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As an introduction

Pres ition b
2 Creation of objects written in

2 Inside a Swift pro]bc{ :

of an example
‘Objective-C

Operations to complete
& Init this class
2 Show various access to attributes
2 Show method invecation
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AppDelegate.swift " ~=3Pp implicit liaison
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ViewController.swift
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SwiftAndObijc-Bridging-Header.h
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MyClass.h




the bridge
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. . * . : I IPod touch SAR or Running Swit&0ObjectiveC on IPod touch SAR or ':-_._. 4 I

5l M 2 Q S EOC =] B8 £ B Swit&ObjectiveC Swit&ObjectiveC ) h Swit&ObjectiveC-Bridging-Header.h ; No Selection

v [B Swit&ObjectiveC 4
v | 7| Swit&ObjectiveC // Use this file to import your target's public headers that you would like

«| AppDelegate.swift to expose to Swift.
//

« ViewController.swift

h MyClass.h :
5 #1import "MyClass.h"
m MyClass.m

Main.storyboard

|58l Assets.xcassets
LaunchScreen.storyboard
Info.plist

m Swit&ObjectiveC-Bridging-Header.h

Visibility control...

You only refer to the classes you
wan to be visibles from Swift
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MyClass
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#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h> // Added for UIColor

NS ASSUME NONNULL BEGIN
@interface MyClass : NSObject

@property (readwrite, strong, nonatomic) NSString *xmyValue;
@property (readonly, strong, nonatomic) UIColor xmyColor;

— (1id) initWithValue: (NSString x)initValue andColor:(UIColor ) col;
— (NSStringx) compute;

@end

NS_ASSUME_NONNULL_END
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MyClass

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h> // Added for UIColor

NS_ASSUME_NOMNNULL_BEGIN
@interface MyClass : NSObject

@property (readwrite, strong, nonatomic) NSString #myValue;
@property (readonly, strong, nonatomic) UIColor #*myColor;

- (id) initWithValue:(NSString *)initValue andColor:(UIColor *) col;
— (NSString*) compute;

@end

NS_ASSUME_NONNULL_END

#import "MyClass.h"
@implementation MyClass

— (1d) initWithValue: (NSString *x)initValue andColor:(UIColor x)col <
if ([super init]) {
_myValue = [initValue copyl;
_myColor = [col copyl;
by

return self;
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— (NSStringx) compute {
return [NSString stringWithFormat:@"Computed
5

@end

oP

@", _myValuel;



__ViewController

import UIKit

class ViewController: UIViewController {
override func viewDidLoad() {

super.viewDidLoad()

self.view = UIView()

self.view.backgroundColor = UIColor.white

let labl = UILabel(frame: CGRect(x: 0.0, y: 40.0,
width: UIScreen.main.bounds.width,
height: 30.0))

labl.textAlignment = .center
labl.textColor = UIColor.blue
labl.font = UIFont.boldSystemFont(ofSize: 14.0)

let lab2 = UILabel(frame: CGRect(x: 0.0, y: 80.0,
width: UIScreen.main.bounds.width,
height: 30.0))

lab2.textAlignment = .center

lab2.textColor = UIColor.red

lab2.font = UIFont.boldSystemFont(ofSize: 14.0)

let objl = MyClass(value: "I am in the Objective-C part",
andColor: .red)

labl.textColor = objl.myColor

labl.text = objl.compute() // using the getter

let obj2 = MyClass()

obj2.myValue = "Hello from Objective-C"

lab2.textColor = .blue // myColor attribute 1is not set
lab2.text = obj2.myValue // accessing the property

self.view.addSubview(labl)
self.view.addSubview(1lab2)
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. One more thing...
7 What about the reverse operation? similar principles

% Less interesting a priori

® Main difference, the bridge is automatic
» ARC can be deactivated (for the Objective-C part)
% There is too a bridge to expose Objective-C class to Swift

» Only for your own Objective-C classes
» Those the Swift code is using

% In the Swift code

» Directive @objc to expose entities to Objective-C
» Already required for methods to be cealled-back

import Foundation

@objc class MyClass: NSObject {// Do not forget @objc

var myValue =

func compute () —> String {
return "Computed : " + myValue
}

10
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