

MetaScribe, an Ada-based Tool for the
Construction of Tranformation Engines

Fabrice Kordon

LIP6-SRC
Université P.&M. Curie

4 place Jussieu, 75252 Paris Cedex 05, France
email:

Fabrice.Kordon@lip6.fr

Abstract

: This paper presents MetaScribe, a generator of transformation
engine designed to help the implementation of program generators or transfor-
mation of a specification to another one. MetaScribe defines a meta-data descrip-
tion scheme suitable for the internal representation of various graphical and
hierarchical description.
MetaScribe is fully implemented in Ada and uses the language facilities to
enforce type checking and handling of errors in the manipulated descriptions.

Keywords

: Meta-data description, Semantic transformation, Code generation.

1 Introduction

Software engineering methodologies rely on various and complex graphical
representations such as OMT, UML, etc. They are more useful when associated to
CASE (Computer Aided Software Engineering) tools designed to take care of
constraints that have to be respected. Such tools help engineers and facilitate the
promotion of such methodologies.

Now, CASE tools gave way to CASE environments that may be adapted to a specific
understanding of a design methodology. A CASE environment can be defined as
follow

[12]

: it is a set of cooperative tools. CASE environments are built on a platform
that allows tool plugging. Communication and cooperation between tools must
subsequently be investigated.

Implementation of CASE environments is a complex task because they need various
functions like graphical user interface, database and communication facilities.
Experimentation over large projects has outlined the difficulty to maintain them,
especially when tools come from various origins. In a project like Ptolemy

[10]

, the
software bases for the project have largely changed in order to ease maintenance as
well as new development. Such work (in particular, the Tycho interface system

[6]

)
takes into account the definition of evolutionary interfaces between major components.

To implement methodologies and experiment them on large case studies, we have
elaborated FrameKit

[7]

, a framework for the quick implementation of CASE
environments. It is parameterized in order to provide a framework for the
customization of CASE environments dedicated to a given method (Fig. 1). FrameKit
is mostly integrated in Ada (a small amount of C is used to interface Unix) and

provides enhanced Ada Application Program Interfaces (API) to operate this
customization procedure.

Fig. 1

From a Generic CASE to a dedicated one.

We have used FrameKit to implement CPN-AMI2, a Petri net based CASE
environment with satisfactory results. To do so, we have described the Petri net
formalism and declared a set of coherent tools that can be applied on Petri net
specifications

[8]

. Doing so, we have noticed there is a major problem to provide data
sharing facilities between tools coming from various origins. This problem is even
more difficult for an environment like FrameKit where we cannot use specificity of a
formalism to ease the implementation (FrameKit is supposed to be generic). There is a
need to provide FrameKit with facilities to easily manage

secondary standards

.
Secondary standards in FrameKit are communication-based data representations
dedicated to a formalism (for example the description of Petri net results potentially
exploited by other tools).

CPN-AMI2 implements the MARS method

[3]

 in which both transformations (from a
representation to another one) and program generators have to be implemented. We
noticed there were a lack of tools to ease such implementations. Parser generators are
useful to help the syntactical analysis of input specification but the transformation
rules have to be described using a programming language. It is then difficult to reuse
transformation rules. On another hand, Expert systems provide good facilities for the
definition of transformation rules but are poor for I/O and efficient management of
complex data structures. So, there is also a need for a tool providing facilities to the
implementation of

transformation engines

. A transformation engine is a program that
parses an input specification and produces an output specification by applying
transformation rules.

This paper presents MetaScribe, a tool suitable for the two purposes outlined above.
MetaScribe is fully implemented in Ada and uses the language facilities to enforce
type checking and handling of errors. Section 2 presents MetaScribe and Section 3
discuss its implementation.

2 MetaScribe

MetaScribe solves problems similar to the ones identified in hardware/software
codesing of embedded systems where specific processors are built in very limited
series. There is a need for designing specific compilers at low-cost. Retargetable
compilers are designed for this task and can be classified as follow

[1]

:

•

Automatically retargetable compilers: they contain a set of switches that need to

Formalisms + Tools

Generic CASE Dedicated CASE
+

be set to specify the target architecture. Essentially, all possible target
architectures that the compiler is intended to be used for are already built in;

•

User retargetable compilers: the user specifies the target architecture to the
compiler-compiler in some form. Typically, this is a representation of the
instructions in terms of some primitive operations. The compiler-compiler takes
this as input and generates a compiler for the specified architecture;

•

Developer retargetable compilers that is a way to handle machine specific
optimizations that go beyond instruction selection is to permit the developer to
modify the compiler to target the given architecture. The difference between
retargeting and writing a new compiler for any architecture is rather low. For a
compiler to be considered retargetable in this scenario, no new processor
dependent optimization capabilities are added to the compiler during retargeting.

