
A Modular approach to the speci�cation and

validation of an Electrical Flight Control

System?

M. Doche1??, I.Vernier-Mounier2, and F. Kordon2

1 Department of Electronics and Computer Science

University of Southampton, High�eld

Southampton SO17 1BJ, United-Kingdom

mfd@ecs.soton.ac.uk
2 Laboratoire d'Informatique de Paris 6, 4 place Jussieu,

F-75252 Paris Cedex 05, France

f Isabelle.Vernier-Mounier, Fabrice.Kordong @lip6.fr

Abstract. To study a part of an Electrical Flight Control System we

have developed a tool-supported method dedicated to the incremental

speci�cation and validation of complex heterogeneous systems. Formal

description of a system is structured in modules that interact.

We combine two modular approaches that share the same view of mod-

ularity but o�er complementary validation procedures: model checking

and functional test generation. We have adapted these validation pro-

cedures to take care of the modular aspects of our speci�cation. They

are performed incrementally. We �rst consider basic modules, then the

communication between modules and �nally composed modules.

To support our method, we have adapted existing tools, dedicated to non-

modular speci�cations, to deal with modular constraints. These tools are

integrated into a common platform to build a coherent execution envi-

ronment.

Keywords. Heterogeneous Speci�cation, Modularity, Veri�cation, Test

Generation, Case Tools.

1 Introduction

Critical embedded systems must ensure fault tolerance requirements. They are

more and more complex as their functions increase and become more sophisti-

cated. These systems are structured in several heterogeneous components strongly

interconnected. Components may represent software as well as hardware parts

of the system. They may be speci�ed in several speci�cation languages. Com-

ponents are often independently well-known and reused from one version of a

? This work was supported by the VaMoS project, one of the four projects of the

French action FORMA (http://www.imag.fr/FORMA/)
?? This work was done when she was working at ONERA-CERT/DTIM, Toulouse.

system to a new one. The main di�culty lies in the number and the diversity of

interactions between components. So, we present in this paper a tool-supported

method to formally specify and analyze modular speci�cations of embedded sys-

tems. The integration of various tools in a common framework allowed us to

apply our method to a signi�cant industrial application : a part of an Electrical

Flight Control System (EFCS). This industrial application is proposed by Sex-

tant Avionique and is signi�cant both for its size and complexity, representative

of a wide range of embedded architectures. Speci�cation, veri�cation and test

case generation results obtained on this system are given in the corresponding

sections of the paper.

There exist well-tried methods and tools to specify and validate speci�ca-

tions. Their application to non-trivial software or process control remains dif-

�cult, but some recent results are promising [4, 28, 29, 10]. To overcome these

di�culties modular speci�cation and veri�cation methods dealing with compo-

nents are needed [12]. Problems appear with the speci�cation of communications

between components, decomposition of global properties into a set of properties

that deal with a single component at a time, incremental speci�cation and veri-

�cation.

Several modular methods are proposed in the literature on veri�cation [2, 3]

or test generation [5, 27]. Our approach is to propose a set of modular methods

to deal with each steps of the software development. We verify structural proper-

ties of components to ensure that their compositions are possible and lead to the

expected result. These constraints are expressed by means of composition links,

morphisms, between two components. This allows us to separate the speci�ca-

tion coherence veri�cation from the behavioral properties veri�cation and test

case generation. Furthermore, if the speci�cation coherence is veri�ed, a module

can also be reused several times.

We combine two modular approaches. MOKA [26] is a tool-supported method

dedicated to the speci�cation and composition of modules. The coherence be-

tween interfaces and di�erent parts of modules is checked before composition.

Combined with the metric temporal logic TRIO [22], we generate functional

test cases at di�erent level of abstraction [17]: basic components, interactions

and clusters (i.e. components resulting from the composition of others). The

OF-Class [14] language is dedicated to object oriented speci�cation and behav-

ioral veri�cation. It allows the veri�cation of each module independently, by

computing an abstraction of the components that communicate with it, i.e. its

environment. The two approaches o�er complementary veri�cation procedures

and share a same view of the modularity. Therefore, it was valuable to integrate

them in a uni�ed modular method and to support it by integrating the two

related sets of tools into the FrameKit platform [25].

Section 2 describes our speci�cation language, the VaMoS language and the

structural veri�cation of the coherence of our speci�cations. Section 3 shows how

to analyze the behavior of the model, by verifying constraints on the speci�ed

behavior. In Section 4 we describe the generation of test cases at each level of

abstraction we consider.

Moreover, we have integrated the di�erent validation tools (structural veri-

�cation, behavioral veri�cation and test cases generation) into a platform pre-

sented in Section 5. A graphical interface helps to design modular speci�cation

and we ensure the coordination of the validation process with note �les, which

contain information on the state of the validation.

We conclude and present future works in Section 6.

2 The VaMoS language

VaMoS is a modular language to the speci�cation and the validation of complex

systems. A component is described in two steps. The �rst one deals with the

modular aspects of the speci�cation. We de�ne the components of the system

and their interactions with the environment. The second step is the description

of the internal behavior for each component.

2.1 Modularity in VaMoS language

For complex systems with heterogeneous components, a modular speci�cation

highlights the interface of each component and its interaction with the envi-

ronment. Then we can de�ne links between components and build clusters of

components according to modular operations.

Module, Reusability and Modular operations A module is composed of

four speci�cations. The Param part contains the parameters of a generic module.

The Import part contains the items imported by the module and the conditions

under which these elements can be used. The Export part contains the items

supplied by the component and the conditions under which the environment can

use them. These three parts constitute the interface of the module. The Body

part represents the internal behavior of the module. It speci�es how the imported

elements are used and how the exported ones are computed

The four speci�cations are interconnected by four internal morphisms, which

ensure safe formal connections between the speci�cations (cf. Figure 1 and 4).

