
Refining middleware functions for verification purpose

Jérôme Hugues, Laurent Pautet
{hugues, pautet}@enst.fr
École Nationale Supérieure

des Télécommunications
CS & Networks Department

46, rue Barrault
F-75634 Paris CEDEX 13, France

Fabrice Kordon
Fabrice.Kordon@lip6.fr

Laboratoire d’Informatique de Paris 6/SRC
Université Pierre & Marie Curie

4, place Jussieu
F-75252 Paris CEDEX 05, France

Abstract— The development of real-time, dependable or scal-
able distributed applications requires specific middleware that
enables the formal verification of domain-specific properties. So
far, typical middleware implementations do not directly address
these issues. They focus on patterns and frameworks to meet
application-specific requirements.

Patterns propose a high-level methodology adapted to the
description of software components. However, their semantics
does not clearly address verification of static or run-time
properties. Such issues can be addressed by other formalisms,
at the cost of a more refined description.

In this paper, we present our current effort to combine both
patterns and Petri Nets to refine and then to verify middleware.
Our contribution details steps to build Petri Net models from
the Broker architectural pattern. This provides a model of
middleware and is a first step towards formal middleware
verification.

I. I SSUES IN MIDDLEWARE DEVELOPMENT

Distribution middleware provides description methods, ser-
vices and guidelines to ease the development of distributed
applications. Middleware specifications describe the seman-
tics and runtime supports for distribution.

Successful implementations of solutions such as CORBA,
Java Message Service (JMS) or SOAP demonstrate that
distributed applications require very different distribution
models: Remote Procedure Call (RPC), Distributed Objects
Computing (DOC), Message Passing (MP) or Distributed
Shared Memory (DSM).

Besides, there is a rising demand for a wider range of
runtime and platform support: embedded, mobile, real-time,
multimedia, etc. These new criteria increase complexity in
both middleware development and use. Middleware imple-
mentations should be versatile enough to handle different
(and potentially antagonist) platform requirements; applica-
tion must abide to complex middleware semantics.

Current middleware implementations rely onpatterns to
enable configurability and then to meet user requirements for
one specific distribution model. Architectural and design pat-
terns are introduced to describe specific solution to recurrent
design problems (request demultiplexing, buffers allocations,
concurrent execution, etc). Middleware is described by means
of a language pattern that weaves together a set of related pat-
terns. This approach proved its efficiency in various industrial

projects [SB03]. Hence, the combination of patterns provides
a high-level description of middleware. Yet, weak pattern
descriptions may lead to slightly different implementations or
implementations that interleave different patterns concerns.
This impedes implementations verification.

Moreover, patterns are only descriptive. They do not
provide any verification guidelines. Thus, implementations
rely only on simple verification methods to verify behavioral-
only properties: the use of some middleware functions and
the execution of predefined test cases. But this approach
lacks generality: it can only test a restricted subset of the
infrastructure properties.

As middleware use evolves toward real-time and de-
pendable applications, there is a strong need for formal
verification of middleware with respect to explicitly defined
properties. Yet, verification process is a complex task. The
choice of a verification mechanisms is thus significant.

In the remainder of this paper, we detail our current effort
on middleware verification. We focus on remote invocation
models (RPC, DOC or MP) and exclude DSM. We present
a middleware typical architecture, built around theBroker
architectural pattern and show limits that prevent verification.
Then we introduce our work to fill this gap and detail
the modeling notations and process we use to verify the
Broker. We also detail our specific middleware architecture,
implemented by PolyORB1 and demonstrate how separation
of concerns eases verification. Then we explain how we
refine theBroker and detail how to formally verify it.

II. B ROKER: A KEY MIDDLEWARE PATTERN

Basically, middleware provides mechanisms to enable
transparent interaction between application nodes using mes-
sages. Reception of a message triggers:1) resources alloca-
tion, 2) specific processing for the distribution model and
then 3) execution of application-specific code. A response
may be sent back to the message initiator, following the same
path. The architectural patternBroker provides a view of the
components involved in this process.