MetaScribe fits the needs outlined by the two last points. Like a parser generator such
as flex/bison

[5, 9]

, it enables the use of rules applied on input specifications
according to a customized scheme. However, because it focuses on the management of
hierarchical and graphical like specifications, its philosophy is quite different from the
one of a parser generator and the transformation scheme is made of rules contained in
a semantic pattern. Like a retargetable compiler, it enables the application of a
customized output according to a given syntax format. It is then possible to associate
discrete syntactic patterns to a given semantic pattern (e.g. apply Ada or Java code on
an object program description). Its parameterization procedure is then similar to the
concept of hypergenericity

[2]

.

2.1 Architecture of MetaScribe

In order to increase reusability of transformation engine’s elements, input description,
as well as semantical and syntactical aspects of a transformation are separately
defined. To be operated, MetaScribe requires three elements to be described (Fig. 2):

•

Formalism definition: it is expressed using the MSF meta-description language.
Users have to declare any entity that can be found in the formalism;

•

Semantic pattern: it is expressed using the MSSM language. Users define the
transformation rules to be applied on the associated formalism;

•

Syntactic rules: it is expressed using the MSST language. Users define the
syntactic representation associated to constructors declared in the corresponding
semantic pattern.

The semantic pattern is composed of rules that produce a polymorphic semantic
representation similar to the one of ASIS

[11]

 called

semantic expression-trees

.
Semantic expression-trees are expression trees expressing the semantic of a description
without syntactic information (like a parsed program in a compiler).

Semantic patterns are not dedicated to a given programming language and can be
customized. They declare a list constructors that make the connection with a syntactic
pattern describing how these constructors will be represented.

Input specifications must be written using the MSM data description language
automatically customized according to the entities declared in the MSF description.
Checks are enforced at execution time of the transformation engine.

Fig. 2

Structure and components of a transformation engine generated with MetaScribe.

MetaScribe generates a transformation engine from a triplet

<input formalism,
semantic pattern, syntactic pattern>

. Such a mechanism enables the reuse of
components in any of the involved elements. Thus, MSF, MSSM and MSST languages
allow separate definition of pattern components

2.2 Formalism description

The MSF meta-description language allows users to declare entities potentially found
in a type of specification. MSF (MetaScribe Formalism) is an object based description
language where classes are either nodes or links. A node is a piece of specification. A
link relates some nodes together. Both nodes and links may carry local information
stored in attributes. Global information is specified in attributes that are related to the
specification (and not to a specific entity). Attributes contain typed expressions
(characters, strings, integers, etc.).

Fig. 3

Example of formalism description with MSF.

Let us illustrate MSF possibilities with a small example. Fig. 3 presents a simple
formalism description: a network composed of computers and hubs related by means

Input
Spec.

Ouput
Spec.

Semantic Syntactic
Pattern PatternInternal

tree-representation

Transformation Engine

Formalism definition

Semantic transformation
Syntax of semantic constructors

(MSF)

rules (MSSM)
Syntactic rules (MSST)

(semantic expression trees)

formalism ('NETWORK_DSC');
// nodes and linkss
entity_list
 COMPUTER : node ,
 HUB_16 : node ,
 CABLE : link ;
// Global attributes
global_attributes
 attribute string : NET_ID;
end;
// parsed expressions for IP-address description
construction_list (DYNAMIC, STATIC);
// description of nodes and linkss
node (COMPUTER) is
 attribute_list
 attribute string : NAME;
 attribute expression : IP_ADDRESS;
 end ;
 connectability_list
 with CABLE
 direction in ,
 maximum 1 ;
 end ;
end COMPUTER ;

node (HUB_16) is
 attribute_list
 attribute string : NAME;
 attribute expression : IP_ADDRESS;
 end ;
 connectability_list
 with CABLE
 direction out ,
 maximum 16 ;
 with CABLE
 direction in ,
 maximum 1 ;
 end ;
end HUB_16 ;

link (CABLE) is
 attribute_list
 none
 end ;
end CABLE ;

of communication cables. Both computers and hubs are reference using a name and an
IP-number. The name attribute is a string and the IP-number attribute is an expression
tree composed of a root (tagged STATIC or DYNAMIC) and, if STATIC, four sons
representing the four parts of an IP-address. Nodes define connectability rules by
accepting to be related to some links. Here, a HUB_16 node class may accepts 16 output
connections via a CABLE and only one input connection with a CABLE.