A morphism maps the items of a source speci�cation to the items of a target

speci�cation with two constraints: both the linked items have the same type and

the behavior of the source speci�cation is preserved in the target speci�cation 1.

In the particular case of a module, Param, Import and Export do not contain

behavior description but properties which describe conditions on their items. So

the second constraint means in this case that the properties of the interface can

be deduced from the behavior speci�cation of Body. The internal morphisms

allow us to verify the coherence of both the four parts of the module and its

interface.

1 Our modular framework is based on the category theory and thus our morphisms

correspond to theory morphisms as de�ned in [23] by Goguen and Burstall. The

notion of module is adapted from the work of Ehrig and Mahr [20]. For more details

of this aspect of our framework see [26, 31].

model window label window

selected class
tool palette

model object

Fig. 1. VaMos formalism in FrameKit

To reuse a module, we just have to verify that the environment in which we

want to plug it respects the Import and Export conditions. Several implemen-

tations of a same module share the same Import and Export, they only di�er by

the Body and Param parts. To re�ne the behavior of a module, we just have to

verify the coherence between both the new Body speci�cation and the interfaces

(cf. 2.3).

A cluster is the component that results from the composition of two others.

The links between components and the interface of the resulting cluster depend

upon relationships between these components. Composition operations are de-

�ned by external morphisms that identify items of the interfaces of the composed

modules2. The four parts and the four internal morphisms of the cluster mod-

ule are automatically computed. Thus, we incrementally build a system module,

which entirely speci�es the system. For more details on module concepts and

calculus, see [26, 31].

Case study The presented case study is a part of an Electrical Flight Con-

trol System (EFCS). It is proposed by Sextant Avionique and is a signi�cant

industrial application both for its size and complexity, representative of a wide

range of embedded architectures (for instance in A330-40 aircraft [7]). Hardware

and software techniques must ensure fault tolerance requirements. Therefore the

code correctness is highly critical ([16, 1]).

We consider here the part of the EFCS that manages the spoilers of an

airplane during takeo� and landing. Opening angles applied to the spoilers are

2 Such operations on modules have been de�ned by Ehrig and Mahr [20]. In terms of

the categories theory, the resulting module is computed by several colimits on the

di�erent parts of the components.

computed with respect to the value given by sensors (altitude, speed, . . .) and

the angle the pilot wants to apply.

Decision

Fangle

secured grounddata-value1

data-value2 final angle value

lever position

Fig. 2. Modular composition of the case study

A function Fangle computes an angle that depends on two parameters. One

parameter is the angle the pilot wants to apply to the spoilers, it is identi�ed by

the position of a lever and con�rmed by a sensor. The other one is a signal that

indicates if the airplane is on ground. This signal, secured ground, is secured by

redundancy of the function dedicated to its computation. A decision procedure

compares the two results and transmits their common value if they match or a

pre-de�ned one otherwise. Figure 2 describes this system.

Export_Decision
secured_data (type signal)

Param_Fangle Export_Fangle
final_angle (type angle)

Import_Fangle
lever_value (type lever)
secured_ground (type signal)

Body_Fangle

e.Fangle

ν.Fangle

s.Fangle

i.Fangle

Body_Decision

e.Decision

ν.Decision

s.Decision

i.Decision

h

Import_Decision
data_value1 (type signal)
data_value2 (type signal)

Param_Decision

Fig. 3. De�nition of the partial composition of modules Fangle and Decision

We specify this mechanism by composition of two modules: Decision and

Fangle. Then we de�ne the interfaces of the modules:

{ The Decision module imports two signal values (data value1 and data va-

lue2) computed from values of the sensors by two components that are not

represented and provides a secured value of the detection of the presence of

the airplane on ground.
{ The Fangle module imports a lever position value provided by the environ-

ment and the secured data provided by the module Decision and computes

an angle value to apply to spoilers.

We specify now the relationships between the components. Modules Deci-

sion and Fangle are composed by a partial composition operation. Decision is

a supplier and Fangle is a user. The Export part of Decision satis�es partially

the Import part of Fangle. The external morphism h identi�es the secured data

exported byDecision with the secured one imported by Fangle. Figure 3 shows

the four parts of each module.

The cluster module, represented by Figure 4, imports the lever position and

the two values that are imported by Decision. It exports the angle value com-

puted by Fangle. Its internal morphisms are automatically computed.

Param_Dec_angle Export_Dec_angle
final_angle (type angle)

Import_Dec_angle
data_value1 (type signal)
data_value2 (type signal
lever_value (type lever)

Body_Dec_angle

e.Dec_angle

ν.Dec_angle

s.Dec_angle

i.Dec_angle

Fig. 4. Result of the partial composition of modules Fangle and Decision

In such a case study, where redundant mechanisms appear often, the gener-

icity and reusability capabilities of our formalism are very useful: for the whole

case study, composed of 18 components, we have speci�ed only 6 modules.

2.2 VaMoS Speci�cation Language

We show how behavioral speci�cations are handled within modules. Each part

of a VaMoS module contains :

{ The declaration of the names of items used to describe the behavior of the

system and the signature of actions. It is denoted Vocabulary.
{ The logical description of constraints on items of the interface for the Param,

Import and Export parts. For the Body part it contains the logical descrip-

tion of the behavior. It is denoted Formulae section.
{ The description of the actions performed by the module for the Body part

only. It identi�es the actions, explicitly describes them as well as their control

system. This description is denoted Imperative language section.

The Formulae and Imperative language sections of the Body part allow us to

manage conjointly logical and behavioral views of the same component.

The language used to specify the Formulae section is a linear temporal logic.

We have chosen the TRIO logic. It provides a description well adapted to test

case generation. A set of TRIO logic formulae represents the logical links between

the actions and the properties they must satisfy.

