Refining middleware functions for verification purpose

Jérbme Hugues, Laurent Pautet Fabrice Kordon
{hugues, pautet}@nst.fr Fabri ce. Kordon@i p6. fr
Ecole Nationale Supérieure Laboratoire d’Informatique de Paris 6/SRC
des Télécommunications Université Pierre & Marie Curie
CS & Networks Department 4, place Jussieu
46, rue Barrault F-75252 Paris CEDEX 05, France

F-75634 Paris CEDEX 13, France

Abstract— The development of real-time, dependable or scal- projects [SB0O3]. Hence, the combination of patterns presid
able distributed applications requires specific middleware that g high-level description of middleware. Yet, weak pattern
enables the formal verification of domain-specific properties. So descriptions may lead to slightly different implementatior
far, typical middleware implementations do not directly address
these issues. They focus on patterns and frameworks to meet Implgmentatlons that Interl_eave dlffgrept patterns comee
application-specific requirements. This impedes implementations verification.

Patterns propose a high-level methodology adapted to the ~ Moreover, patterns are only descriptive. They do not
gescripti?n (I)f s?ﬁwz(ijr(;e Compon.fe.nt?. Hovx;ev?r,t.their Semf;,mics provide any verification guidelines. Thus, implementagion

oes not clearly address verification of static or run-time . e :
properties. Such issues can be addressed by other formalisms, rely only on _SImpIe verification methqu to verify beh.aVIera
at the cost of a more refined description. only properties: the use of some middleware functions and

In this paper, we present our current effort to combine both the execution of predefined test cases. But this approach

patterns and Petri Nets to refine and then to verify middleware. |acks generality: it can only test a restricted subset of the
Our contribution details steps to build Petri Net models from infrastructure properties.

the Broker architectural pattern. This provides a model of A iddl | i d - d d
middleware and is a first step towards formal middleware S Mmiddieware use evolves foward real-imé an e-

verification. pendable applications, there is a strong need for formal
verification of middleware with respect to explicitly defthe
properties. Yet, verification process is a complex task. The
Distribution middleware provides description methods; se choice of a verification mechanisms is thus significant.
vices and guidelines to ease the development of distributed|n the remainder of this paper, we detail our current effort
applications. Middleware specifications describe the $emagn middleware verification. We focus on remote invocation
tics and runtime supports for distribution. models (RPC, DOC or MP) and exclude DSM. We present
Successful implementations of solutions such as CORBA, middleware typical architecture, built around tBeoker
Java Message Service (JMS) or SOAP demonstrate thgthitectural pattern and show limits that prevent veriioea
distributed applications require very different disttion Then we introduce our work to fill this gap and detail
models: Remote Procedure Call (RPC), Distributed Objecthe modeling notations and process we use to verify the
Computing (DOC), Message Passing (MP) or Distribute@roker. We also detail our specific middleware architecture,
Shared Memory (DSM). implemented by PolyORBand demonstrate how separation
Besides, there is a rising demand for a wider range @ff concerns eases verification. Then we explain how we

runtime and platform support: embedded, mobile, real-timgefine theBroker and detail how to formally verify it.
multimedia, etc. These new criteria increase complexity in

both middleware development and use. Middleware imple- Il. BROKER: A KEY MIDDLEWARE PATTERN

mentations should be versatile enough to handle different

(and potentially antagonist) platform requirements; eapl Basically, middleware provides mechanisms to enable

tion must abide to complex middleware semantics. transparent interaction between application nodes usiegr m
Current middleware implementations rely patternsto sages. Reception of a message trigg&jsesources alloca-

enable configurability and then to meet user requirements fion, 2) specific processing for the distribution model and

one specific distribution model. Architectural and desigh-p then 3) execution of application-specific code. A response

terns are introduced to describe specific solution to recarr may be sent back to the message initiator, following the same

design problems (request demultiplexing, buffers aliocet, path. The architectural patteBroker provides a view of the

concurrent execution, etc). Middleware is described bymaeacomponents involved in this process.

