

Journées Topologie et Informatique

Taylor expansion, a round-trip between syntax and semantics.

Christine Tasson

 ${\tt Christine.Tasson@pps.univ-paris-diderot.fr}$

21 mars 2013

Road map

Syntactical Taylor expansion and Resource consumption

Taylor expansion in Semantics

3 Semantics vs Syntax : The full abstraction question

Taylor expansion:

From Mathematics to Computer Science.

In Maths

 $f: \mathbb{R} \to \mathbb{R}$

Let $x \in \mathbb{R}$,

$$f(x) = \sum_{n} \frac{1}{n!} f^{(n)}(0) \cdot x^{n}$$

 $x \mapsto \frac{1}{n!} f^{(n)}(0) \cdot x^n$ is the *n*-linearisation of f.

In Computer Science

 $P:\mathtt{nat} o \mathtt{nat}$

Let x : nat,

$$P x = \sum_{n} P_{n} \underbrace{x \cdots x}_{n}$$

 P_n , uses exactly *n*-times x, is the *n*-linearisation of P.

Programs:

Resource consumption via Taylor expansion

Syntactical Taylor expansion : $P x = \sum_{n} P_n \underbrace{x \cdots x}_{n}$

 λ -calculus $\xrightarrow{\text{Taylor Expansion}}$ Resource-calculus

λ -calculus :

$$M, N := x \mid \lambda x M \mid (M)N$$

$$(\lambda x M)N \rightarrow M[N/x]$$

« Substitute every occurrence of x in M by N. »

Example: $(\lambda x(x)x)\lambda z z \rightarrow (\lambda z z)\lambda z z \rightarrow \lambda z z$.

Resource calculus :

$$s, t := x \mid \lambda x s \mid \langle s \rangle [t_1 \dots t_n]$$

$$\langle \lambda x s \rangle [t_1 \dots t_n] \to \partial_x (s, t_1 \dots t_n)$$

« Substitute each occurrence of x in s by one t_i if possible or reduces to 0. »

Example: $\langle \lambda x \langle x \rangle [x] \rangle [\lambda z z, \lambda z z] \Rightarrow \langle \lambda z z \rangle [\lambda z z] \rightarrow \lambda z z$.

Syntactical Taylor expansion : $P x = \sum_{n} P_n \underbrace{x \cdots x}_{n}$

$$\frac{\lambda\text{-calculus}}{M^*} \stackrel{\text{Taylor Exp.}}{=} \sum_{t \in \mathcal{T}(M)} \frac{1}{m(t)} t$$

Example: $t \in \mathcal{T}(M)$ with m(t) = 2.

$$M = \frac{(\lambda x (x)x)\lambda z z}{t} \rightarrow \frac{(\lambda z z)\lambda z z}{\lambda z z} \rightarrow \frac{\lambda z z}{\lambda z z}$$

$$\left[(\lambda x (x) x) \lambda z z \right]^* = \sum_{p,q} \frac{1}{p! \, q!} \langle \lambda x \langle x \rangle \underbrace{[x, \dots, x]}_{p} \rangle \underbrace{[\lambda z z, \dots, \lambda z z]}_{q}$$

Syntactical Taylor expansion and Resource Consumption

Idea:

$$P \; \mathbf{x} = \sum_n P_n \; \underbrace{\mathbf{x} \; \cdots \; \mathbf{x}}_{n}$$
 « P_n is the part of P that uses \mathbf{x} *n*-times. »

Proposition:

Let
$$M \to \bullet$$
. Then $\exists ! \ s \in \mathcal{T}(M)$ such that $\left\{ \begin{array}{l} s \nrightarrow 0 \\ s \to m(s) \bullet \end{array} \right.$

« s is the version of M with the explicit resources used for computation. »

Example:
$$M = (\lambda x (x)x)\lambda z z$$
 and $t = \langle \lambda x \langle x \rangle [x] \rangle [\lambda z z, \lambda z z]$

Conclusion:

$$M \to^* \bullet \iff M^* = \sum_{t \in \mathcal{T}(M)} \frac{1}{m(t)} \ t \to^* \bullet$$