MetaScribe uses the MSF description to customize the description of specification
using this formalism. This goal is achieved by the MSM data-description language.

Let us consider a network description expressed using the MSF description of Fig. 3
(Fig. 4). The network is composed with two computers connected to a hub via two
cables. The hub and one computer have static IP-addresses and the second computer
has a dynamic one.

Fig. 4 Description of a specification using teh formalism defined in Fig. 3.

The major advantage of MSM (MetaScribe Model) is to clearly describe a data-
structure that can have a memory equivalent. It is a polymorphic data-description
language because it does not take side on any aspect of the specification and only
carries out its description.

A transformation engine generated with MetaScribe first parses the MSM description
of a model and maps it to data structures in memory. Then, actions defined in both
semantic and syntactic patterns are applied on this memory representation.

2.3 Semantic patterns description

The MSSM description language allows users to define transformations to be applied
on an input specification. Such a description is related to a formalism (i.e. a MSF

formalism ('NETWORK_DSC') ;
// Global attributes
where (attribute NET_ID => 'my_net') ;
// hub list
node 'hub_1' is HUB_16
 where (attribute NAME => 'hub_one',
 attribute IP_ADDRESS => sy_node (STATIC:
 sy_leaf (10),
 sy_leaf (10),
 sy_leaf (10),
 sy_leaf (10)));
// host list
node 'host_1' is COMPUTER
 where (attribute NAME => 'host_one',
 attribute IP_ADDRESS => sy_leaf (DYNAMIC)) ;
node 'host_2' is COMPUTER
 where (attribute NAME => 'host_two',
 attribute IP_ADDRESS => sy_node (STATIC:
 sy_leaf (10),
 sy_leaf (10),
 sy_leaf (10),
 sy_leaf (11)));
// connections
link 'cable_1' is CABLE
 where (none)
 relate HUB_16:'hub_1' to COMPUTER:'host_1';
link 'cable_2' is CABLE
 where (none)
 relate HUB_16:'hub_1' to COMPUTER:'host_2';

host_one

host_two

hub_one

description) where entities to be manipulated are described. A MSSM (MetaScribe
SeMantic) descriptions is composed with three elements:

 • Constructors that are links to a given syntactic pattern,
 • Rules that process entities found in the input specification (nodes, links, attributes),
 • Static trees that corresponds to constant semantic expression-trees.

MSSM is a functional based language. Program units are rules (actions to be applied
on the memory image of an input specification) and static-trees. It is possible to build a
semantic pattern from separate files.

The goal of a semantic pattern is to produce semantic expression trees. Semantic
expression trees are trees where nodes contains at least one of the three following
fields:

• A constructor,

• A string,

• An integer.

Fig. 5 Example of a static-tree in a semantic pattern.

Fig. 5 presents an example of semantic expression tree and its corresponding
description as a static-tree. Let us assume that, to produce a textual display of a
network description, three semantic constructors have been declared:
NUMBER_OF_ENTITIES, TYPE_COMPUTER and TYPE_HUB. The semantic-tree
ONE_OBJECT corresponds to the tree on the upper right where <X> is a predefined
constructor (either TYPE_COMPUTER or TYPE_HUB) and <int> a natural value. Thus, the
definition of a syntactic form for such an expression can be easily performed. Here, the
tree’s root only contains a predefined constructor and its son a predefined constructor
and an integer.

Fig. 6 presents an example of semantic rule and shows how semantic and syntactic
patterns are connected. The rule produces an expression-tree that references all
computers in a network. First, it creates the root of a result expression-tree and applies
the rule A_RULE to any COMPUTER node in the description. Then, it invokes the syntactic
pattern and applies it to the resulted tree. Note that the syntactic pattern is not
explicitly named (the association <MSF description, MSSM description, MSST
description> is set by users when they invoke MetaScribe to build a transformation
engine). The application of the syntactic pattern is written in the file a_file as asked in
the generate directive.