of a language pattern that weaves together a set of related pa

terns. This approach proved its efficiency in various indalst ~ http://1ibre. act- europe. fr/pol yorb

|I. ISSUES IN MIDDLEWARE DEVELOPMENT

We first present this pattern; we show its importance for Hence, theBroker pattern is used under multiple forms
middleware specifications, performance and runtime; then vat the core of most middleware architectures. Its precise
discuss limitations when coming to verification. definition and analysis would provide significant infornoati
about resource use, execution flow, middleware faults and
performance analysis; but also to detect incorrect design.

The Broker architectural pattern provides a synthetic de- So far, middleware implementations rely on slightly dif-
scription of the role of middleware [BMRO6]: “ [..] (to) ferent behavioral descriptions of th@roker. This pattern
structure distributed software systems with decoupled-comdefinition is not sufficiently detailed and may lead to many
ponents that interact by remote service invocations. Adarok fine variations introduced by implementation choices. More
component is responsible for coordinating communicatiorgver, this pattern interleaves multiple functions: praloc
such as forwarding requests, as well as for transmittingesource allocation, etc. Such a description impedes verifi
results and exceptions.” cation: it covers many complex functions. Thus, B®ker

The Broker pattern prescribes the use of many differentirchitectural pattern provides a specification of middieva
objects: proxy, client and server, repository, bridge. SEhe architecture not suitable for formal verification.
objects cooperate in the following wayServersregister However, patterns provide an elegant way to describe
themselves with the broker through tRepositoryand make a component. We now present how we extract a precise
their services available tGlientsthrough method interfaces; specification of middleware components from tBeoker
Clients access servers by sending requests viaBlaker. architectural pattern that is suitable for verification.

Broker exchanges requests between nodes by locating the
appropriate server, forwarding the request to it and trans-
mitting results back to the clienProxy and Bridge handle A complete analysis of thBroker pattern requires first a
communication mechanisms and enable data exchange acrdesr description of the component interface, related sema
heterogeneous platform. tics and expected properties. Ultimately, this descripti®

We can note that thBroker specification presented aboveexpressed using a notation that enables formal verificaltion
provides a complete view of an architecture to achieveetween, several transformations may be required to go from
remote service invocation. It covers all functions invalve high-level non-formal specification to strongly formalize
in middleware execution: protocol stack, data represiamtat description of a component.
for transmission through network, resource allocatiom, et This raises the question of the most adequate modeling
Hence, its precise definition and study will provide a firshotation (or set of notations) to achieve this process. We
analysis of a middleware architecture. contemplate using one or more models among automata,
UML diagrams (and derived stereotypes), Petri nets (col-
ored, stochastic, etc) and architecture description lagesi

The Broker pattern has a key role in middleware ar-(ADL). These are the most used notations for modeling
chitecture and implementations. Moreover, similar pager software components.

[BMR*96] propose simpler views of th&roker adapted We can note that none of these notation is supported by a
to specific cases. Variations of this pattern are used lomplete specification and verification cycle. Each notatio
middleware norms or specifications: e.g. for CORBA owonly covers a restricted part of the software life cycle: UML
Microsoft .NET specifications. Some implementations detatiagrams focus on system specifications and modeling; Petri
variations that support different distribution models nakle nets on formal verification of controlled systems; ADL on
precise tuning of middleware performance: the description of system architectures.

« The Advanced Communication Toolkit (ACT) [FM99] Thus, one has to use two or more notation to cover

provides a flexible imp|ementation of t}&okerpa’[tern_ both SpeCiﬁcation and verification. Current research diets/

It allows a precise description of resource a"ocatiorﬁocus on the combination of different description models to
policies for multi-threading or data marshalling. ACTProvide a complete description of a component :

shows theBroker may serve as a basis to implement « For instance one can derive Petri Nets from UML state
various distributions models. It supports CORBA (DOC) machines and diagrams [MCBDO02] to achieve verifica-
and cBus (Message Oriented Middleware, MOM). tion, yet there is no fully automated tool to complete

« The ACE ORB (TAO) [SLM98] demonstrates how the this task.

