and
SOAP protocols; and Simple Request Protocol (SRP), a pro-
tocol devised to test simple invocations on servants. SRP
allows the developer to test application personalities request
handling: the user can forge its own request by hand with an
HTTP-like syntax and send them to the servant directly using
a TELNET connection.

Each protocol strictly specifies its semantics and representa-
tion data stream, hence the corresponding PolyORB’s protocol
personalities have to provide dedicated implementation of the
protocol, representation andbinding services. Code reuse pos-
sibilities are reduced; but one can notice that a representation
or protocol are described by a normalized description or state
machine. A protocol personality implementation is guided by
these precise descriptions.

V. COMPARING MIDDLEWARE ARCHITECTURES

We have presented different middleware architectures,
putting the emphasis on their potential use as prototyping
architecture to build distributed applications. In this section
we provide information on PolyORB effective code reuse and
efficiency compared to other significant architectures. We then
discuss the use of configurable, generic and schizophrenic
middleware to prototype distribution models.

A. Code reuse

Code reuse ratio provides a measure of the reusable func-
tional key components provided by middleware. We compared
Source Lines Of Code (SLOCs) of the generic core and
personalization specific code between PolyORB and Jonathan,
for which source code is freely available.

Figure 4 provides a measure of the SLOCs3 present in
comparable applications built using PolyORB and Jonathan
in two distinct configuration: “ORB”, using CORBA/GIOP
personalities; and “RPC” comparing DSA and RMI person-
alities. A raw analysis demonstrates that PolyORB’s neutral
core layer represent a significant part - more than 75 % -
of the distribution infrastructure; Jonathan core and sets of
abstract interfaces represents around 10 %. Code reuse ratio

3measures have been done using SLOCCount from David A. Wheeler,
http://www.dwheeler.com/sloccount/

SLOCs

Jonathan David

PolyORB DSA/GIOP

PolyORB CORBA/GIOP

Jonathan Jeremie

Generic code

Personality specific code

Fig. 4. Code reuse in PolyORB and Jonathan

demonstrate that PolyORB Neutral Core Middleware provides
key building blocks, which clearly reduces the need to write
large portions of code when prototyping a distribution model.

B. Code efficiency

Prototypes may serve as a first-step implementation to-
wards production code; hence they should have correct per-
formance. We compared time execution for the PolyORB’s
CORBA/GIOP configuration to the configurable CORBA ORB
omniORB from AT&T Labs. omniORB is known for its strict
compliance to the CORBA specification and its efficiency. As
PolyORB relies on dynamic invocation, we tested against DII
clients and DSI servers to have coherent measurements sets.

First measurements demonstrate that PolyORB and om-
niORB DII clients have similar performances; PolyORB
servers are less efficient of a factor from 1.5 to 3 given
its tasking policy. The current implementation has not been
designed with optimization in mind, but these results are
interesting. They show that distribution models prototyped
with PolyORB have acceptable performance compared to “off-
the-shelf” optimized middleware.

C. Prototyping facilities

Configurable, generic and schizophrenic middleware archi-
tectures rely on different architectural models that enable their
adaptation. They have expected properties that can help in the
choice of middleware to prototype distribution infrastructures.
Thus they provide different levels of functionalities to proto-
type a distribution model using their architecture:

1) configurable middleware: they provide a predefined set
of configuration hooks. They are thus easy to deploy. However
the user has only access to a limited range of configurations,
limiting prototyping capabilities. Moreover the addition of new
configurable components is not directly possible and requires
modifications to the middleware architecture.

2) generic middleware: they provide complete control over
their architecture to allow dedicated implementations of a
distribution model when concretizing their interfaces. How-
ever the personalization process may be complex and time
consuming. The steps to define an early prototype up to a
complete distribution model are not specified.



3) schizophrenic middleware: as for generic middleware,
they provide complete control over their architecture. Per-
sonalities are implemented using either existing services, or
implementing specific ones. This reutilization capability eases
development process of early prototype, without significantly
compromising performance. This prototype can then be refined
rewriting or adapting some services in a later stage.

Schizophrenic middleware take advantage of both config-
urable and generic middleware to propose a global canvas
to prototype distribution models at different stages of the
application development process: from early prototypes up to
the final release.

VI. CONCLUSION

Diversity in distribution models, each of which has spe-
cific configuration or heterogeneous distribution mechanisms,
points the needs for rapid prototyping processes of distribution
models. We identified key elements in this process: the adap-
tation of middleware to user and specific distribution model
requirements; interoperability to enable components reuse.
However existing adaptable middleware architectures do not
provide these elements.

Configurable middleware enables the developer to choose
components to tailor its distribution model for user require-
ments, but provides no control over the distribution model.

Generic middleware allows for the complete prototyping of
distribution models from a set of abstract interfaces during the
personalization process. However this implies the complete
implementation of large components, which facilitate neither
code reuse nor interoperability.