...
constructor_list is ...
 NUMBER_OF_ENTITIES,
 TYPE_COMPUTER,
 TYPE_HUB;
...
semantic_tree ONE_OBJECT (TYPE : semantic_constructor ,
 NUMBER : integer) is
 semantic_node ([$smc (TYPE) # #]:
 semantic_leaf ([NUMBER_OF_ENTITIES # # $int (NUMBER)]))
end ;

(<X>,,)

(NUMBER_OF_ENTITIES,,<integer>))

Fig. 6 Example of a rule in a semantic pattern.

2.4 Syntactic patterns description

The MSST description language allows users to associate a syntactic expression to any
constructor declared in the semantic pattern. MSST (MetaScribe SynTactic) is a
functional language composed with two types of rules:

• External rules are associated to predefined constructors. Such rules can be either
implicitly invoked according to the constructor tag of a semantic expression-tree
node or explicitly invoked;

• Internal rules are not associated to predefined constructors. Thus, they can only be
explicitly invoked from external rules. Usually, an external rule is a "front end" for
several internal rules.

Fig. 7 Abstract of a syntactic pattern.

Fig. 7 contains a set of external rules dedicated to textual display of the semantic tree
defined in Fig. 5. Any declared constructor has to be related to a syntactic rule in the
pattern. TYPE_COMPUTER and TYPE_HUB implicitly refer to rule NUMBER_OF_ENTITIES

using the apply instruction. It invokes the rule associated to the predefined constructor
found in the root of the tree transmitted as a parameter.

semantic_rule LIST_COMPUTERS (none) return void is

TREE : semantic_tree ;

begin
 // Create the root of the result expression-tree
 TREE := create_sm_tree ([ANALYSIS_RESULT #
 $atrv_str (attribute NET_ID) #]);
 // linking a computer to the description
 message ('Analysis the network...');
 if nb_node_instance (COMPUTER) > 0 then
 for COMP in 1 .. nb_node_instance (COMPUTER) do
 TREE := add_sm_son ($smt (TREE),
 sm_rule A_RULE (get_node_reference (COMPUTER,
 $int (COMP))));
 end for ;
 end if ;
 // Applying the syntactic pattern to the result expresion-tree
 generate $smt (TREE) in 'a_file';
 message ('Done...');
 return ;
end ;

syntactic_rule TYPE_COMPUTER is
begin
 put ('number of computers in the network :');
 apply ($1);
end ;

syntactic_rule TYPE_HUB is
begin
 put ('number of hubs in the network :');
 apply ($1);
end ;

syntactic_rule NUMBER_OF_ENTITIES is
begin
 put_line ($str_int (0));
end ;

Fig. 8 presents the execution scheme of the rules presented in Fig. 7 on a tree that
respect the required format. TYPE_NUM implicitly invokes the rule associated to the
semantic constructor located in the first son of the semantic expression tree transmitted
as a parameter (here, NUMBER_OF_ENTITIES). This invoked rule converts the integer
value into a string that is written in the output declared in the corresponding semantic
pattern (via the generate directive). The result for this expression-tree should be:

number of hub in the network : 4

Of course, the «apply» directive can be used to explicitly apply a syntactic rule to a
semantic-expression-tree. Then, the rule identifier is also transmitted.

Fig. 8 Execution of the syntactic pattern on a given expression-tree.

3 About MetaScribe implementation

Implementation’s principles of MetaScribe are rather simple: it is a program generator.
We first investigated an interpreted approach but it raises two problems:

• it should be slower,

• execution time checks have to be implemented.

Thus, transformation engines produced by MetaScribe are specific programs
implementing a particular transformation. Then, the choice of Ada is obvious: it
provides good mechanisms for execution time type checking. Then, all execution time
checks are supported by the Ada runtime. Exceptions are caught in a handler and the
propagation mechanism is used to provide the program stack (soon or later, this
function should be supported by all compilers).