Broker pattern can be extended and then adapted toe. Another possibility is to rely on domain specific no-
several concurrent executions policies. TAO proposes tations such as the Avionics Architectural Description
multiple patterns to control concurrent execution of Language (AADL) [FLVO3] oL f P [RKO1]. They detail
Brokerinstances. A performance analysis revealed these how new notations can be defined by extending and
different patterns enable great flexibility in configuratio combining multiple models. Yet, they are still at an early
and good performance. definition stage and not fully supported by tools.

A. Overview of the Broker

I11. ANALYSIS GUIDELINES

B. Broker within middleware architectures

These studies provide guidelines for the formal specifica- Thus, we have to clearly separate middleware functions
tion and verification of components. They follow a top/dowrat both the definition and implementation levels. We now
approach from high level specifications to formal one, enpresent our solutionschizophrenic middleware

abling verification. B. Schizophrenic middleware

We propose to follow a similar approach, adapted to _ .) e
a very specific problem: verifying thBroker pattern. We Schizophrenic middleware refines the definition and role
Sof personalities to increase separation of concerns. fo-int

present the different steps in the following sections. tFir e o
we propose a middleware architecture that eases verificatifUCeS application level, protocol level personalities @nd
Neutral Core Middleware. The latter allows for interaction

then we refine th@roker pattern and define it with respect to - ; X N~
our middleware architecture. Finally, we present the formg*€tween personalities. Figure 1 presents interactionbuizpa
model of theBroker we produced using Petri Nets. ties between personalities available in our implemeradio

schizophrenic middleware: PolyORB.
V. MIDDLEWARE ARCHITECTURE FOR VERIFICATION Application personalitiesconstitute the adaptation layer
, . . , between application components and middleware through a
In this section, we present how specific middleware afgggicated API or code generator. They register application
chitectures enable formal verification. We introduce OUEomponents with the core middleware; and they interact with
proposal, theschizophreniarchitecture, and our implemen-j; 14 enaple the exchange of requests between entities at the
tation: PolyORB. application-level.
A Rati Protocol personalitieshandle the mapping of personality
. Rationale L . .
neutral requests (representing interactions betweericappl
We stated in section 1I-B that the interleaving of manyion entities) onto messages exchanged through a chosen
high-level functions is a major limitation for the verific@ communication network and protocol. Requests can be re-
of middleware architectures based on tBeoker pattern. ceived either from application entities (through an aggilan
To solve this problem we have to propose a comprehensigersonality and the neutral core) or from another node of
definition and then separation of middleware functions. the distributed application. They can also be received from
Generic middleware proposes such a separation: they asother protocol personality: in this case the applicatiode
sert that middleware implementations have similar desigmcts as a proxy performing protocol translation betweealthi
Hence, distribution models may be built from a set of generiparty nodes.
elements using a functionality-oriented approach. THeegse The Neutral Core Middlewareacts as an adaptation layer
elements are instantiated to conform to a specific disidbut between application and protocol personalities. It masage
model. execution resources and provides the necessary abstimctio
Several projects demonstrate how middleware functionalie transparently pass requests between protocol and ap-
ties can be described by a set of generic services, independplication personalities in a neutral way. It is completely
from any distribution model. They propose a set of abstraehdependent from both application and protocol persaealit
interfaces. Distribution models are implemented by combirthis enables the selection and interaction of any comlmnati
ing the concrete modules that implement these interfacegs aof application and protocol personalities.
provide access to generic middleware services.