1http://libre.act-europe.fr/polyorb

We first present this pattern; we show its importance for
middleware specifications, performance and runtime; then we
discuss limitations when coming to verification.

A. Overview of the Broker

The Broker architectural pattern provides a synthetic de-
scription of the role of middleware [BMR+96]: “ [..] (to)
structure distributed software systems with decoupled com-
ponents that interact by remote service invocations. A broker
component is responsible for coordinating communication,
such as forwarding requests, as well as for transmitting
results and exceptions.”.

The Broker pattern prescribes the use of many different
objects: proxy, client and server, repository, bridge. These
objects cooperate in the following way:Servers register
themselves with the broker through theRepository, and make
their services available toClients through method interfaces;
Clients access servers by sending requests via theBroker.
Broker exchanges requests between nodes by locating the
appropriate server, forwarding the request to it and trans-
mitting results back to the client.Proxy and Bridge handle
communication mechanisms and enable data exchange across
heterogeneous platform.

We can note that theBroker specification presented above
provides a complete view of an architecture to achieve
remote service invocation. It covers all functions involved
in middleware execution: protocol stack, data representation
for transmission through network, resource allocation, etc.
Hence, its precise definition and study will provide a first
analysis of a middleware architecture.

B. Broker within middleware architectures

The Broker pattern has a key role in middleware ar-
chitecture and implementations. Moreover, similar patterns
[BMR+96] propose simpler views of theBroker adapted
to specific cases. Variations of this pattern are used by
middleware norms or specifications: e.g. for CORBA or
Microsoft .NET specifications. Some implementations detail
variations that support different distribution models or enable
precise tuning of middleware performance:

• The Advanced Communication Toolkit (ACT) [FM99]
provides a flexible implementation of theBrokerpattern.
It allows a precise description of resource allocation
policies for multi-threading or data marshalling. ACT
shows theBroker may serve as a basis to implement
various distributions models. It supports CORBA (DOC)
and cBus (Message Oriented Middleware, MOM).

• The ACE ORB (TAO) [SLM98] demonstrates how the
Broker pattern can be extended and then adapted to
several concurrent executions policies. TAO proposes
multiple patterns to control concurrent execution of
Broker instances. A performance analysis revealed these
different patterns enable great flexibility in configuration
and good performance.

Hence, theBroker pattern is used under multiple forms
at the core of most middleware architectures. Its precise
definition and analysis would provide significant information
about resource use, execution flow, middleware faults and
performance analysis; but also to detect incorrect design.

So far, middleware implementations rely on slightly dif-
ferent behavioral descriptions of theBroker. This pattern
definition is not sufficiently detailed and may lead to many
fine variations introduced by implementation choices. More-
over, this pattern interleaves multiple functions: protocol,
resource allocation, etc. Such a description impedes verifi-
cation: it covers many complex functions. Thus, theBroker
architectural pattern provides a specification of middleware
architecture not suitable for formal verification.

However, patterns provide an elegant way to describe
a component. We now present how we extract a precise
specification of middleware components from theBroker
architectural pattern that is suitable for verification.

III. A NALYSIS GUIDELINES

A complete analysis of theBroker pattern requires first a
clear description of the component interface, related seman-
tics and expected properties. Ultimately, this description is
expressed using a notation that enables formal verification. In
between, several transformations may be required to go from
high-level non-formal specification to strongly formalized
description of a component.

This raises the question of the most adequate modeling
notation (or set of notations) to achieve this process. We
contemplate using one or more models among automata,
UML diagrams (and derived stereotypes), Petri nets (col-
ored, stochastic, etc) and architecture description languages
(ADL). These are the most used notations for modeling
software components.