The language used to specify the Imperative language section is a C-like

language (automatically translated into Colored Petri Nets (CPN)). Properties

are expressed apart from the behavior description in the TRIO logic. Therefore,

they can be veri�ed by model checking.

Vocabulary The vocabulary consists of four declaration parts:

{ Sorts is a set of types;

{ Constants declares constant functions;

{ Variables declares variable functions, which describe the state of the system;

{ Actions models occurrences of events operating on the variables of the sys-

tem.

The Decision module operates on data of type Decision signals. The spe-

ci�c signal values are t (true) and f (false). The state of the component is

described by three signals Decision secured data, Decision data value1, and

Decision data value2. These component variables are modi�ed when one of the

actionsDecision imp data value1,Decision imp data value2 orDecision com-

pute secured data occurs. The example below shows the vocabulary part of the

Body speci�cation of Decision module.
Specification Decision =

Sorts : Decision signals;

Constants :

t : Decision signals;

f : Decision signals;

V ariables :

Decision secured data : Decision signals;

Decision data value1 : Decision signals;

Decision data value2 : Decision signals;

Actions :

Decision imp data value1(Decision signals);

Decision imp data value2(Decision signals);

Decision exp secured data(Decision signals);

ImperativeLanguage : :::

F ormulae : :::

endSpecification

An occurrence of the action Decision imp data value1 (respectively Deci-

sion imp data value2) allows the acquisition of a unique value, which is stored

in the local variable Decision data value1 (respectively Decision data value2).

The local variable Decision secured data takes the value t if and only if both

previous variables take the value t.

Imperative Language The OF-Class [13] language is dedicated to modular

speci�cation. Modules are composed regarding the interface speci�cation of the

modules. From the Imperative language section ,the OF-Class compiler automat-

ically generates a CPN from one or several components [14].

The compiler represents each variable by a place. Interfaces places represent

imported and exported variables. Actions are represented by transitions. The

composition of modules is performed by identi�cation of interfaces places.

Figure 5 represents signi�cant elements of the CPN automatically generated

from the speci�cation of the Decision module. The declaration part of the CPN

de�nes classes (types) associated with places (variables) used by the speci�ca-

tion. Double-circled places represent the interface variables. Black transitions

are actions identi�ed in the vocabulary declaration; they represent the impor-

tation and exportation actions. Transitions compute t and compute f represent

the two possible ways to compute the secured data. The OF-Class compiler adds

information to express the control of the variables. The complete automatically

computed CPN holds 11 transitions, 16 places and 46 arcs.

Decision_signal is [v,f];
CLASS

VAR
x in Decision_signal;
y in Decision_signal;

Decision_data_value1
Decision_signal

Decision_data_value2

Decision_signal

c o m p u t e _ t
[x=t and y = t]

c o m p u t e _ f
[x=f or y=f]Secured_data_computed

Decis ion_secured_data

Decision_signal

<f>
<t>

<y><x>

Decision_exp_secured_data
<x> <x>

<x> <y>

export_data

Imp_data_value1 Imp_data_value2
Decision_signal Decision_signal

 <x> <y>

<x> <y>

Decision_imp_data_value1 Decision_imp_data_value2

Fig. 5. Part of the Petri net of the Decision module

Formulae The part Formulae of a VaMoS speci�cation contains TRIO for-

mulae generated from vocabulary items, and logical connectors. TRIO ([22]) is

a �rst order linear temporal logic. A TRIO formula is composed of atoms and

logical connectors: classical ones (& and, j or, � not, ! implies, $ equivalent),

quanti�ers (8 for all and 9 exists) or temporal operators. Moreover, TRIO lan-

guage holds the basic temporal operator : Dist(F; �) means that formula F is

true at � time units from the current instant (� can be positive or negative).

The TRIO operators allows us to derive all the classical linear temporal

operators, in particular the following ones:

{ Next state(F) is true i� F is true in the next state.

{ AlwF(F) is true means F is true in all the following instants.

{ SomF(F) is true if F means true in at least one of the following instants.

{ Until(F,G) is true if F means true until G becomes true.

To describe the behavior of the system, we de�ne a set of axioms, each of

them being a TRIO formula. The following set of formulae is the TRIO speci�-

cation of these axioms.

Specification Decision = :::

F ormulae :

V ars :

x; y : Decision signal;

Axioms :

Decision signal availability value1 :

Alw(9 x (Decision imp data value1(x)&

8y(Decision imp data value1(y)! x = y)));

Decision signal availability value2 :

Alw(9 x (Decision imp data value2(x)&

8y(Decision imp data value2(y)! x = y)));

Decision local copy value1 :

Alw(8 x (Decision imp data value1(x)! Decision data value1 = x));

Decision local copy value2 :

Alw(8 x (Decision imp data value2(x)! Decision data value2 = x));

Decision secure result :

Alw(Decision secured data = t$
Decision data value1 = t &Decision data value2 = t);

Decision publish secure result :

Alw(8 x (Decision exp secured data(x)$
x = Decision secured data));

endSpecification

In the example we have chosen to associate an axiom to each condition on

an action:

{ Decision signal availability value1 (respectively Decision signal availa-

bility value2) states how the action Decision imp data value1 (respectively

Decision imp data value2) occurs at each time instant.

{ Decision local copy value1 (respectivelyDecision local copy value2) asserts

that, each time a signal is acquired, its value is stored in the adequate local

variable.

{ Decision secure result speci�es how the secured local value Decision secu-

red data is computed using the value of the other local parameters.

{ Decision publish secured result characterizes the action Decision exp se-

cured data.

{ At each time instant, the action publishes one and only one secured value:

Decision secured data.