« Quarterware [SSC98] is generic middleware from which [CORBA } [DSA } Agfslg::;ﬁils
CORBA, RMI and MPI instances have been produced. AAA P
These models have been implemented using a restricted ’ Neutral Core
. T middleware
set of components that can be extended to implement @ N
a specific model; or specialized for optimization and [G|Op} [SOAP} Protocol
personalities

high-performance.
« Jonathan [TS97] architecture emphasizes on instances
as adaptations of the core system Jonathan. Jonathan is

a framework of configurable components and abstract perspnalities implement a specific aspect of a distribution

interfaces. Dedicated instantiations provides CORBAwqgel. The Neutral Core Middleware enables the presence

(Dav!d)., Java RMI (.Jere.mle). distribution models, Orang interaction of multiple application and protocol perso

specialized ones for multimedia. alities within the same middleware instance, leading to its

These different projects provide incomplete solutions fotschizophrenic” nature (see [QKPO1] for more details).

verification. They enable the implementation of distribati Hence, this architecture separates three main components
models as instances quersonalitiesof a generic set of of middleware: protocol-side, application-side and insds.
components. But personalities implementation interleaverhis reduces components interleaving. We now detail their
instantiated components: this impedes verification. interactions.

Fig. 1. PolyORB's interacting personalities

C. Separating middleware functions “dispatching”) leading to the execution of application code

Personalities implement middleware functions with respe®Y application personality 'B'.
to a specific semantics. Yet, most of these functions are SO far, we demonstrated in [HPKO3] how composing
notionally similar and can be defined as instances of son#d reusing services enable the rapid prototyping of RPC
generic services. (distributed system annex of Ada), DOC (CORBA) and

Hence, schizophrenic middleware define generic servic®dOM (based on Sun’s JMS API) middleware. PolyORB
that express key middleware functionalites based on alows implementors to design multiple distribution model
analysis of multiple implementations. These services afom a common set of services. Code reuse ratio reaches
focused on the completion of interactions between two nodd§%; it is less than 30 % for generic middleware. We
of a distributed application. One can combine particulafhow how the instanciation of PolyORB services to build
services instances to implement theutral core middleware Personnalities preserve separation of middleware funstio

and app“cation or protoco' persona"ties_ Flna”y, benchmarks ShOW performance .al’e .COI’I‘eCt fOI’ SUCh
a middleware, when compared to generic middleware.
Application Application Per construction, each service encompasses a restricted,
personality A N\\lieht\\ /éﬁg/ﬁé(personality B well-defined set of functionalities. This separation of -con
j opjec
. % obj. ref 4. cerns enables separate analysis and verification of each mid
addressing (1)) . . oo .
[P execution(7 dleware component. It is a first step towards the verification
o surrogat o t ‘ i . i i i
binding(2) %\ E :{ servan activation(s of th_e whole m@dleware Th_us, schlzophrenlc_mldt_jleware
) 2 architecture provides foundations for formal verification
representation(3)— request Neutral core
| receiving & middleware
protocol(4) unmarshaling V. REFINING THE BROKER PATTERN
transport(5) i
Protocol personality The Broker architectural pattern interleaves functions that