Semantics:

Taylor expansion and derivatives

Denotational Semantics:

Type: $|\sigma|$ is the set of basic values σ

Data: $\llbracket x \rrbracket$ part of $\llbracket \sigma \rrbracket$ $x:\sigma$

 $|\sigma| \times |\tau|$ Type: $\sigma \rightarrow \tau$

Program: $P: \sigma \to \tau$ $[P] \subseteq |\sigma| \times |\tau|$ is a relation from input to output values

 $\llbracket P; Q \rrbracket = \llbracket Q \rrbracket \circ \llbracket P \rrbracket$ is the **Interaction :** $P: \sigma \rightarrow \tau$

composition of relations. $Q: \tau \to \psi$

Quantitative Semantics: Resources

In order to take into account resources, we introduce multisets.

Type: $\sigma \Rightarrow \tau$ $\mathcal{M}_{\mathsf{fin}}(|\sigma|) \times |\tau|$

Program : $P: \sigma \Rightarrow \tau$

 $\llbracket \mathtt{P} \rrbracket \subset \mathcal{M}_{\mathsf{fin}}(|\sigma|) \times |\tau|$ is a multi relation between inputs and outputs

Interaction : $P: \sigma \Rightarrow \tau$

 $0: \tau \Rightarrow \psi$

 $\llbracket P; Q \rrbracket = \llbracket Q \rrbracket \circ^! \llbracket P \rrbracket$ is the composition of multi rela-

tions.

Proposition:

Rel is a cartesian closed category cpo-enriched, a model of various functional programing languages.

Quantitative Semantics: Counting

In order to count the number of non-deterministic reductions, the probability to get a result,... we move to vector spaces.

Type:

 σ

 $\mathcal{R}^{|\sigma|}$ the set of vectors with coefficients in \mathcal{R} .

Data:

 $x : \sigma$

 $\llbracket x \rrbracket$ is a vector

Type:

 $\sigma \multimap \tau$

 $\mathcal{R}^{|\sigma|\times|\tau|}$

Program : $P: \sigma \multimap \tau$

 $\llbracket \mathtt{P}
Vert \in \mathcal{R}^{|\sigma| imes | au|}$ matrix or $\llbracket \mathtt{P}
Vert : \mathcal{R}^{|\sigma|}
ightarrow \mathcal{R}^{| au|}$ the associated linear map.

Interaction : P : $\sigma \multimap \tau$

 $Q: \tau \multimap \psi$

 $\llbracket P; Q \rrbracket = \llbracket Q \rrbracket \circ \llbracket P \rrbracket$ is the composition of matrix.

Quantitative Semantics : Counting

Type: $\sigma \Rightarrow \tau$ $\mathcal{R}^{\mathcal{M}_{\mathsf{fin}}(|\sigma|) \times |\tau|}$

Program : $P: \sigma \Rightarrow \tau$ $[\![P]\!]: \mathcal{R}^{|\sigma|} \to \mathcal{R}^{|\tau|}$ is an entire function.

$$orall b \in | au| \,, \, [\![\mathtt{P}]\!] (\mathtt{x})_{\mathtt{b}} = \sum_{\mu \in \mathcal{M}_{\mathsf{fin}}(|\sigma|)} [\![\mathtt{P}]\!]_{\mu,\mathtt{b}} \cdot \mathtt{x}^{\mu}$$
 with $\mathtt{x}^{\mu} = \prod_{\mathtt{c} \in \mathcal{C}_{\mathtt{a}}} \mathtt{x}^{\mu(\sigma)}_{\mathtt{c}}$

Proposition : For a suitable \mathcal{R} , we can interpret various functional programing languages.