3.1 Structure of a generated transformation engine

The structure of a transformation engine generated by MetaSCribe is shown in Fig. 9.
There are six components (the Ada runtime is not a part of MetaScribe):

• the MetaScribe runtime that performs input/output operations and defines all data
structures suitable for a transformation engine. For example, it contains a generic
semantic expression-tree manager to be instantiated for the constructors defined in
the semantic pattern;

• a MSM parser that interpret the input specification and built a memory
representation on which semantic rules will operate;

syntactic_rule TYPE_HUB is
begin
 put ('number of hubs in the network :');
 apply ($1);
end ;

syntactic_rule NUMBER_OF_ENTITIES is
begin
 put_line ($str_int (0));
end ;

(TYPE_HUB,,)

(NUMBER_OF_ENTITIES,,4))

(NUMBER_OF_ENTITIES,,4))

• a MSF parser to dynamically interpret the input formalism’s description;

• the implementation of the semantic pattern;

• the implementation of the syntactic pattern;

• the MetaScribe starter.

Fig. 9 Structure of a tranformation engine produced by MetaScribe.

The MetaScribe starter basically performs the following operations: a) parsing the
MSM input description (with dynamic checks of the input specification according to
the MSF description1), b) «launching» of the semantic pattern. «launching» means that
MetaScribe systematically applies some rules to the current description. Such rules are
called «main rules», of course, there must be at least one main rule in a semantic
pattern.

Transformation engines designed with MetaScribe are ready to be plugged in
FrameKit, our generic CASE environment. Thus, it is a simple way to prototype
transformation tools as well as program generators and experiment them in a given
methodology.

3.2 Implementation of a semantic pattern

The semantic pattern is composed with two packages : the first one defines data
structures, the second one implements the semantic pattern.

Fig. 10 Example of generated code: the main data structure to operate the semantic.

Fig. 10 provides the specification of the package defining data structures. It declares an
enumerative type containing all constructors (STATISTICS_SEMANTIC_CONSTRUCTOR)

1. To speed up execution, it is possible to disable these execution time check.

Ada rutime

MetaScribe runtime

MSM MSF Syntactic Semantic
rulesrulesparser parser

generic code

specific code

MetaScribe starter

with GEN_RTM_SEM_TREE;
package STATISTICS_SEM_TREE_MNGR is
 -- ==
 -- The type that contains all the predefined semantic constructors
 type STATISTICS_SEMANTIC_CONSTRUCTOR is (XXX_SEM_TREE_NO_ITEM,
 STATISTICS_RID_ANALYSIS_RESULT,
 STATISTICS_RID_NUMBER_OF_ENTITIES,
 STATISTICS_RID_TYPE_COMPUTER,
 STATISTICS_RID_TYPE_HUB);
 -- ==
 -- Instanciation of the generic unit that defines semantic expresion-trees
 package INTERNAL_STATISTICS_SEM_TREE_MNGR is
 new GEN_RTM_SEM_TREE (STATISTICS_SEMANTIC_CONSTRUCTOR);
 -- ==
 -- The exception used to generate the propagation stack of errors
 PROPAGATE_ERROR : exception ;
end STATISTICS_SEM_TREE_MNGR;

and uses it to instance the semantic expression-tree manager. This enables the use of
primitives dedicated to the handling of semantic tree-expressions for a specific
transformation engine.

The package implementing the semantic pattern groups procedures and functions
corresponding to rules and static semantic-trees. The body of these primitives is
located in a separate file in order to avoid big files. Fig. 11 shows the code generated
for the static semantic-tree presented in Fig. 5. primitives of the instantiated semantic
expression-tree manager are used to build a specific tree. Exception handlers are
generated to either signal a problem or propagate it. In debug mode, traces are
automatically generated at both the beginning and the end of the subprogram.

Fig. 11 Example of generated code: static semantic-tree ONE_OBJECT (Fig. 5).

3.3 Implementation of a syntactic pattern

The syntactic pattern is composed of a package that groups all syntactic rules. As for
semantic patterns code generation and to avoid large files, rules bodies are located in
separate units. Because they never return any value (they are used to print strings in an
output), syntactic rules are implemented via procedures.

Fig. 12 Example of generated code: syntactic rule for constructor TYPE_COMPUTER (Fig. 7).