define middleware architecture. We now detail how we refine
this pattern specification to separate its functionalitiesl
thus facilitate verification.
« Addressing Each entity is given a unique identifier
within the entire distributed application. A. From architectural to design pattern
« Binding Middleware establishes and maintains associa-
tions between interacting objects and resources allowing The Broker pattern role is to coordinate distributed ap-
this interaction (e.g. a socket, a protocol stack). plications and handle request exchange between nodes. Its
. RepresentationRequest must be translated into a repinitial definition as anarchitectural pattern (section II-A)
resentation suitable for transmission over network. ~ €ncompasses protocol services, resource allocationgsequ
« Protocol Middleware implements a protocol for the €xecution, etc. It gathers many components that should be
transmission of requests amongst nodes. delegated to separate components.
. Transport A communication channel is established We propose to refine this architectural pattern and to
between a node and an object to transmit messages.define aBrokerdesign pattern, i.e. a component that interacts
« Activation Middleware ensures a concrete entity implewith other services to provide the same functionalitiesitha
menting objects is available to execute the request. initial architectural pattern. This definition providesegter
« Execution Middleware assigns execution resource tcseparation of components involved in middleware.
process every incoming request. PolyORB’s architecture enables function delegation to a
Figure 2 illustrates how PolyORB's services Cooperatépeciﬁc service. Thus, middleware are combination of these
to transmit one request from one application personality t8ervices. In this respect, we define Bker design pattern
another, on two separate nodes using a common protocoIWhOSG unique role is to coordinate communications between
The client (application personality 'A) gets a referenceodes and to transmit requests.
on the object from théaddressing” service (1); the core This design pattern cooperates with other PolyORB’s
middleware creates a binding object (Bjnding” service): services. It sends requests from a node to another using
a dynamic gateway to the remote object through which thleoth addressingand binding services. It receives incoming
client communicates; a message is built from the request (8quests from remote nodes throughnsportservice;acti-
and 4, resptrepresentation”, “protocol” services) and sent vation service ensures request completion.
to the remote node (5itransport” service). Upon recep- Hence, theBroker design pattern along with PolyORB’s
tion, remote node middleware ensures that a concrete entgigrvices is notionally equivalent to tigroker architectural
implementing the object is available to execute the requephttern. Yet, it clearly separates functions into sepagtte
(6, “activation” service) and assigns execution resources (Tents. We now define each of them.

Fig. 2. PolyORB's services

B. Elements of the Broker design pattern

We focus on elementary abstractions to expres8thker
design pattern interfaces. These abstractions interattt wi
other PolyORB's services to form the complete middleware.
The elements to describe this pattern are:

« Asynchronous Event Sourcesenable waiting on ex-
ternal event sources, e.g. incoming data on TCP sockets.
These sources are input points used by remote nodes to
interact with thisBrokerinstance. An API to manipulate
and check sources is provided.

« Job Queue: stores all incomingobs the Broker will
process. Elementargroker actions are defined gsbs
to be processed by tasks runniBopker, e.g. monitoring
an event source, binding, processing incoming data,
executing a request.

« Broker: enables services to acceBsoker function-
alities either to procesfobs or to receive incoming
data from remote nodes througisynchronous event
sources We distinguish thd&roker main loop procedure
that monitors sources or process jobs until a given exit
condition is met; from theBroker API that allows for
interaction with event sources (protocol level) and th
job queue (application level).

« Scheduling Policy: allocates existing tasks to run the
Broker main loop. Allocation is done upon the notifica-
tion of event occurrences within middleware.

the automaton used for scheduling. Curr@rbkers
global state determines the next action a task running
the Brokers main loop will perform: direct leaving if
exit condition is met, processing jobs, blocking on event
sources or going idle.

The scheduler may be triggered at any time to ensure
a task will process events: e.g. a source is modified, a
new job is added to a queue, ...

Exit Condition ?

[Blocked |

Process Jobs]

Fig. 4. Task state automaton

These different elements show that this system is highly
concurrent and driven by the occurrence of specific events.
Thus we must choose carefully an appropriate modeling
?echnique to model eacBrokers functions and their com-
bination. We now detail how we move forward formal
specification and then verification using Petri Nets.

VI. PETRINET MODELING OF BROKER

Figure 3 details communication between these blocks. Petri Nets proved to be a rigorous formalism to verify con-

[Broker API }

current event driven systems. Existing tools enable autema
verification of structural properties or model checkingthis

® o use Y section, we detail how we mapped previous specifications to
"set up" e '3 Petri Nets.
“monitors” Main Loop i We first briefly present well formed Petri nets. Then we
Event Sources discuss the modeling process of tiBroker, and finally

introduce the Petri net model of tigroker.