Quantitative Semantics and Operational semantics

PCF^{or}:
$$L, M, P := x \mid \lambda x M \mid (M)P \mid fix(M) \mid \underline{0} \mid pred(M) \mid succ(M) \mid if (M = \underline{0}) then P else $L \mid p \cdot M \mid M$ or P

$$p \cdot M \xrightarrow{P} M \qquad M \text{ or } P \xrightarrow{1} M \qquad M \text{ or } P \xrightarrow{1} P$$$$

Program Analysis:

M: nat a program and \mathcal{R} a semiring.

$$\mathcal{B} = \{\mathtt{T},\mathtt{F}\}, \lor, \land, \mathtt{F},\mathtt{T},\mathtt{F} < \mathtt{T} \qquad \llbracket M \rrbracket_n^{\mathcal{B}} = \mathtt{T} \iff \exists \mathtt{M} \to^* \underline{\mathtt{n}}.$$

$$\mathcal{N} = \overline{\mathbb{N}}, +, \cdot, 0, 1, \leq \qquad \llbracket M \rrbracket_n^{\mathcal{N}} \text{ number of } M \to^* \underline{\mathtt{n}}.$$

$$\mathcal{R} = \overline{\mathbb{R}^+}, +, \cdot, 0, 1, \leq \qquad \llbracket M \rrbracket_n^{\mathcal{R}} \text{ probability of } M \to^* \underline{\mathtt{n}}.$$

$$\mathcal{T} = \overline{\mathbb{N}}, \min, +, \infty, 0, \geq$$
 $\llbracket M \rrbracket_n^{\mathcal{T}} \text{ number of } \beta \text{ and fix()}$ redexes induced in $M \to^* n$.

Quantitative Semantics and Topology

Problematics:

- If \mathcal{R} is a Field, then $\llbracket \sigma \rrbracket = \mathcal{R}^{|\sigma|}$ is a linear space of infinite dimension.
- ullet What means : $[\![P]\!](x)_- = \sum [\![P]\!]_{\mu,-} \cdot x^{\mu}$ $\mu \in \mathcal{M}_{fin}(|\sigma|)$

Solutions: Choose \mathcal{R} and properties of $\llbracket \sigma \rrbracket$ for convergence

- \bullet \mathbb{R}^+ with usual topology
- R with discrete topology
- R with usual topology

Probabilistic Coherent Spaces

Finiteness Spaces

Convenient Vector Spaces

Probabilistic Coherent Spaces

Topology:

 $\sum_{a} x_a$ converges in \mathbb{R}^+ iff the sum is absolutely convergent.

Orthogonality:

$$x, y \in \mathbb{R}^{|\sigma|}$$
.

$$x \perp y \iff \sum_{a \in |\sigma|} x_a y_a \in [0, 1].$$

Types:

$$\llbracket \sigma \rrbracket$$
 is a probabilistic coherent space, that is $\left\{ \begin{array}{l} \llbracket \sigma \rrbracket \subseteq \mathbb{R}^{|\sigma|} \\ \llbracket \sigma \rrbracket^{\perp \perp} = \llbracket \sigma \rrbracket \end{array} \right\}$

with
$$\llbracket \sigma \rrbracket^{\perp} = \{ x \in \mathbb{R}^{|\sigma|} \mid \forall y \in \llbracket \sigma \rrbracket, \ x \perp y \}$$

Proposition : Probabilistic Coherent Spaces interpret **PCF**^{or}.

Discrete topology:

 $\sum_{a} x_a$ converges in \mathbb{R} iff the sum is finite.

Orthogonality:

$$x, y \in \mathbb{R}^{|\sigma|}$$
.

$$x \perp y \iff \sum_{a \in |\sigma|} x_a y_a \in \mathbb{R}.$$

Types:

$$\llbracket \sigma \rrbracket \text{ is a finiteness space, that is } \left\{ \begin{array}{l} \llbracket \sigma \rrbracket \subseteq \mathbb{R}^{|\sigma|} \\ \llbracket \sigma \rrbracket^{\perp \perp} = \llbracket \sigma \rrbracket \end{array} \right.$$

with
$$[\![\sigma]\!]^\perp = \{x \in \mathbb{R}^{|\sigma|} \mid \forall y \in [\![\sigma]\!], \ x \perp y\}$$

Properties:

- ullet $\llbracket \sigma
 Vert$ is a linear space with infinite dimension
- \bullet $\llbracket \sigma \rrbracket$ is endowed with a linearized topology
- opens and bounded are orthogonal

Linear Program:

 $P: \sigma \multimap \tau$.