We can note that none of these notation is supported by a
complete specification and verification cycle. Each notation
only covers a restricted part of the software life cycle: UML
diagrams focus on system specifications and modeling; Petri
nets on formal verification of controlled systems; ADL on
the description of system architectures.

Thus, one has to use two or more notation to cover
both specification and verification. Current research activities
focus on the combination of different description models to
provide a complete description of a component :

• For instance one can derive Petri Nets from UML state
machines and diagrams [MCBD02] to achieve verifica-
tion, yet there is no fully automated tool to complete
this task.

• Another possibility is to rely on domain specific no-
tations such as the Avionics Architectural Description
Language (AADL) [FLV03] orL f P [RK01]. They detail
how new notations can be defined by extending and
combining multiple models. Yet, they are still at an early
definition stage and not fully supported by tools.

These studies provide guidelines for the formal specifica-
tion and verification of components. They follow a top/down
approach from high level specifications to formal one, en-
abling verification.

We propose to follow a similar approach, adapted to
a very specific problem: verifying theBroker pattern. We
present the different steps in the following sections. First
we propose a middleware architecture that eases verification;
then we refine theBrokerpattern and define it with respect to
our middleware architecture. Finally, we present the formal
model of theBroker we produced using Petri Nets.

IV. M IDDLEWARE ARCHITECTURE FOR VERIFICATION

In this section, we present how specific middleware ar-
chitectures enable formal verification. We introduce our
proposal, theschizophrenicarchitecture, and our implemen-
tation: PolyORB.

A. Rationale

We stated in section II-B that the interleaving of many
high-level functions is a major limitation for the verification
of middleware architectures based on theBroker pattern.
To solve this problem we have to propose a comprehensive
definition and then separation of middleware functions.

Generic middleware proposes such a separation: they as-
sert that middleware implementations have similar design.
Hence, distribution models may be built from a set of generic
elements using a functionality-oriented approach. Then, these
elements are instantiated to conform to a specific distribution
model.

Several projects demonstrate how middleware functionali-
ties can be described by a set of generic services, independent
from any distribution model. They propose a set of abstract
interfaces. Distribution models are implemented by combin-
ing the concrete modules that implement these interfaces and
provide access to generic middleware services.

• Quarterware [SSC98] is generic middleware from which
CORBA, RMI and MPI instances have been produced.
These models have been implemented using a restricted
set of components that can be extended to implement
a specific model; or specialized for optimization and
high-performance.

• Jonathan [TS97] architecture emphasizes on instances
as adaptations of the core system Jonathan. Jonathan is
a framework of configurable components and abstract
interfaces. Dedicated instantiations provides CORBA
(David), Java RMI (Jeremie) distribution models, or
specialized ones for multimedia.

These different projects provide incomplete solutions for
verification. They enable the implementation of distribution
models as instances orpersonalitiesof a generic set of
components. But personalities implementation interleaves
instantiated components: this impedes verification.

Thus, we have to clearly separate middleware functions
at both the definition and implementation levels. We now
present our solution:schizophrenic middleware.

B. Schizophrenic middleware

Schizophrenic middleware refines the definition and role
of personalities to increase separation of concerns. It intro-
duces application level, protocol level personalities anda
Neutral Core Middleware. The latter allows for interaction
between personalities. Figure 1 presents interaction capabili-
ties between personalities available in our implementation of
schizophrenic middleware: PolyORB.

Application personalitiesconstitute the adaptation layer
between application components and middleware through a
dedicated API or code generator. They register application
components with the core middleware; and they interact with
it to enable the exchange of requests between entities at the
application-level.

Protocol personalitieshandle the mapping of personality
neutral requests (representing interactions between applica-
tion entities) onto messages exchanged through a chosen
communication network and protocol. Requests can be re-
ceived either from application entities (through an application
personality and the neutral core) or from another node of
the distributed application. They can also be received from
another protocol personality: in this case the applicationnode
acts as a proxy performing protocol translation between third-
party nodes.