Fig. 3. Interactions irBroker design pattern

A. Informal presentation of Petri nets

This specification, and the non-formal descriptions above A well formed colored Petri net [CDFH91], [GV02] is a
provide a first overview of theBroker design pattern. It 5-tuple <P, T,Pre, Post TypesMy> whereP is a set of places
implies interactions among its sub-components. We noydepicted by circles)T is a set of transitions (depicted by
briefly present them in order to determine coupling betweerectangles)Prelt] is the precondition function for transition
them. t, Postlt] is the postcondition function for transitidn Ty pes

« Broker: multiple tasks may concurrently execuBgo- is the set of basic types (a basic type is a finite set) Mpd

kers main loop, or other functions from thgroker API. is the initial marking.
This requires a precise locking policy. To each placep, a domainDom(p) is associatedDom(p)
« Job Queue: jobs can be queued by throker main is the cartesian product of some basic tyg@sm(p) corre-
loop upon the notification of an event on a source; osponds to the set of token color that plagecan possibly
at the request of user code. This implies the definitiogontain. In figure 5, basic classes is C. The domain of place
of a specific queuing policy. a is the cartesian product @ with itself, the one ofb and
Jobs are fetched in thBroker loop for processing. cisC.

« Asynchronous event sourcesevent sources list can A marking M(p) is associated to each plage M(p) is
be modified at any time; a traffic model defines howa multi-set overDom(p). Therefore, a markingM is the
incoming data are received. function that associates a marking to each plpaa P. An

« Scheduler: Tasks executing thBroker main loop may element of a marking in a place is called a token. In figure 5,

be scheduled to achieve specific tasks. Figure 4 detatlse initial marking associates one token having value <1> in

placeb and two tokens having values <1> and <2> in place represent states. Interaction between components isfiggleci
(function <C.all> generates one token for any value of clasas common places between different modules. Hierarchy can
O). also be used to provide partial views and helps in refining
an initial Petri net model. However, this hierarchy shoudd b
flatten to use formal verification tools.

class Then, Petri net modules are merged to produce a complete

poisl.2 <Z‘”'X yrrLy> model, suitable for verification. To do so, we use the CPN-

Dis <C, C> T u AMI 2 CASE environment that provides modeling facilities as

V";‘(r’ yinC: <I:\<c als <y> well as model checking and structural analysis tools. Hence
' the Petri Nets model for thBroker pattern is the aggregate

b (e<l> ¢ <C.all> of several Petri Net modules, each of which specifies one

function of theBroker.
Fig. 5. A small Petri net example.

ThreadPool .<7

Pre andPostfunctions describe how a marking is modified Class LT <"1 Polling
. readsis 1.. 1;
when an action is performed. Since actions are associated Eventsis 1..E; ChckSrcB
to transitions, instead of "an action is performed" we say: Jobs is 1.J; <t

"a transition is fired". To each transition, a set of variable
Var(t) is associated. Each variable is defined over a basic

Sources is 1..S; SigOut
Var
tin Threads;

e in Events; ‘

type. In figure 5Var(T) = <x> and Var(U) = <y>. The Jin Xobs;

Ly . K - > ChckSrcE
binding of a transition is the association of an actual value
to each parameter. When a transition fires, the corresponding
tokens are generated in its output places. Based on this
evolution, the state space can be generated. The figure 6 EvtHole 7/ Lock
provides the one of our example and explicitly presents all ProcEvtE
possible bindings (the double circle represents the Irstate
and black circles represent deadlock states). FlushEvt %H@

Computing the state space allows behavioral analysis such <é,j> <t>
as detection of specific states (e.g. "is a given situation
possible™) or causal relation between two states (e.g. "if |
reach states;, will | eventually reach stat&?").