 $[\![P]\!]:[\![\sigma]\!] \to [\![\tau]\!]$ is a continuous linear map.

Usual Program:

 $P: \sigma \Rightarrow \tau$.

 $[\![P]\!]:[\![\sigma]\!] \to [\![\tau]\!]$ is an analytic function :

$$\forall \mathsf{x} \in \llbracket \sigma \rrbracket, \quad \mathsf{P} \big(\mathsf{x} \big) = \sum_{k \leq n} \mathsf{P}_k \big(\underbrace{\mathsf{x}, \dots, \mathsf{x}}_k \big) \quad \text{with P_k the k^{th} linearization of P};$$

Proposition:

Finiteness Spaces interpret differential λ -calculus but no fixpoints.

Convenient Vector Spaces

Types:

 $[\![\sigma]\!]$ is a convenient vector space

- Locally Convex Vector Spaces over \mathbb{R} (usual).
- Duality bounded vs. opens
- Mackey complete

Linear Programs:

 $\mathtt{P}:\sigma\multimap\tau$

 $[\![P]\!] \in \mathcal{L}_c([\![\sigma]\!],[\![\tau]\!]) \text{ is linear and continuous.}$

Usual Programs:

 $P: \sigma \Rightarrow \tau$

 $\llbracket P \rrbracket \in \mathcal{C}^{\infty}(\llbracket \sigma \rrbracket, \llbracket \tau \rrbracket)$ is smooth.

i.e. preserves smooth curves.

Proposition : Convenient Vector Spaces interpret differential λ -calculus without reference to basis and with usual topology.

Semantics vs Syntax:

The full abstraction question

« Decide what you want to say before you worry how you are going to say it. »

The Scott-Strachey Approach to Programming Language Theory, preface, Scott (77)

Denotational semantics:

a program as a function between mathematical spaces

Operational semantics:

a program as a sequence of computation steps

« Full Abstraction studies connections between denotational and operational semantics. » LCF Considered as a Programming Language, Plotkin (77)

Full Abstraction = Adequacy + Full completeness

FA relates Semantical and Observational equivalences:

How to prove Full Completeness :

- **1** By contradiction, start with $[\![M]\!] \neq [\![N]\!]$
- ② Find testing context : f such that $f[M] \neq f[N]$
- **9** Prove definability: $\exists C[\cdot], \forall M, f[M] = [C[M]] \text{ and } C[M] \rightarrow m.$
- **4** Conclude : $\exists C[\cdot], \|C[M]\| \neq \|C[N]\| \Rightarrow m \neq n \Rightarrow M \not\simeq_o N.$

Syntax vs Semantics:

Probabilistic PCF

A Typed Probabilistic Functional Programing Language

Integers:

$$\underline{n}$$
: nat pred $(\underline{k+1}) \xrightarrow{1} \underline{k}$ succ $(\underline{k}) \xrightarrow{1} k+1$

Functions and Composition:

$$(\lambda \underset{\sigma \Rightarrow \tau}{x^{\sigma}} M) \underset{\sigma}{N} \xrightarrow{1} M \left[\underset{\tau}{N}/x\right]$$

Fixpoints:

$$fix(M) \xrightarrow{1} (M)fix(M)$$

Case Zero:

if
$$(\underline{0} = \underline{0})$$
 then P_1 else $P_2 \xrightarrow{1} P_1 + Context$ Rules if $(\underline{k} + \underline{1} = \underline{0})$ then P_1 else $P_2 \xrightarrow{1} P_2$

Probabilities : for
$$p + q \le 1$$

$$p \cdot M + q \cdot N \xrightarrow{p} M$$
$$p \cdot M + q \cdot N \xrightarrow{q} N$$

where $M \xrightarrow{\rho} M'$ means that :

M reduces to M' with probability ρ

Probabilistic Coherent Spaces

Definition and Adequacy

Pcoh: Probabilistic Coherent Spaces

Types:

$$\llbracket \sigma
rbracket \subseteq (\mathbb{R}^+)^{|\sigma|}$$

Example:

 $|\mathtt{nat}|$ is the set $\mathbb N$ of natural numbers

[nat] is the set of subprobability distributions over \mathbb{N} .