The Neutral Core Middlewareacts as an adaptation layer
between application and protocol personalities. It manages
execution resources and provides the necessary abstractions
to transparently pass requests between protocol and ap-
plication personalities in a neutral way. It is completely
independent from both application and protocol personalities:
this enables the selection and interaction of any combination
of application and protocol personalities.

DSACORBA

SOAPGIOP

Application
personalities

Protocol
personalities

Neutral Core
middleware

(1)
(2)

(3)

Fig. 1. PolyORB’s interacting personalities

Personalities implement a specific aspect of a distribution
model. The Neutral Core Middleware enables the presence
and interaction of multiple application and protocol person-
alities within the same middleware instance, leading to its
“schizophrenic” nature (see [QKP01] for more details).

Hence, this architecture separates three main components
of middleware: protocol-side, application-side and internals.
This reduces components interleaving. We now detail their
interactions.

C. Separating middleware functions

Personalities implement middleware functions with respect
to a specific semantics. Yet, most of these functions are
notionally similar and can be defined as instances of some
generic services.

Hence, schizophrenic middleware define generic services
that express key middleware functionalities based on an
analysis of multiple implementations. These services are
focused on the completion of interactions between two nodes
of a distributed application. One can combine particular
services instances to implement theneutral core middleware
andapplicationor protocol personalities.

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

servant

object

process

obj. ref

marshaling

request

access pt

Neutral core
middleware

Application Application
client server

ne
tw

or
k

request
receiving &

unmarshaling

addressing (1)

binding(2)

representation(3)

protocol(4)

transport(5)

activation(6)
surrogate

personality A personality B

execution(7)

personalityProtocol	

Fig. 2. PolyORB’s services

• Addressing Each entity is given a unique identifier
within the entire distributed application.

• Binding Middleware establishes and maintains associa-
tions between interacting objects and resources allowing
this interaction (e.g. a socket, a protocol stack).

• RepresentationRequest must be translated into a rep-
resentation suitable for transmission over network.

• Protocol Middleware implements a protocol for the
transmission of requests amongst nodes.

• Transport A communication channel is established
between a node and an object to transmit messages.

• Activation Middleware ensures a concrete entity imple-
menting objects is available to execute the request.

• Execution Middleware assigns execution resource to
process every incoming request.

Figure 2 illustrates how PolyORB’s services cooperate
to transmit one request from one application personality to
another, on two separate nodes using a common protocol.

The client (application personality ’A’) gets a reference
on the object from the“addressing” service (1); the core
middleware creates a binding object (2,“binding” service):
a dynamic gateway to the remote object through which the
client communicates; a message is built from the request (3
and 4, resp.“representation”, “protocol” services) and sent
to the remote node (5,“transport” service). Upon recep-
tion, remote node middleware ensures that a concrete entity
implementing the object is available to execute the request
(6, “activation” service) and assigns execution resources (7,

“dispatching”) leading to the execution of application code
by application personality ’B’.

So far, we demonstrated in [HPK03] how composing
and reusing services enable the rapid prototyping of RPC
(distributed system annex of Ada), DOC (CORBA) and
MOM (based on Sun’s JMS API) middleware. PolyORB
allows implementors to design multiple distribution model
from a common set of services. Code reuse ratio reaches
70%; it is less than 30 % for generic middleware. We
show how the instanciation of PolyORB services to build
personnalities preserve separation of middleware functions.
Finally, benchmarks show performance are correct for such
a middleware, when compared to generic middleware.

Per construction, each service encompasses a restricted,
well-defined set of functionalities. This separation of con-
cerns enables separate analysis and verification of each mid-
dleware component. It is a first step towards the verification
of the whole middleware. Thus, schizophrenic middleware
architecture provides foundations for formal verification.

V. REFINING THE BROKER PATTERN

The Broker architectural pattern interleaves functions that
define middleware architecture. We now detail how we refine
this pattern specification to separate its functionalitiesand
thus facilitate verification.