2.3 Structural veri�cation

A preliminary step of validation (we call it \structural veri�cation") veri�es the

consistency of a modular speci�cation based on the modules and the composition

operations presented in section 2.1.

For each module, we check the four internal morphisms, which means for

each morphism :

{ The source vocabulary is included in the target vocabulary depending on

morphism and two linked items have the same type. The MOKA tool, devel-

oped at ONERA-CERT ([26, 31]), performs type checking of the morphisms.

{ The constraints de�ned in the speci�cations of the interface can be deduced

from the Body speci�cation :

� In CPN, the properties that represent the constraints are veri�ed on the

Petri net speci�cation by model checking.

� In TRIO, we prove that axioms of the source can be deduced from the

set of axioms of the target. The MOKA tool only generates a \proof

obligation" that has to be proved by some other tool (for example a

prover on TRIO logic).

Then, for each speci�cation we check the consistency of both description

parts by classical means (parsers and type checkers dedicated to each language).

For modular operation de�nition, to control the validity of each interconnec-

tion, we must check the external morphisms as we check internal morphisms.

This veri�cation, performed by the MOKA tool, leads to the automatic compu-

tation of the four parts of the cluster module.

This ensures that what is needed by a module is o�ered by the one with

which it is composed. Several veri�cation, as behavioral or test case generation,

are needed to ensure that what is o�ered is exactly what was expected.

3 Behavior veri�cation of modular speci�cations

To verify properties we use a model checker. The �rst step is to decompose the

properties into a set of local properties and a set of communication ones. Each

local property concerns the internal behavior of a module. Its veri�cation can be

performed independently of the other modules. The communication properties

express relations between modules. Before their veri�cation, the composition of

the concerned components must be computed.

3.1 Modular aspects

The CPNs, generated by the OF-Class compiler, are dedicated to modular veri�-

cation. Each module is viewed as a function that imports data, computes results

and exports them. The computation of results is an internal action. Therefore,

once a module has collected all the needed values, its environment has no impact

on the way the results are computed. Composition preserves all the properties

on the computation step, for example properties that express links between the

values of the imported data and the value of the results.

To independently study each module, a representation of its environment is

computed when it is translated into a Petri net. It represents the production

of all the possible imported data and the use of the exported ones. There is no

restriction on the possible values of the imported data and they are provided

each time they are needed. Therefore, no deadlock results from this speci�cation

of the environment and it does not restrict the possible behaviors of the module.

This representation is used to verify local properties that deal with the relation

between the values of the imported data and the exported ones or internal dead-

locks. If a local property is veri�ed in this representation, it is veri�ed whatever

the environment of the module may be. But, if the property is not veri�ed, no

conclusion is possible. As the OF-Class components do not have pre-conditions,

the bad values produced by the represented environment are not �ltered even

if they are not produced by the real environment. To obtain a certitude, we

consider the module in its real environment.

To verify properties that concern the communications between several mod-

ules, we have to compose them. Such properties may be the detection of dead-

locks in the system. In this case the composition of the whole system is necessary.

The environment of several modules is represented by the same way as for one

module. Therefore, incremental veri�cation is possible. In [4] the authors model

the abstraction of the environment to check a part of a case study, but this is

manually performed.

3.2 Abstractions

Despite important results in the state space representation [9], the state space

explosion problem happens even for one module. Therefore we have worked on

abstractions of the speci�cation.

The �rst identi�ed abstraction is due to data having a large set of possible

values (speed, altitude, . . .). Very often, for several values of a same variable, the

execution sequence is the same. The domain is partitionned into sub-domains

that lead to di�erent sets of instructions (such an approach can be related to

uniformity hypotheses of testing).

The second abstraction depends upon the property to verify. Instructions

without incidence on the result of the veri�cation are suppressed. Rules to per-

form abstractions and simpli�cations have been identi�ed and their implementa-

tion is in progress. These rules have been applied on the example above leading

to a reduction factor of 100 to 1000 depending upon the veri�ed properties. The

same principle is applied in [10].

The computation of abstractions is not yet tool supported but rules have

been identi�ed and applied on the example presented in the paper. The state

space reduction we obtain is signi�cant.

3.3 Practical application

CPN [24] are well adapted to describe the control of systems and to support be-

havior veri�cation. We use PROD3 : a Petri net reachability analysis tool that

supports on the
y veri�cation of linear time temporal properties as well as ver-

i�cation of branching time properties. Moreover, linear temporal logic formulae

supported by PROD can be expressed in TRIO logic. This allows us to complete

or to con�rm this veri�cation step with tools dedicated to the TRIO language.

3.4 Example

The redundancy introduced to support failures needs some adaptation of the

software to manage the fact that two identical functions do not give the same

result. In our example, Fangle must provide a neutral angle value (i.e., 0 value)

ifDecision imports two di�erent values. The temporal speci�cation of this prop-

erty is:\at each instant, (Decision imports two di�erent values) implies (there

is an instant in the future such that Fangle exports 0)". It is a liveness property.

The TRIO formulae are:

CommunicationProperty � AlwF (DecisionProp) SomF (FangleProp))

DecisionProp � 9x1; x2 Decision imp data value1(x1) &

Decision imp data value2(x2) & (x1 6= x2)

FangleProp � 8sp Fangle compute angle(sp; 0)

We decompose CommunicationProperty in three lemmas that highlight the

signal exported by Decision and imported by Fangle. Lemma L1 concerns De-

cision. It shows the consequence of DecisionProp on the value of the exported

signal. Lemma L2 concerns Fangle. It shows the conditions that must be sat-

is�ed by the imported signal to ensure FangleProp. Lemma L3 concerns the

relationship between the modules. It ensures that if Decision exports the signal

value f , Fangle imports the same value.