Programs:

For
$$M: \sigma$$
, $[\![M]\!] \in [\![\sigma]\!]$

Example:

$$\frac{1}{2} \cdot \underline{n} + \frac{1}{3} \cdot \underline{m}$$
 is interpreted by $(0, \dots, 0, \frac{1}{2}, 0, \dots, 0, \frac{1}{3}, 0, \dots)$

Adequacy Lemma:

Let M: nat be a closed program. Then for all n,

$$\mathsf{Proba}(M \xrightarrow{*} \underline{n}) = \llbracket M \rrbracket_n.$$

PCoh: Probabilistic Coherent Spaces

$$\boxed{\llbracket \sigma \Rightarrow \tau \rrbracket \subseteq (\mathbb{R}^+)^{\mathcal{M}_{\mathsf{fin}}(|\sigma|) \times |\tau|}}$$

Example:

[nat ⇒ nat] set of functions preserving subprobability distributions.

Programs : For $M: \sigma \Rightarrow \tau$, $\llbracket M \rrbracket : (\mathbb{R}^+)^{|\sigma|} \to (\mathbb{R}^+)^{|\tau|}$

$$\llbracket M \rrbracket (x)_- = \sum_{\mu \in \mathcal{M}_{\mathsf{fin}}(|\sigma|)} \llbracket M \rrbracket_{\mu,-} \cdot x^{\mu} \qquad \bullet \quad \llbracket M \rrbracket_{\mu,-} \text{ coefficients}$$

$$\bullet \quad x^{\mu} = \prod \quad x_{\mathsf{a}}^{\mu(\mathsf{a})}$$

•
$$x \in (\mathbb{R}^+)^{|\sigma|}$$

- $\bullet \ x^{\mu} = \prod \ x_a^{\mu(a)}$ $a \in Supp(x)$

Compositionality:

For
$$P: \sigma \Rightarrow \tau, M: \sigma$$

For
$$P: \sigma \Rightarrow \tau, M: \sigma$$
, $\llbracket (P)M \rrbracket_- = \sum_{\mu \in \mathcal{M}_{fin}(|\sigma|)} \llbracket P \rrbracket_{\mu,-} \llbracket M \rrbracket^{\mu} \rrbracket$

Probabilistic Full Abstraction:

The completeness theorem

Full Abstraction : Pcoh \rightleftharpoons Proba-PCF

FA relates Semantical and Observational equivalences:

Let
$$M, N : \sigma$$
 $\forall \alpha \in |\sigma|, [\![M]\!]_{\alpha} = [\![N]\!]_{\alpha}$ Adequacy $\downarrow \uparrow \uparrow$ Full Completeness $\forall P : \sigma \Rightarrow \text{nat}, \ \forall n \in |\text{nat}|, \ \text{Proba}((P)M \xrightarrow{*} n) = \text{Proba}((P)N \xrightarrow{*} n))$

How to prove Adequacy :

Apply Adequacy Lemma :

$$\forall n, \ \mathsf{Proba}((P)M \xrightarrow{*} \underline{n}) = \llbracket (P)M \rrbracket_n.$$

2 Apply Compositionality :

$$\forall n, \ \llbracket (P)M \rrbracket_n = \sum_{\mu \in \mathcal{M}_{\mathsf{fin}}(|\sigma|)} \llbracket P \rrbracket_{\mu,n} \prod_{\alpha \in \mu} \llbracket M \rrbracket_{\alpha}^{\mu(\alpha)}$$

FA relates Semantical and Observational equivalences:

Let
$$M, N : \sigma$$
 $\forall \alpha \in |\sigma|, \llbracket M \rrbracket_{\alpha} = \llbracket N \rrbracket_{\alpha}$ Adequacy $\Downarrow \uparrow \vdash \text{Full Completeness}$ $\forall P : \sigma \Rightarrow \text{nat}, \ \forall n \in |\text{nat}|, \ \text{Proba}((P)M \xrightarrow{*} n) = \text{Proba}((P)N \xrightarrow{*} n))$

How to prove Full Completeness:

- **1** By contradiction : $\exists \alpha \in |\sigma|$, $\llbracket M \rrbracket_{\alpha} \neq \llbracket N \rrbracket_{\alpha}$
- ② Find testing context : P_{α} such that $[(P_{\alpha})M]_0 \neq [(P_{\alpha})N]_0$
- **3** Prove definability : $P_{\alpha} \in PPCF$
- **4** Apply Adequacy : Proba $((P_{\alpha})M \stackrel{*}{\to} 0) \neq \text{Proba}((P_{\alpha})N \stackrel{*}{\to} 0)$.