A. From architectural to design pattern

The Broker pattern role is to coordinate distributed ap-
plications and handle request exchange between nodes. Its
initial definition as anarchitectural pattern (section II-A)
encompasses protocol services, resource allocation, request
execution, etc. It gathers many components that should be
delegated to separate components.

We propose to refine this architectural pattern and to
define aBrokerdesign pattern, i.e. a component that interacts
with other services to provide the same functionalities than
initial architectural pattern. This definition provides greater
separation of components involved in middleware.

PolyORB’s architecture enables function delegation to a
specific service. Thus, middleware are combination of these
services. In this respect, we define theBroker design pattern
whose unique role is to coordinate communications between
nodes and to transmit requests.

This design pattern cooperates with other PolyORB’s
services. It sends requests from a node to another using
both addressingand binding services. It receives incoming
requests from remote nodes throughtransport service;acti-
vation service ensures request completion.

Hence, theBroker design pattern along with PolyORB’s
services is notionally equivalent to theBroker architectural
pattern. Yet, it clearly separates functions into separateele-
ments. We now define each of them.

B. Elements of the Broker design pattern

We focus on elementary abstractions to express theBroker
design pattern interfaces. These abstractions interact with
other PolyORB’s services to form the complete middleware.
The elements to describe this pattern are:

• Asynchronous Event Sources:enable waiting on ex-
ternal event sources, e.g. incoming data on TCP sockets.
These sources are input points used by remote nodes to
interact with thisBroker instance. An API to manipulate
and check sources is provided.

• Job Queue: stores all incomingjobs the Broker will
process. ElementaryBroker actions are defined asjobs
to be processed by tasks runningBroker; e.g. monitoring
an event source, binding, processing incoming data,
executing a request.

• Broker: enables services to accessBroker function-
alities either to processjobs, or to receive incoming
data from remote nodes throughasynchronous event
sources. We distinguish theBrokermain loop procedure
that monitors sources or process jobs until a given exit
condition is met; from theBroker API that allows for
interaction with event sources (protocol level) and the
job queue (application level).

• Scheduling Policy: allocates existing tasks to run the
Broker main loop. Allocation is done upon the notifica-
tion of event occurrences within middleware.

Figure 3 details communication between these blocks.

Broker API

Event Sources

Job Queue
"Main Loop"

Scheduler

E
ve

nt"use"

"set up"

"monitors"

"queue"

"fetch"

Fig. 3. Interactions inBroker design pattern

This specification, and the non-formal descriptions above
provide a first overview of theBroker design pattern. It
implies interactions among its sub-components. We now
briefly present them in order to determine coupling between
them.

• Broker: multiple tasks may concurrently executeBro-
ker’s main loop, or other functions from theBrokerAPI.
This requires a precise locking policy.

• Job Queue: jobs can be queued by theBroker main
loop upon the notification of an event on a source; or
at the request of user code. This implies the definition
of a specific queuing policy.
Jobs are fetched in theBroker loop for processing.

• Asynchronous event sources:event sources list can
be modified at any time; a traffic model defines how
incoming data are received.

• Scheduler: Tasks executing theBroker main loop may
be scheduled to achieve specific tasks. Figure 4 details

the automaton used for scheduling. CurrentBroker’s
global state determines the next action a task running
the Broker’s main loop will perform: direct leaving if
exit condition is met, processing jobs, blocking on event
sources or going idle.
The scheduler may be triggered at any time to ensure
a task will process events: e.g. a source is modified, a
new job is added to a queue, . . .

Fig. 4. Task state automaton

These different elements show that this system is highly
concurrent and driven by the occurrence of specific events.
Thus we must choose carefully an appropriate modeling
technique to model eachBroker’s functions and their com-
bination. We now detail how we move forward formal
specification and then verification using Petri Nets.