CommunicationProperty � (L1 & L2 & L3)

L1 � AlwF (DecisionProp) Decision exp secured data(f))

L2 � AlwF (Fangle imp data signal(f)) SomF (FangleProp))

L3 � AlwF (Decision exp secured data(f)) Fangle imp data signal(f))

Initial speci�cation The state space of the module Decision, computed in

16 seconds, holds 80 states and 93 arcs. Property L1 has been veri�ed in 26

seconds on it. The state space of module Fangle, computed in 4 minutes and 8

seconds, holds 9,247 states and 19,250 arcs. The state space of the global system,

computed in 18 hours 54 minutes 20 seconds, holds 818,390 states and 2,605,318

arcs. The veri�cations have not been performed on this speci�cation.

3 PROD is developed at the Helsinki University of Technology ([30]).

Abstraction of data domains Fangle uses angle variables that belong to the

interval [0..46]. Variables of this domain are only compared with the maximum

value. As all values in [0..45] lead to the execution of the same instructions we

have mapped the interval on [0..1]. Values [0..45] are identi�ed with 0 and 46 with

1. This does not modify the possible behaviors of the components. Of course,

such an abstraction may not be applied for a property dealing with the exact

value of a variable in the domain. The reduced state space of Fangle, computed

in 16 seconds, holds 113 states and 135 arcs. Property L2 has been veri�ed in

27 seconds on it.

Abstraction regarding property L3 This abstraction is signi�cant for the

property that ensures that if Decision exports value \f" then Fangle imports

the same value. The way values are computed is not important, only communi-

cation instructions a�ect the property. We reduce the size of the speci�cation by

deleting the instructions that do not a�ect the communications between the two

modules. This abstraction is applied jointly with the one on data domains. The

state space of the global system has been computed in 27 seconds. It holds 176

states and 318 arcs. Property L3 has been veri�ed in 1 minute and 11 seconds.

4 Test case generation from modular speci�cations

To complete the validation process, and to verify the implementation, we also

generate functional test cases.

Many works deal with test cases generation from non-modular formal speci-

�cations [21, 8], but many techniques are limited by the size of the speci�cations.

We take advantage of our modular structure to assist the test cases generation

at di�erent levels of abstraction:

{ First, unit level tests independently (and in detail) little parts of the system

or basic components. The generation is based on basic modules describing

the basic components.

{ Then, integration level tests interactions between components. For this step,

we focus on interfaces of modules and morphisms de�ned in a modular op-

eration to describe links between components.

{ Finally, cluster level allows to detect global errors of the system. The gener-

ation is achieved by composition of test cases from basic modules according

to the modular operations.

Moreover, we generate, at each step, a correct test set as de�ned in [6]. A set

of test cases is unbiased if it does not reject a correct program and it is valid if it

accepts only correct programs. To avoid state space explosion problem, we de�ne

test hypotheses to reduce the size of the set (for example uniformity hypotheses

on the data domain).

4.1 Modular aspects

In our approach, we want to reuse as often as possible classical generation tech-

niques from non-modular speci�cations, which are often based on the generation

of models of the speci�cation (see [21, 8] for a description of di�erent techniques).

But during the generation process from modular speci�cations, new constraints

appear due to the modular aspects:

Encapsulation of data : at unit and cluster level, we want to generate test

cases that contain only data of the interface.

Renaming according to the morphisms : at integration level, we want to

base the generation on the interface of several modules and on morphisms

which describe links between the items of the interfaces.

Composition according to modular operations : at cluster level, we want

to reuse test cases de�ned at unit level and to compose them to obtain test

cases for the cluster.

In the sequel, we describe how we perform encapsulation, renaming and compo-

sition; we illustrate them on our example (more details can be found in [17, 15]).

How these processes preserve correctness is described in [18, 15].

Encapsulation A module encapsulation allows to hide non-visible items. These

items must neither be observed nor commanded during functional test steps.

However the test cases generated from the module are possible executions of its

internal speci�ed behavior. To deal with test generation at unit level:

{ We generate test cases from the Body speci�cation of the module. Indeed,

by construction and structural veri�cation, this part contains the complete

description of the behavior of the module and constraints on its interface. For

this purpose, we use existing test case generation method from non-modular

formal speci�cation.

{ We project the resulting test cases on the vocabulary of the interface (parts

Export, Import and Param) such that the new test cases contain only visible

items.

Assuming that the structural veri�cation has succeeded, if we succeed to

generate a correct test set from the Body speci�cation, its correctness is preserved

during the projection step. Indeed, projection step reduces items of the test

cases, so they accept at least all programs accepted before projection step and

an unbiased test set remained unbiased. Its validity is preserved due to conditions

on the internal morphisms and structure of the module (see [15]).

Renaming Interactions between components are described using a set of mor-

phisms between the interfaces of the modules, according to a modular operation.

To verify the modular speci�cation, we generate and prove proof obligations on

these morphisms (see section 2.3), which allow to check that the behavior of the

target speci�cation of a morphism maps the behavior of its source speci�cation.

We need to make the same check on the implementation: each possible behavior

of the target speci�cation meets the constraints stated by the source speci�ca-

tion. So to deal with integration level, we follow for each morphism of a modular

operation the following procedure:

{ We generate test cases from the source speci�cation of the morphism by

a classical non-modular technique. They describe the constraints stated by

this speci�cation.
{ We rename each test case according to the morphism, to obtain test cases

de�ned on the vocabulary of the target, for the constraints of the source

speci�cation.

Validity and unbias of the test set are preserved during the renaming step

because of the condition on the morphism (see section 2.3). For more details of

these approaches, see [18].

Composition Application of a module composition creates a new module (see

section 2.1). A naive but ine�cient approach in practice would be to incremen-

tally generate the global system and to generate test cases for it. Therefore, we

reuse the test cases generated for unit level and we rely on properties of modular

operations to complete the test cases.