How to prove Full Completeness:

- **1** By contradiction : $\exists \alpha \in |\sigma|$, $[\![M]\!]_{\alpha} \neq [\![N]\!]_{\alpha}$
- **2** Find testing context : P_{α} such that $[(P_{\alpha})M]_0 \neq [(P_{\alpha})N]_0$
 - Base case : $\sigma = \text{nat}$, $\alpha = n$, take

If
$$P_n = \lambda x^{\iota}$$
 if $(x = \underline{n})$ then $\underline{0}$ Then $[(P_n)M]_0 = [M]_n$

• Induction case : by Compositionality,

$$\llbracket (P_{\alpha}(\vec{X}))M \rrbracket_0 = \sum_{\mu \in \mathcal{M}_{\mathrm{fin}}(|\sigma|)} \llbracket P_{\alpha}(\vec{X}) \rrbracket_{\mu,0} \prod_{\delta \in \mu} \llbracket M \rrbracket_{\delta}^{\mu(\delta)}$$

If
$$\llbracket P_{\alpha}(\vec{X}) \rrbracket_{\mu,0}$$
 is

Then $[(P_{\alpha}(\vec{X}))M]_0$ is

• a power series in \vec{X}

• a power series in \vec{X}

• with coeff of $\prod \vec{X} \neq 0 \iff \mu = [\alpha]$

• with coeff of $\prod \vec{X}$ proportional to $\llbracket M \rrbracket_{\alpha}$.

 $[(P_{\alpha}(\vec{X}))M]_0$ and $[(P_{\alpha}(\vec{X}))N]_0$ are different power series

- ② Find testing context : $\forall \vec{\lambda} \in [0,1]^{\mathbb{N}}, \ P_{\alpha}(\vec{\lambda}) \in PPCF$ and the series $[(P_{\alpha}(\vec{\lambda}))M]_0$ and $[(P_{\alpha}(\vec{\lambda}))N]_0$ converge absolutely with different coefficients.
- O Prove definability:

$$\exists \vec{\lambda} \in [0,1]^{\mathbb{N}}, \ \llbracket (P_{\alpha}(\vec{\lambda}))M \rrbracket_0 \neq \llbracket (P_{\alpha}(\vec{\lambda}))N \rrbracket_0.$$

By contradiction:

- If they were equal, their derivatives near zero would be equal.
- Coefficients of power series are computed by derivation at zero.

♠ PCoh is NOT a model of differential lambda-calculus.

lacktriangle Apply Adequacy : $\exists \vec{\lambda} \in [0,1]^{\mathbb{N}}, \ P_{lpha}(\vec{\lambda}) \in PPCF$

$$\mathsf{Proba}((P_{\alpha}(\vec{\lambda}))M \overset{*}{\to} 0) \neq \mathsf{Proba}((P_{\alpha}(\vec{\lambda}))N \overset{*}{\to} 0).$$

Conclusion: Quantitative semantics

Syntactical Taylor expansion and Resource consumption

Taylor expansion in Semantics

3 Semantics vs Syntax : The full abstraction question

Bibliographie

- [Ehrhard, Regnier] *Uniformity and the Taylor expansion of ordinary lambda-terms*, 2008
- [Girard], Between logic and quantic: a tract, 1999
- [Ehrhard], Finiteness Spaces, 2005
- [Kriegle, Michor], The Convenient Setting of Global Analysis, 1997
- [Laird, Manzonetto, McCusker, Pagani], Weighted relational models of typed lambda-calculi, 2013