Petri nets also support structural analysis: propertied su
as invariants (e.g. "the number of tokens remains constant
on a subset of places") are computed on the graph structure ProcEvtE
and thus do not require to compute the state space too. Thus,
infinite-state systems may be verified [GV02].

b: <1>
’{ e C. Petri Net of the Broker
u U
2 ? By lack of space, we only present the Petri net module
U
1 y=

LstEvt FlushDone
<S,j>

QueuEvt 1—_+—|<—<t>

Fig. 7. Petri Net for ondBroker module

y=
// c: <2>
b: <1>

sz 1>

y

b %2 /. P<l>ee2, 1> of one core function processed by tBeker main loop (see
Figure 7). This procedure is triggered when a task is blocked
waiting for events. It consists of two phasds:polling on
\éﬁmw event sources ang) processing events.
b: <1>
Fig. 6. The corresponding state space.

« Polling on event sourcesPlace ThreadPoolcontains
all threads scheduled to check event sources (see sec-
tion V-B). Only one task can actually check sources.
When transitionChckSrcBfires, one available thread

] _ is selected to check sources. Transiti©hckSrcEfires
Having non-formally definedroker subcomponents and upon the notification of the presence of an event in the

We first transcribe the different components and interac- thread can check sources.

tions we presented into Petri Nets modules. We associate
a specific action to each transition of the Petri Net; places?nhttp://wawsrc.lip6.fr/logiciel s/ mars/cpn- ani

B. The modeling process

« Event processing.Since we read from event sourcespattern interleaves many high-level functions. This ingsed
(place EvtHolg, this step has to be performed underverification. We thus looked for precise separation of all
critical section (ensured by pla¢®cK. TransitionFlu- middleware functions to ease the verification process.
shEvtis fired as long as there are events coming from We detailed existing modeling notations. We showed at
any of the sources. TransitidflushDonefires when all least two different formalisms are required to enable the-co
events are consumed, which is enforced by the inhibitgslete definition and then verification of software composent
arc from EvtHole to FlushDone Events are stored in We chose to rely on design patterns notations and Petri Nets
the Job Queue, they will be processed later by anothes model theBroker,
thread. The related functions are defined in other Petri We first presented theschizophrenicmiddleware archi-
net modules. When all events are queued, transitia@cture and its implementation PolyORB. We showed how
ProcEvtEfires to release the lock and restore the threas architecture clearly decouples middleware functiohs a
in the pool. both definition and implementation level. We refinBubker

Places outlined in black have a special status in the Pe@ichitectural pattern and defineBioker design pattern. It

net module. They support communication with other Petihteracts with other PolyORB services to fulfill the same
net modules. Their marking is generated by these modul@gnctions. Moreover, th@roker design pattern embeds less
and ensure an appropriate connection between the modulkgictionalities. This also eases verification.
They represent either oth@&roker functions or middleware Finally, we explained how we produced Petri net models
modules interacting with the broker (i.e. behavior of Polyof the Broker. We presented how to build specific scenarios
ORB services). This typical composition technique is chlleto verify properties with respect to application needs. We
channel placdSou89]. contemplate verifying our implementation PolyORB.

This Petri net module allows a stand-alone assessmentWe defined specific conditions to be tested. This will
of the modeled function. This can be done by changingequire future work to be completed. We expect it will pro-
the initial marking: each initial marking corresponds to avide more information on middleware behavior with respect
set of potential scenarios. This provides useful behalioréo specific scenarios and lead to the formal validation of

information on the correctness of the modeled function. Alproperties of our model, and then of our implementation.

functions can be separately tested and then combined to form
the complete Petri net model. Besides, module substitution
allows us to define different scenarios that emulate specific
conditions (e.g. queuing, locking or scheduling policies)
Then, these different models of ti&¥oker can be tested,
providing information on resource consumption. We may first
test for any deadlock or livelocks situations. Then, we may

compute resources needed to fullfill a specific scenario; Ww&DFH91]

may look for stable states or compute shorter or longuest
processing path. The main advantage of this technique is to
enable verification targeted on the way the middleware is
used. Thus, optimizations can be formally verified accaydin[FLVO3]
to specific execution conditions.