VI. PETRI NET MODELING OF BROKER

Petri Nets proved to be a rigorous formalism to verify con-
current event driven systems. Existing tools enable automatic
verification of structural properties or model checking. Inthis
section, we detail how we mapped previous specifications to
Petri Nets.

We first briefly present well formed Petri nets. Then we
discuss the modeling process of theBroker, and finally
introduce the Petri net model of theBroker.

A. Informal presentation of Petri nets

A well formed colored Petri net [CDFH91], [GV02] is a
5-tuple <P,T,Pre,Post,Types,M0> whereP is a set of places
(depicted by circles),T is a set of transitions (depicted by
rectangles),Pre[t] is the precondition function for transition
t, Post[t] is the postcondition function for transitiont, Types
is the set of basic types (a basic type is a finite set) andM0

is the initial marking.
To each placep, a domainDom(p) is associated:Dom(p)

is the cartesian product of some basic types.Dom(p) corre-
sponds to the set of token color that placep can possibly
contain. In figure 5, basic classes is C. The domain of place
a is the cartesian product ofC with itself, the one ofb and
c is C.

A marking M(p) is associated to each placep: M(p) is
a multi-set overDom(p). Therefore, a markingM is the
function that associates a marking to each placep of P. An
element of a marking in a place is called a token. In figure 5,
the initial marking associates one token having value <1> in

placeb and two tokens having values <1> and <2> in placec
(function <C.all> generates one token for any value of class
C).

class
 C is 1 .. 2;
Domain
 D is <C, C>;
Var
 x, y in C;

a

b <1> c <C.all>

T U

<y++1,y><C.all,x>

<x> <C.all> <y>

Fig. 5. A small Petri net example.

Pre andPost functions describe how a marking is modified
when an action is performed. Since actions are associated
to transitions, instead of "an action is performed" we say:
"a transition is fired". To each transition, a set of variables
Var(t) is associated. Each variable is defined over a basic
type. In figure 5,Var(T) = <x> and Var(U) = <y>. The
binding of a transition is the association of an actual value
to each parameter. When a transition fires, the corresponding
tokens are generated in its output places. Based on this
evolution, the state space can be generated. The figure 6
provides the one of our example and explicitly presents all
possible bindings (the double circle represents the initial state
and black circles represent deadlock states).

Computing the state space allows behavioral analysis such
as detection of specific states (e.g. "is a given situation
possible") or causal relation between two states (e.g. "if I
reach stateS1, will I eventually reach stateS2?").

Petri nets also support structural analysis: properties such
as invariants (e.g. "the number of tokens remains constant
on a subset of places") are computed on the graph structure
and thus do not require to compute the state space too. Thus,
infinite-state systems may be verified [GV02].

c: <1>+<2>
b: <1>

c: <2>
b: <1>
a: <2,1>

c: <1>
b: <1>
a: <1,2>

a:<1>+<2,1>

b: <1>
a: <1,2>+<2,1>

U
 y = 1

U
 y = 2

T
 x = 1

U

 y = 2

U
 y = 1

Fig. 6. The corresponding state space.

B. The modeling process

Having non-formally definedBroker subcomponents and
their interactions, we now detail how to formally specify it.

We first transcribe the different components and interac-
tions we presented into Petri Nets modules. We associate
a specific action to each transition of the Petri Net; places

represent states. Interaction between components is specified
as common places between different modules. Hierarchy can
also be used to provide partial views and helps in refining
an initial Petri net model. However, this hierarchy should be
flatten to use formal verification tools.

Then, Petri net modules are merged to produce a complete
model, suitable for verification. To do so, we use the CPN-
AMI 2 CASE environment that provides modeling facilities as
well as model checking and structural analysis tools. Hence,
the Petri Nets model for theBroker pattern is the aggregate
of several Petri Net modules, each of which specifies one
function of theBroker.