For example, let us consider the partial composition described in section 2.1.

The TRIO tool generates two sets of test cases for the user Fangle and for

the supplier Decision. We merge, by pair, any test case of Fangle with any

compatible test case of Decision to obtain a test case of the resulting module.

Compatibility means that all common items of the both modules have the same

evaluation at a given instant in the both test cases. That will be illustrated in

the following example.

Once again, correctness is ensured by the correct de�nition of the cluster

module and the external morphisms between both basic modules. A priori gen-

erated test cases accept at the most programs accepted by the test sets of both

basic modules, so validity is preserved. Internal structure of the basic modules

and external morphisms between these modules ensure that the generated test

set remains unbiased. For more details of these approaches, see [18].

To achieve test case generation at cluster level, this composition step must

be followed by a projection step to obtain test cases de�ned on the interface of

the cluster.

4.2 Practical application

To generate correct test cases from the speci�cations of a module, we use the

TRIO Model generator4. It is founded on the TRIO language and a semantics

4 A TRIO formal speci�cation environment for complex real-time system speci�cations

has been developed by CISE, supported by Politechnico Di Milano, under a contract

of ENEL/CRA ([11]).

tableaux algorithm. It generates temporal �nite partial models (called histories)

from a speci�cation. We de�ne a temporal window, which is an interval of inte-

ger, and which represents the time scale [22]. Each history is considered as an

abstract test case and is composed with a set of pertinent evaluation of items

at any instant of the temporal window (the items can represent di�erent values

according to the test hypotheses). The set of all possible histories generated from

a speci�cation forms a correct test set for this speci�cation.

To achieve an entirely tool supported method, we develop tools to deal with

modular aspects: encapsulation, renaming and composition [15].

4.3 Example

Test cases generation from the body speci�cation Let us consider the

moduleDecision: for a temporal window of two units the TRIO model generator

has generated 16 test cases in 3.9 seconds.

Encapsulation of data on a unitary test case We project each test case

generated from the body on the vocabulary of the interface. The projection of

the test case c generated from the Body of Decision on the vocabulary of the

interface of Decision leads to the test case k:

c = ! k =0
BBBBBBBBBB@

Decision secured data = f : 1

� Decision exp secured data(t) : 1

Decision exp secured data(f) : 1

Decision data value1 = f : 1

� Decision imp data value1(t) : 1

Decision imp data value1(f) : 1

Decision data value2 = t : 1

� Decision imp data value2(f) : 1

Decision imp data value2(t) : 1

1
CCCCCCCCCCA

0
BBBBB@

� Decision exp secured data(t) : 1

Decision exp secured data(f) : 1

� Decision imp data value1(t) : 1

Decision imp data value1(f) : 1

� Decision imp data value2(f) : 1

Decision imp data value2(t) : 1

1
CCCCCA

\Decision secured data = f : 1" means that the variable Decision secu-

red data takes the value f at the instant 1.

Generation of integration test cases Assume s is a test case of the source

speci�cation of the morphism h (a part of the Import of Fangle). After renaming

according to h, we obtain the test case t, de�ned on the vocabulary of the Export

of Decision:

s = ! t =
� Fangle imp secured ground(t) : 1

Fangle imp secured ground(f) : 1

:::

!
� Fangle imp secured data(t) : 1

Fangle imp secured data(f) : 1

:::

!

Generation of cluster test cases Assume l is a projected test case of Fangle;

it merges the test case k to obtain m. Actions that are linked by an external

morphism are identi�ed in m. It is possible only if they have the same value.

Otherwise, the test cases cannot be merged. Actions of l and k that are not linked

by the external morphism appear in m. In our example, the external morphism

h identi�es the action Decision exp secured data of the Export of Decision to

the action Fangle imp secured data of the Import of Fangle:

k

+
! m =

l =0
B@
� Fangle imp secured data(t) : 1

Fangle imp secured data(f) : 1

Fangle imp lever data(f) : 1

:::

1
CA

0
BBBBBBBB@

� Decision exp secured data(t) : 1

Decision exp secured data(f) : 1

� Decision imp data value1(t) : 1

Decision imp data value1(f) : 1

� Decision imp data value2(f) : 1

Decision imp data value2(t) : 1

Fangle imp lever data(f) : 1

:::

1
CCCCCCCCA

Conversely, the following projected test case k0 ofDecision cannot be merged

with the test case l because l and k
0 disagree on the evaluation of action Deci-

sion exp secured data and Fangle imp secured data.

k
0

=

0
BBBBB@

� Decision exp secured data(f) : 1

Decision exp secured data(t) : 1

� Decision imp data value1(t) : 1

Decision imp data value1(f) : 1

� Decision imp data value2(f) : 1

Decision imp data value2(t) : 1

1
CCCCCA

5 Implementation of a CASE environment

To e�ciently test our methodology and build a coherent execution environment

we have integrated the required tools into FrameKit [25]. FrameKit is a generic

platform dedicated to the rapid prototyping of CASE environment. Its imple-

mentation follows the guidelines of the ECMA-NIST reference model [19]. In

FrameKit, presentation and display of services are strongly constrained. A poly-

morphic editor engine, Macao [25], provides a uni�ed look and feel for the manip-

ulation of models as well as access to services integrated in FrameKit. FrameKit

manages three kinds of entities: formalisms, models and services. A formalism

describes representation rules of a knowledge domain. A model is the descrip-

tion of a given knowledge using a formalism; it is a "document" composed with

objects de�ned in the formalism. A service is a tool function that corresponds to

operations in a design methodology. For example VaMoS modules and CPN are

formalisms for which the user may de�ne several models. The MOKA veri�er,

the TRIO test case generator and the Petri net model checker PROD are ser-

vices. FrameKit allows the use of several formalisms. Furthermore, it manages

shared data, versions of model speci�cations and provides good facilities for fast

integration of new tools that were not initially designed for it.