VIlI. CONCLUSION AND FUTURE WORKS

This paper presents the first steps towards middleware
verification. We have detailed how to extract from an non-
formal specification components that can be verified; andM99]
proposed the use of Petri Net to verify these components.

Most efficient middleware architectures rely on design
patterns as a language to express and then implement user
requirements. Test cases are defined to validate this ecehit[GV02]
ture. Yet, this approach lacks generality: it only testsuke
of a restricted set of functions.

Then, we presented thBroker architectural pattern. It
provides a complete and precise definition of all components
involved in remote service invocation. It is of common use
in middleware architecture. We noted its analysis would
provide analysis of middleware implementations. But this

[HPKO3]

VIIl. REFERENCES

[BMRT96] F. Buschmann, R. Meunier, H. Rohnert, P. Som-

merlad, and M. StalPattern-Oriented Software
Architecture: A System Of Patterngohn Wiley
and Sons Ltd., 1996.

G. Chiola, C. Dutheillet, G. Franceschini, and
S. Haddad. On Well-Formed Coloured Nets and
their Symbolic Reachability GraphHigh-Level
Petri Nets. Theory and Application, LNCE91.

H. Feiler, B. Lewis, and S. Vestal. The
SAE Avionics Architecture Description Lan-
guage (AADL) Standard: A Basis for Model-
Based Architecture-Driven Embedded Systems
Engineering. IMRTAS 2003 Workshop on Model-
Driven Embedded Systemday 2003.

C. Francu and |. Marsic. An Advanced Com-
munication Toolkit for Implementing the Broker
Pattern. InProceedings of ICDCS’Q9IEEE,
June 1999.

C. Girault and R. Valk. Petri Nets for System
Engineering Springer Verlag, September 2002.
Jérbme Hugues, Laurent Pautet, and Fabrice Ko-
rdon. Contributions to middleware architectures
to prototype distribution infrastructures. Rro-
ceedings of the 14th IEEE International Work-
shop on Rapid System Prototyping (RSP;03)
San Diego, CA, USA, June 2003.

[MCBDO02] J. Merseguer, J. Campos, S. Bernardi, and S. Do-

[QKPO1]

[RKO1]

[SBO3]

natelli. A compositional semantics for UML

state machines aimed at performance evaluatiofSLM98]
In Proceedings of the Sixth International Work-

shop on Discrete Event Systemstober 2002.

Thomas Quinot, Fabrice Kordon, and Laurent
Pautet. From functional to architectural analy{Sou89]
sis of a middleware supporting interoperability

across heterogeneous distribution models. In
Proceedings of the 3rd Int'l Symposium on
Distributed Objects and Applications (DOA'Ql) [SSC98]
September 2001.

D. Regep and F. KordonLfP: a specification

language for rapid prototyping of concurrent[TS97]
systems. Inl2th IEEE International Workshop

on Rapid System Prototypingune 2001.

D.C. Schmidt and F. Buschmann. Patterns
frameworks and middleware: Their synergistic
relationships. InProceedings of the 25th Inter-

national Conference on Software Engineering
2003.

Douglas C. Schmidt, David L. Levine, and
Sumedh Mungee. The design of the TAO real-
time object request brokeiComputer Commu-
nications 21(4):294-324, April 1998.

Y. Soussy. Compositions of Nets via a communi-
cation medium. Irl0th International Conference
on Application and theory of Petri Net8onn,
Germany, June 1989.

A. Singhai, A. Sane, and R. Campbell. Quar-
terware for Middleware. InProceedings of
ICDCS’'98 IEEE, May 1998.

F. Dang Tran and J-B. Stéfani. Towards an
extensible and modular ORB framework. In
Workshop of ECOOP’97 Jyvaskyla, Finland,
April 1997. http://sirac.inrialpes.fr/

~bel | i ssa/ wecoop97/ dangtran. ps. gz.