We introducedSchizophrenic middleware to address these
key elements. It encapsulates configurability, genericity and
interoperability concerns in a simple yet powerful way; al-
lowing both code reuse and tailoring given developer needs.
Schizophrenic middleware extends the concept of middleware
personalities to allow several personalities to simultaneously
operate within the same middleware instance. It also enables
interoperability between distribution models.

Our implementation PolyORB, which is available under
a free software license, demonstrates how the separation of
concerns in the definition and implementation of a given set
of generic services can provide implementation blocks. Then
these blocks can directly be reused or specialized to implement
’off the shell’ distribution models, providing a canvas to
develop early prototypes up to complete distribution models.

The main characteristic of a schizophrenic middleware is
to separate specific code in two separate parts:application
personalities andprotocol personalities which implementation
relies on a Neutral Core Middleware. In terms of prototyping,
this has two majors advantages:1) only a limited amount of

code has to be written when implementing a new distribution
infrastructure,2) any protocol personality may be associated
with any application personality to create an original config-
uration.

So, PolyORB provides a solution for the rapid prototyping
of distribution infrastructure, focusing only on the high-level
services they require. The performances of the resulting mid-
dleware demonstrates that this solution is acceptable, though
it requires optimizations at later stages.

We now contemplate investigating deeper middleware ser-
vices configuration and performance. First we want to allow
the user to control efficiently the code actually executed
and adapt it to runtime constraints such as real time or
mobility. Then we plan to devise a full prototyping process
of distribution infrastructures using our architecture.

REFERENCES

[1] S. Baker, “Middleware to middleware,” inProceedings of the 3rd Int’l
Symposium on Distributed Objects and Applications (DOA’01), Sept.
2001.

[2] F. Kordon and Luqi, “An introduction to rapid system prototyping,” in
IEEE Transaction on Software Engineering Engineering, Sept. 2002.

[3] T. Quinot, L. Pautet, and F. Kordon, “Architecture for a reuseable object-
oriented polymorphic middleware,” inProceedings of PDPTA’2001, Las
Vegas, USA, June 2001.

[4] OMG, The Common Object Request Broker: Architecture and Specifi-
cation, revision 2.2. OMG, Feb. 1998.

[5] Simple Object Access Protocol (SOAP) 1.1 , W3C, May 2000.
[6] ISO, Information Technology – Programming Languages – Ada. ISO,

Feb. 1995, ISO/IEC/ANSI 8652:1995.
[7] T. Quinot, F. Kordon, and L. Pautet, “From functional to architectural

analysis of a middleware supporting interoperability across heteroge-
neous distribution models,” inProceedings of the 3rd Int’l Symposium
on Distributed Objects and Applications (DOA’01), Sept. 2001.

[8] J. Hugues, F. Kordon, L. Pautet, and T. Quinot, “A case study of
middleware to middleware: Mom and orb interoperability,” inProceed-
ings of the 4th International Symposium on Distributed Objects and
Applications (DOA’02). Irvine, CA, USA: University of California,
Irvine, Oct. 2002.

[9] D. Schmidt and C. Cleeland, “Applying patterns to develop extensible
and maintainable ORB midd leware,”Communications of the ACM,
CACM, vol. 40, no. 12, 1997.

[10] D. C. Schmidt, “Gperf: A perfect hash function generator,” inProceed-
ings of the 2 nd C++ Conference, San Francisco, California, Apr. 1990.

[11] Y. Kermarrec, L. Nana, and L. Pautet, “GNATDIST: A configuration
language for distributed ada 95 applications,” inProceedings of
TRI-Ada’96. ACM Press, 1996, pp. 63–72. [Online]. Available:
http://www.infres.enst.fr/~pautet/papers/pautet96gnatdist.ps

[12] M. Román, F. Kon, and R. H. Campbell, “Reflective middleware: From
your desk to your hand,”IEEE Distributed Systems Online, vol. 2, no. 5,
2001.

[13] A. Singhai, A. Sane, and R. Campbell, “Quarterware for Middleware,”
in Proceedings of ICDCS’98. IEEE, May 1998.

[14] B. Dumant, F. Horn, F. D. Tran, and J.-B. Stefani, “Jonathan: an open
distributed processing environment in java,” inProceedings of the IFIP
International Conference on Distribut ed Systems Platforms and Open
Distributed Processing, 1998.

[15] L. Pautet and S. Tardieu, “GLADE: a Framework for Building Large
Object-Oriented Real-Time Distributed Systems,” inProceedings of the
3rd IEEE Int’l Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC’00). Newport Beach, California, USA: IEEE Press,
June 2000.

[16] ODP, “ODP Reference Model: overview,” 1995, ITU-T -- ISO/IEC
Recommendation X.901 -- International Standard 10746-1.



[17] G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A case for mes-
sage oriented middleware,” inInternational Symposium on Distributed
Computing, 1999, pp. 1–18.

[18] SUN, “Java Message Service (JMS),” 1999.