5.1 Multi-formalism management

Parameterization of Macao and the services management of FrameKit allows us

to specify and handle multiple formalisms.

Editor and User Interface Macao is parameterized using external �les that

describe components of the formalism. Thus, the construction of a new formal-

ism does not imply any recompilation. Of course, Macao deals with syntactical

aspects only, semantical ones are a convention between the user and the tool.

Figure 1 shows the graphical representation of the VaMoS formalism pre-

sented in section 2.1. The four nodes represent the four parts of a module, the

four internal morphisms that link them and the labels associated with the body

part.

Services management Each service is relevant for an identi�ed set of for-

malisms. FrameKit holds an instantiation mechanism that identi�es the formal-

ism of a model and creates the list of dedicated services. Therefore, the user can

only ask for services that are relevant for his speci�cation.

5.2 Open Platform

FrameKit is an open platform that may be enriched by new services. To achieve

this enrichment, a procedure called integration has been de�ned. We distinguish

two types of tool integration : a priori and a posteriori.

The a priori integration concerns tools that are especially designed to run in

the FrameKit environment. The compiler from OF-Class to CPN was developed

to be integrated in FrameKit; it was implemented to an a priori implementation.

The a posteriori integration concerns already designed tools (sometimes,

source �les may not be available) to be integrated in the FrameKit environ-

ment. It requires an adaptation of the imported software. A translation of the

FrameKit �le format into the �le format expected by the tool is necessary. The

opposite translation is necessary to store results. Moreover, for interactive tools,

such as MOKA and PROD, functions to drive the user interface are provided.

MOKA, PROD and TRIO are a posteriori integrated tools.

Figure 6 shows how the integrated tools are linked. If some syntax errors

or interface incoherence are detected, the speci�cation must be modi�ed. No

veri�cation tool can be applied. Such a mechanism is automatically handled by

FrameKit

5.3 Note �les

A note �le is attached to each speci�cation module. It is a structured �le contain-

ing all the information related to the analysis of the model. A note is associated

to a property and gives:

{ its identi�cation,

Syntactically
correct

Modular
S p e c i f i c a t i o n

Modular
S p e c i f i c a t i o n

(VaMoS
langage)

Modular Specification
+

Coherence Interfaces
p r o p e r t i e s

Syntac t i ca l
Analysis

(Moka + OF-Class
c o m p i l e r)

Interfaces
Coherence

Checker
(Moka)

Integration and
cluster test cases
generator (TRIO)

 Composed Specification
+

Coherence Interfaces
p r o p e r t i e s

Verified Temporal Properties
or

Counter examples

Model Checker (PROD)

Test Cases

Composition
of

Modules
(Moka)

Unitar test case
generator
(TRIO)

Temporal
p r o p e r t i e s

(TRIO
langage)

Syntactically
correct

Temporal
p r o p e r t i e s

TRIO Parser
Manual

decomposition
of properties

+
temporal logic

parser

Set of
syntactically

correct
t e m p o r a l

p r o p e r t i e s

Syntactically
correct

Temporal
p r o p e r t i e s

interfaces incoherence

global
p r o p e r t i e s

syntax error

Fig. 6. Modular speci�cation and validation methodology

{ the method used to verify it,

{ the part of the module concerned by the veri�cation,
{ the way the property has been identi�ed (by the model checker, the interfaces

coherence checker, . . .),
{ the status of the veri�cation (done, in progress, to do),
{ the context of the veri�cation (abstraction of the model, computation of the

state space, . . .).

The de�ned syntax of some note attributes allows the exploitation of the

same note �le by several tools. These note �les may be used to produce an

analysis report any time. Files associated with a model may be shared between

several tools.

6 Conclusion

We have presented a tool-supported approach dedicated to the speci�cation and

validation of critical embedded systems. We deal with the complexity of the

system using a modular methodology, which provides generic and reusable mod-

ules. Our homogeneous speci�cation language allows us to manage conjointly

two views of a same speci�cation: a logical one and a behavioral one. Each of

them is well adapted to a speci�c veri�cation procedure (model checking and

test cases generation). We are now identifying the common semantic aspects of

Petri nets and MOKA components to strengthen the links between both views.

The modular structure of our speci�cations is exploited to perform the ver-

i�cation of the system. We have improved these approaches to deal with a re-

alistic industrial application ([1]). We are implementing a CASE environment

integrating these tools into the FrameKit platform . This allows us to trace the

development process in both views, with note �les to exchange information and

version management. However, some steps of the validation methods are not yet

tool supported. To improve these points, the semantics aspects can help us to

increase the cooperation between the two approaches. Especially, we will study

how validation tools can interact and how to use results of one step in the other.

For example, TRIO model generator automatically computes data domain ab-

stractions that are relevant for the model checker PROD. The model checker

PROD de�nes possible execution scenarios that can be used to de�ne sequences

of test cases to test on the system.

Acknowledgments: We would like to thank the other members of the VaMoS

project for fruitful discussions and useful comments on early version of this

paper: Jacques Cazin, Alioune Diagne, Pascal Estraillier, Pierre Michel, Christel

Seguin, Virginie Wiels.

References

1. Action FORMA. Mâ�trise de syst�emes complexes r�eactifs et sûrs,

Journ�ee au MENRT: Bilan de la 1ere ann�ee, Paris, January 1998.

http://www.imag.fr/FORMA/.

2. R; Alur, T.A. henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran.

Mocha : Modularity in model checking. In proceedings on the 10th International

Conference on Computer-Aided Veri�cation, pages 521{525. Springer Verlag, 1998.