ThreadPool

SigOut
1

Lock
1

Polling
1

EvtHole

LstEvt

ChckSrcB

ChckSrcE

ProcEvtB

FlushEvt

ProcEvtE

QueuEvt

FlushDone

<t>

<t><t>

<s,j>
<t><t>

<t>

<t>

<t><s,j>

<e,s> <t>

<t>

<t>

<t>

<t>

<t>Class
 Threads is 1.. T;
 Events is 1.. E;
 Jobs is 1..J;
 Sources is 1..S;
Var
 t in Threads;
 e in Events;
 j in Jobs;
 s in Sources;

Fig. 7. Petri Net for oneBroker module

C. Petri Net of the Broker

By lack of space, we only present the Petri net module
of one core function processed by theBrokermain loop (see
Figure 7). This procedure is triggered when a task is blocked,
waiting for events. It consists of two phases:1) polling on
event sources and2) processing events.

• Polling on event sources.PlaceThreadPoolcontains
all threads scheduled to check event sources (see sec-
tion V-B). Only one task can actually check sources.
When transitionChckSrcBfires, one available thread
is selected to check sources. TransitionChckSrcEfires
upon the notification of the presence of an event in the
sources (placeSigOut). PlacePolling ensures only one
thread can check sources.

2http://www-src.lip6.fr/logiciels/mars/cpn-ami

• Event processing.Since we read from event sources
(place EvtHole), this step has to be performed under
critical section (ensured by placeLock). TransitionFlu-
shEvt is fired as long as there are events coming from
any of the sources. TransitionFlushDonefires when all
events are consumed, which is enforced by the inhibitor
arc from EvtHole to FlushDone. Events are stored in
the Job Queue, they will be processed later by another
thread. The related functions are defined in other Petri
net modules. When all events are queued, transition
ProcEvtEfires to release the lock and restore the thread
in the pool.

Places outlined in black have a special status in the Petri
net module. They support communication with other Petri
net modules. Their marking is generated by these modules
and ensure an appropriate connection between the modules.
They represent either otherBroker functions or middleware
modules interacting with the broker (i.e. behavior of Poly-
ORB services). This typical composition technique is called
channel place[Sou89].

This Petri net module allows a stand-alone assessment
of the modeled function. This can be done by changing
the initial marking: each initial marking corresponds to a
set of potential scenarios. This provides useful behavioral
information on the correctness of the modeled function. All
functions can be separately tested and then combined to form
the complete Petri net model. Besides, module substitution
allows us to define different scenarios that emulate specific
conditions (e.g. queuing, locking or scheduling policies).

Then, these different models of theBroker can be tested,
providing information on resource consumption. We may first
test for any deadlock or livelocks situations. Then, we may
compute resources needed to fullfill a specific scenario; we
may look for stable states or compute shorter or longuest
processing path. The main advantage of this technique is to
enable verification targeted on the way the middleware is
used. Thus, optimizations can be formally verified according
to specific execution conditions.

VII. C ONCLUSION AND FUTURE WORKS

This paper presents the first steps towards middleware
verification. We have detailed how to extract from an non-
formal specification components that can be verified; and
proposed the use of Petri Net to verify these components.

Most efficient middleware architectures rely on design
patterns as a language to express and then implement user
requirements. Test cases are defined to validate this architec-
ture. Yet, this approach lacks generality: it only tests theuse
of a restricted set of functions.

Then, we presented theBroker architectural pattern. It
provides a complete and precise definition of all components
involved in remote service invocation. It is of common use
in middleware architecture. We noted its analysis would
provide analysis of middleware implementations. But this

pattern interleaves many high-level functions. This impedes
verification. We thus looked for precise separation of all
middleware functions to ease the verification process.

We detailed existing modeling notations. We showed at
least two different formalisms are required to enable the com-
plete definition and then verification of software components.
We chose to rely on design patterns notations and Petri Nets
to model theBroker.