Fig. 12 shows the code generated for syntactic rule TYPE_COMPUTER in the syntactic

separate (STATISTICS_SEM_ENTITIES)

function SMT_STATISTICS_ONE_OBJECT (TYPE : in STATISTICS_SEMANTIC_CONSTRUCTOR;
 NUMBER : in INTEGER) return RTM_SEM_TREE is
 TMP_TAB : SUB_SEM_TREE_STORAGE;
begin
 TMP_TAB := CREATE_RTM_SEM_TREE (CREATE_RTM_SEM_NODE (ITS_TYPE => TYPE,
 ITS_INT_VALUE => NUMBER));
 TMP_TAB := ADD_SON_TO_CURRENT_NODE (TMP_TAB, CREATE_RTM_SEM_TREE (
 CREATE_RTM_ST_NODE (ITS_TYPE => STATISTICS_RID_NUMBER_OF_ENTITIES)));
 return TMP_TAB;
exception
 when PROPAGATE_ERROR =>
 FK_PUT_MSG (MESSAGE => "propagated in ->SMT_STATISTICS_ONE_OBJECT");
 raise ;
 when others =>
 FK_PUT_MSG (MESSAGE => "Huge problem in ->SMT_STATISTICS_ONE_OBJECT");
 raise PROPAGATE_ERROR;
end SMT_STATISTICS_ONE_OBJECT;

with STATISTICS_SEM_ENTITIES,
 SYN_GENERATOR_RUNTIME;
use STATISTICS_SEM_ENTITIES,
 SYN_GENERATOR_RUNTIME;

separate (SYNT_PATTERN_TEXT_DISPLAY_FOR_STATISTICS)
procedure SYR_STATISTICS_TEXT_DISPLAY_TYPE_COMPUTER (SEM_TREE : in RTM_SEM_TREE) is
begin
 SYN_RTM_PUT (FILE_IN_MEM, TO_VSTRING ("number of computers in the network :"));
 APPLY_SYNTACTIC_RULE (CURRENT_GOTO_SON (SEM_TREE, 1));
exception
 when PROPAGATE_ERROR =>
 FK_PUT_MSG (MESSAGE =>
 "propagated in ->SYR_STATISTICS_TEXT_DISPLAY_TYPE_COMPUTER");
 raise ;
 when others =>
 FK_PUT_MSG (MESSAGE =>
 "Huge problem in ->SYR_STATISTICS_TEXT_DISPLAY_TYPE_COMPUTER");
 raise PROPAGATE_ERROR;
end SYR_STATISTICS_TEXT_DISPLAY_TYPE_COMPUTER;

pattern (Fig. 7). A parameter is necessary that was implicit in the syntactic pattern
description: the semantic expression-tree on which the rule is applied. Because rules
are sequentially invoked, the output file is not provided, a «current output» is set each
time the syntactic pattern in invoked by a semantic rule.

Display functions that put message to a default output set via the generate directive
belongs to the MetaScribe runtime (like SYN_RTM_PUT which behaves like PUT).
navigation directives (like $1 in the syntactic rule) are implemented by the instantiated
semantic expression-tree manager (for example, CURRENT_GOTO_SON implements the
$<int> directive).

Exception handlers are set to detect problems in expression-trees construction (they
correspond to bugs in the semantic pattern description). A trace mode allows tracking
of all input semantic expression-trees of syntactic rules.

Fig. 13 Example of generated code: automatic apply function.

One point is the implementation of the apply function. The explicit apply corresponds
to a standard procedure call. The implicit apply is implemented by means the
procedure shown in Fig. 13. It contains a case based on the enumerative type that
describes all constructors declared in the semantic pattern (remind that internal rules
cannot be implicitly invoked).

4 Conclusion

We have presented in this paper MetaScribe, a tool to quickly produce transformation
engines. A transformation engine is a program that parses an input specification and
produces an output specification by applying transformation rules. It can be used to
build program generators or to ease standardization of data representation in a CASE
environment like FrameKit.