3. H.R. Andersen, J. Staunstrup, and N. Maretti. A comparison of modular veri�ca-

tion techniques. In Proceedings of FASE'97. Springer Verlag, 1997.

4. R.J. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno, D. Notkin, and J.D.

Reese. Model checking large software speci�cations. In Proceedings of the 4th ACM

SIGOFT Symposium on the Foundations of Software engineering, pages 156{166,

1996.

5. S. Barbey, D. Buchs, M-C. Gaudel, B. Marre, C. P�eraire, P. Th�evenod-Fosse,

and H. Waeselynck. From requirements to tests via object-oriented design.

Technical Report 20072, DeVa ESPRIT Long Term Research Project, 1998.

http://www.laas.research.ec.org/deva/papers/4c.pdf.

6. G. Bernot, M-C. Gaudel, and B. Marre. Software testing based on formal speci�-

cations: a theory and a tool. Software Engineering Journal, 6, November 1991.

7. D. Bri�ere and P. Traverse. Airbus a320/a330/a340 electric
ight controls: a family

of fault-tolerant systems. FTCS, 23:616{623, 1993.

8. E. Brinksma. Formal methods for conformance testing: Theory can be practical.

In CAV'99, number 1633 in LNCS, pages 44{46. Springer Verlag, July 1999.

9. J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. DILL. Symbolic

model checking for sequential circuit veri�cation. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems 13, 4:401{424, 1994.

10. W. Chan, R.J. Anderson, P. Beame, and D. Notkin. Improving A�ciency of Sym-

bolic Model Checking for State-Based System Requirements. In proceedings of the

1998 International Symposium on Software Testing and Analysis , 1998.

11. E. Ciapessoni, E. Corsetti, M. Migliorati, and E. Ratto. Specifying industrial real-

time systems in a logical framework. In ICLP 94 - Post Conference Workshop on

Logic Programming in Software Engineering, 1994.

12. E.M. Clarke and J.M. Wing. Formal Methods: State of the Art and Future Direc-

tions. Technical report, Carnegie Mellon University, 1996.

13. A. Diagne. Une Approche Multi-Formalismes de Sp�eci�cation de Syst�emes

R�epartis: Transformations de Composants Modulaires en R�eseaux de Petri. Th�ese,

LIP6, Universit�e Paris 6, 4, Place Jussieu, 75252 Paris Cedex 05, May 1997.

14. A. Diagne and F. Kordon. A multi-formalisms prototyping approach from concep-

tual description to implementation of distributed systems. In Proceedings of the

7th IEEE International Workshop on Rapid System Prototyping (RSP'96), Porto

Caras, Thessaloniki Greece, June 1996.

15. M. Doche. Techniques formelles pour l'�evaluation de syst�emes complexes. Test et

modularit�e. PhD thesis, ENSAE, ONERA-CERT/DTIM, D�ecembre 1999.

16. M. Doche, J. Cazin, D. Le Berre, P. Michel, C. Seguin, and V. Wiels. Module

templates for the speci�cation of fault-tolerant systems. In DASIA'98, May 1998.

17. M. Doche, C. Seguin, and V. Wiels. A modular approach to specify and test

an electrical
ight control system. In FMICS-4, Fourth International Work-

shop on formal Methods for Industrial Critical Systems, July 1999. Available at

http://www.cert.fr/francais/deri/wiels/Publi/fmics99.ps.

18. M. Doche and V. Wiels. Extended institutions for testing. In AMAST00, Alge-

braic Methodology And Software Technology, LNCS, Iowa City, May 2000. Springer

Verlag. Available at http://www.cert.fr/francais/deri/wiels/Publi/amast00.ps.

19. ECMA. A Reference Model for Frameworks of Software Engineerings Environ-

ments. Technical Report TR/55 (version 3), NIST Report, 1993.

20. H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 2 : Modules speci�-

cations and constraints, volume 21 of EATCS Monographs on Theoretical Computer

Science. Springer-Verlag, 1990.

21. M-C. Gaudel. Testing can be formal, too. In TAPSOFT'95, pages 82{96. Springer

Verlag, 1995.

22. C. Ghezzi, D. Mandrioli, and A. Morzenti. A model parametric real-time logic.

ACM Transactions on programming languages and systems, 14(4):521{573, Octo-

ber 1992.

23. J. A. Goguen and R. Burstall. Institutions: Abstract model theory for speci�cation

and programming. Journal of the ACM, 39(1):95{146, January 1992.

24. K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical

Use, Volumes 1, 2 and 3. Springer-Verlag, 1992.

25. MARS-Team. MARS Home page. http://www.lip6.fr/mars.

26. P. Michel and V. Wiels. A Framework for Modular Formal Speci�cation and

Veri�cation. In LNCS 1313, Proceedings of FME'97, September 1997.

27. A. Morzenti, P. San Pietro, and S. Morasca. A tool for automated system analysis

based on modular speci�cations. In ASE98, pages 2{11. IEEE Computer Society,

1998.

28. R. Pugliese and E. Tronci. Automatic veri�cation of a hydroelectric power plant.

In LNCS 1051, FME'96: Industrial Bene�t and Advances in Formal Methods, 3rd

International Symposium of Formal Methods Europe, pages 425{444, 1996.

29. T. Sreemani and J.M. Atlee. Feasibility of model checking software requirements:

A case study. In COMPASS'96, Proceedings of the 11th Annual Conference on

Computer Assurance, pages 77{88, 1996.

30. K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. PRODReference Man-

ual. Technical Report ISBN 951-22-2707-X, University of technology, Departement

of Computer Science, Digital Systems Laboratory, 1995.

31. V. Wiels. Modularit�e pour la conception et la validation formelles de syst�emes.

PhD thesis, ENSAE - ONERA/CERT, October 1997.

