'\ SCIENCES

SORBONNE
UNIVERSITE

I'voki Ok jective-C' code
from Swift code

'

Fabrice.Kordon@lip6.fr

lip

Ny

- CC2018

F. Kordon - Sorbonne Universite

As an introduction

Pres ition b
2 Creation of objects written in

2 Inside a Swift pro]bc{ :

of an example
‘Objective-C

Operations to complete
& Init this class
2 Show various access to attributes
2 Show method invecation

810TDD - 93ISISAIUN SUUOG.OS - UOPIO)] *d

- CC2018

F. Kordon - Sorbonne Universite

__Architecture

", -
it I.._..
s
e o
pa— s
A :
L o]
I - - .
:‘ [}
’

AppDelegate.swift " ~=3Pp implicit liaison
} TR

ViewController.swift

L

SwiftAndObijc-Bridging-Header.h

Y

MyClass.h

the bridge

-
-

tng

Creat

.

)
Ema 4

8107DD - 23ISI2AIUN BUUOG.OS - UOPIO)]]

. . * . : I IPod touch SAR or Running Swit&0ObjectiveC on IPod touch SAR or ':-_._. 4 I

5l M 2 Q S EOC =] B8 £ B Swit&ObjectiveC Swit&ObjectiveC) h Swit&ObjectiveC-Bridging-Header.h ; No Selection

v [B Swit&ObjectiveC 4
v | 7| Swit&ObjectiveC // Use this file to import your target's public headers that you would like

«| AppDelegate.swift to expose to Swift.
//

« ViewController.swift

h MyClass.h :
5 #1import "MyClass.h"
m MyClass.m

Main.storyboard

|58l Assets.xcassets
LaunchScreen.storyboard
Info.plist

m Swit&ObjectiveC-Bridging-Header.h

Visibility control...

You only refer to the classes you
wan to be visibles from Swift
“——"——‘—'—"'—"_—"—‘

=a]
=]
™~
U
¥
[|
‘Q
.E
"y
9
=
c
-
u
g
c
o
r
-
o
Py]
[|
c
o
T
o
x
™

() So <7 | @ Swit&ObjectiveC

MyClass

:le.me .:j%

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h> // Added for UIColor

NS ASSUME NONNULL BEGIN
@interface MyClass : NSObject

@property (readwrite, strong, nonatomic) NSString *xmyValue;
@property (readonly, strong, nonatomic) UIColor xmyColor;

— (1id) initWithValue: (NSString x)initValue andColor:(UIColor) col;
— (NSStringx) compute;

@end

NS_ASSUME_NONNULL_END

F. Kordon - Sorbonne Universitée - CC2018

MyClass

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h> // Added for UIColor

NS_ASSUME_NOMNNULL_BEGIN
@interface MyClass : NSObject

@property (readwrite, strong, nonatomic) NSString #myValue;
@property (readonly, strong, nonatomic) UIColor #*myColor;

- (id) initWithValue:(NSString *)initValue andColor:(UIColor *) col;
— (NSString*) compute;

@end

NS_ASSUME_NONNULL_END

#import "MyClass.h"
@implementation MyClass

— (1d) initWithValue: (NSString *x)initValue andColor:(UIColor x)col <
if ([super init]) {
_myValue = [initValue copyl;
_myColor = [col copyl;
by

return self;

F. Kordon - Sorbonne Universitée - CC2018

— (NSStringx) compute {
return [NSString stringWithFormat:@"Computed
5

@end

oP

@", _myValuel;

__ViewController

import UIKit

class ViewController: UIViewController {
override func viewDidLoad() {

super.viewDidLoad()

self.view = UIView()

self.view.backgroundColor = UIColor.white

let labl = UILabel(frame: CGRect(x: 0.0, y: 40.0,
width: UIScreen.main.bounds.width,
height: 30.0))

labl.textAlignment = .center
labl.textColor = UIColor.blue
labl.font = UIFont.boldSystemFont(ofSize: 14.0)

let lab2 = UILabel(frame: CGRect(x: 0.0, y: 80.0,
width: UIScreen.main.bounds.width,
height: 30.0))

lab2.textAlignment = .center

lab2.textColor = UIColor.red

lab2.font = UIFont.boldSystemFont(ofSize: 14.0)

let objl = MyClass(value: "I am in the Objective-C part",
andColor: .red)

labl.textColor = objl.myColor

labl.text = objl.compute() // using the getter

let obj2 = MyClass()

obj2.myValue = "Hello from Objective-C"

lab2.textColor = .blue // myColor attribute 1is not set
lab2.text = obj2.myValue // accessing the property

self.view.addSubview(labl)
self.view.addSubview(1lab2)

F. Kordon - Sorbonne Universitée - CC2018

ivarsité - CC2018

F. Kordon - Sorbonne

F. Kordon - Sorbonne Universite - CC2018

. One more thing...
7 What about the reverse operation? similar principles

% Less interesting a priori

® Main difference, the bridge is automatic
» ARC can be deactivated (for the Objective-C part)
% There is too a bridge to expose Objective-C class to Swift

» Only for your own Objective-C classes
» Those the Swift code is using

% In the Swift code

» Directive @objc to expose entities to Objective-C
» Already required for methods to be cealled-back

import Foundation

@objc class MyClass: NSObject {// Do not forget @objc

var myValue =

func compute () —> String {
return "Computed : " + myValue
}

10

F. Kordon - Sorbonne Universite - CC2018

7 What @bout the rever

% Less interesting a priori
® Main differer~~"*he bridge is automatic

» ARC can be led (for the Objective-C part)
% There is too G

» Only for your
» Those the Sw

% In the Swift @

» Directive @objc to expose entities to Objective-C
» Already required for methods to be colled-back

import Foundation

@objc class MyClass: NSObject {// Do not forget @objc

var myValue =

func compute () —> String {

return "Computed : " + myValue

}

10