We first presented theschizophrenicmiddleware archi-
tecture and its implementation PolyORB. We showed how
its architecture clearly decouples middleware functions at
both definition and implementation level. We refinedBroker
architectural pattern and define aBroker design pattern. It
interacts with other PolyORB services to fulfill the same
functions. Moreover, theBroker design pattern embeds less
functionalities. This also eases verification.

Finally, we explained how we produced Petri net models
of the Broker. We presented how to build specific scenarios
to verify properties with respect to application needs. We
contemplate verifying our implementation PolyORB.

We defined specific conditions to be tested. This will
require future work to be completed. We expect it will pro-
vide more information on middleware behavior with respect
to specific scenarios and lead to the formal validation of
properties of our model, and then of our implementation.

VIII. REFERENCES

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. Stal.Pattern-Oriented Software
Architecture: A System Of Patterns. John Wiley
and Sons Ltd., 1996.

[CDFH91] G. Chiola, C. Dutheillet, G. Franceschini, and
S. Haddad. On Well-Formed Coloured Nets and
their Symbolic Reachability Graph.High-Level
Petri Nets. Theory and Application, LNCS, 1991.

[FLV03] H. Feiler, B. Lewis, and S. Vestal. The
SAE Avionics Architecture Description Lan-
guage (AADL) Standard: A Basis for Model-
Based Architecture-Driven Embedded Systems
Engineering. InRTAS 2003 Workshop on Model-
Driven Embedded Systems, May 2003.

[FM99] C. Francu and I. Marsic. An Advanced Com-
munication Toolkit for Implementing the Broker
Pattern. InProceedings of ICDCS’99. IEEE,
June 1999.

[GV02] C. Girault and R. Valk. Petri Nets for System
Engineering. Springer Verlag, September 2002.

[HPK03] Jérôme Hugues, Laurent Pautet, and Fabrice Ko-
rdon. Contributions to middleware architectures
to prototype distribution infrastructures. InPro-
ceedings of the 14th IEEE International Work-
shop on Rapid System Prototyping (RSP’03),
San Diego, CA, USA, June 2003.

[MCBD02] J. Merseguer, J. Campos, S. Bernardi, and S. Do-
natelli. A compositional semantics for UML
state machines aimed at performance evaluation.
In Proceedings of the Sixth International Work-
shop on Discrete Event Systems, october 2002.

[QKP01] Thomas Quinot, Fabrice Kordon, and Laurent
Pautet. From functional to architectural analy-
sis of a middleware supporting interoperability
across heterogeneous distribution models. In
Proceedings of the 3rd Int’l Symposium on
Distributed Objects and Applications (DOA’01),
September 2001.

[RK01] D. Regep and F. Kordon.L f P: a specification
language for rapid prototyping of concurrent
systems. In12th IEEE International Workshop
on Rapid System Prototyping, June 2001.

[SB03] D.C. Schmidt and F. Buschmann. Patterns
frameworks and middleware: Their synergistic
relationships. InProceedings of the 25th Inter-

national Conference on Software Engineering,
2003.

[SLM98] Douglas C. Schmidt, David L. Levine, and
Sumedh Mungee. The design of the TAO real-
time object request broker.Computer Commu-
nications, 21(4):294–324, April 1998.

[Sou89] Y. Soussy. Compositions of Nets via a communi-
cation medium. In10th International Conference
on Application and theory of Petri Nets, Bonn,
Germany, June 1989.

[SSC98] A. Singhai, A. Sane, and R. Campbell. Quar-
terware for Middleware. InProceedings of
ICDCS’98. IEEE, May 1998.

[TS97] F. Dang Tran and J-B. Stéfani. Towards an
extensible and modular ORB framework. In
Workshop of ECOOP’97, Jyvaskyla, Finland,
April 1997. http://sirac.inrialpes.fr/
~bellissa/wecoop97/dangtran.ps.gz.