-- The function that perform dynamicaly the application of the rule tag referenced in the current
-- node of a semantic tree.
procedure APPLY_SYNTACTIC_RULE (SEM_TREE : in RTM_SEM_TREE) is
begin
 case GET_RTM_ST_NODE_TYPE (CURRENT_CONTENT (SEM_TREE)) is
 when STATISTICS_RID_ANALYSIS_RESULT =>
 SYR_STATISTICS_TEXT_DISPLAY_ANALYSIS_RESULT (SEM_TREE);
 when STATISTICS_RID_NUMBER_OF_ENTITIES =>
 SYR_STATISTICS_TEXT_DISPLAY_NUMBER_OF_ENTITIES (SEM_TREE);
 when STATISTICS_RID_TYPE_COMPUTER =>
 SYR_STATISTICS_TEXT_DISPLAY_TYPE_COMPUTER (SEM_TREE);
 when STATISTICS_RID_TYPE_HUB =>
 SYR_STATISTICS_TEXT_DISPLAY_TYPE_HUB (SEM_TREE);
 when XXX_SEM_TREE_NO_ITEM =>
 raise SYNT_PTRN_APPLY_ERROR;
 end case ;
exception
 when PROPAGATE_ERROR =>
 FK_PUT_MSG (MESSAGE => "propagated in ->APPLY_SYNTACTIC_RULE");
 raise ;
 when others =>
 FK_PUT_MSG (MESSAGE => "Huge problem in ->APPLY_SYNTACTIC_RULE");
 raise PROPAGATE_ERROR;
end APPLY_SYNTACTIC_RULE;

MetaScribe is operational, information can be found on <http://www-src.lip6.fr/

metacribe> . It has been experimented to generated Petri nets or Java programs from
high-level semi-formal specification [13] . Results of these experimentations are
satisfactory. We are currently using it to handle transformation from High Level Agent
oriented specification into Petri nets in the ODAC project [4] .

References

[1] G. Araujo, S. Devadas, K. Keutzer, S. Liao, S. Malik, A. Sudarsanam, S. Tjiang & A.
Wang, "Challenges in Code Generation for Embedded Processors", Chapter 3, pp. 48-64,
in "Code Generation for Embedded Processors", P. Marwedel and G. Goossens editors,
Kluwer Academic Publishers, ISBN 0-7923-9577-8, 1995

[2] P.Desfray, "Object Engineering, the fourth dimention", Addison-Wesley, 1994

[3] A. Diagne, P. Estraillier & F. Kordon, "Quality Management Issues along Life-cycle of
Distributed Applications", in the proceedings of CARI'98, pp 753-763, Dakar, Sénégal,
October 12-15, 1998

[4] A. Diagne & M.P. Gervais, "Building Telecommunications Services as Qualitative Multi-
Agent Systems: the ODAC Project", in Proceedings of the IEEE Globecom'98, Sydney,
Australia, November 1998

[5] C. Donnelly & R. Stallman, "Bison: The YACC-compatible Parser Generator", GNU
documentation, <http://www.cl.cam.ac.uk/texinfodoc/bison_toc.html>, November 1995

[6] C. Hylands, E. Lee & H. Reekie, "The Tycho User Interface System", The 5th Annual Tcl/
Tk Workshop '97, Boston, Massachusetts, pp 149-157, July 14-17, 1997

[7] F.Kordon & J-L. Mounier, "FrameKit, an Ada Framework for a Fast Implementation of
CASE Environments", in proceedings of the ACM/SIGAda ASSET'98 symposium, pp 42-
51, Monterey, USA, July 1998

[8] MARS-Team, "the CPN-AMI2 home page", <http://www.lip6.fr/cpn-ami>

[9] V. Paxson, "Flex: A fast scanner generator, Edition 2.5", GNU documentation, <http://
www.cl.cam.ac.uk/texinfodoc/flex_toc.html>, March 1995

[10] Ptolemy Team, "The Ptolemy Kernel-- Supporting Heterogeneous Design", RASSP
Digest Newsletter, vol. 2, no. 1, pp. 14-17, 1st Quarter, April, 1995

[11] S. Rybin, A. Strohmeier & E. Zueff, "ASIS for GNAT: Goals, Problems and
Implementation Strategy", In M. Toussaint (Ed), Second International Eurospace - Ada-
Europe Symposium Proceedings, LNCS no 1031, Springer Verlag, pp 139-151, 1995

[12] D.Schefström, "System Development Environments: Contemporary Concepts", in Tool
Integration: environment and framework, Edited by D.Schefström & G. van den Broek,
John Wiley & Sons, 1993

[13] P. Vidal, "Comparison between implementation and code generation for multi-agent
systems : application to the Personnal Travel Assistant", Master thesis in an ERASMUS
program, University of Olso and University P. & M. Curie, 1999

