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Road map

@ Syntactical Taylor expansion and Resource consumption

@ Taylor expansion in Semantics

© Semantics vs Syntax : The full abstraction question
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Taylor expansion :

From Mathematics to Computer Science.
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In Maths

f:R—R

Let x € R,

X %f(")(O) -x"is
the n-linearisation of f.

C. Tasson

Taylor Expansion

In Computer Science

P :nat — nat

Let x : nat,
PX:ZPHX R 4
n n

P,, uses exactly n-times x, is
the n-linearisation of P.
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Programs :

Resource consumption via Taylor expansion
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——

n

Syntactical Taylor expansion : P x = ZPn X .-+ X
n

Taylor Expansion
%

A-calculus Resource-calculus

A-calculus : M,N :=x | AxM | (M)N

(Ax M)N — M [N/x]

« Substitute every occurrence of x in M by N. »

Example: (Ax (X)x)Azz = (Azz)A\zz — Az z.
Resource calculus : s,t i=x | Axs | (s)[t1...tn]

(AxS)[t1...tn] = Ox(s,t1...tn)
« Substitute each occurrence of x in s by one t; if possible or reduces to 0. »

Example: (Ax (x)[x])[A\z z,\z z] = (Azz)[A\zz] = Az z.
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——

n

Syntactical Taylor expansion : P x = ZPD X .-+ X
n

Taylor Exp.
A-calculuss —— >  Resource-calculus

M* = Zﬁt

teT (M)
Example: t € T(M) with m(t) = 2.
M = (Ax(x)x)A\zz = (Azz)\zz — Azz
t = (MxX)[x)[Azz, \zz] = (Azz)[Azz] — Azz

plq!

[(Ax (x)x)Az z]" = ZLQ\X ) x, ..., xPD[Azz, ... Az Z]
p.q P q
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Syntactical Taylor expansion and Resource Consumption

Idea :

PX:ZPnX s X
n

n
« Pp is the part of P that uses x n-times. »

Proposition :

s»0

Let M — . Then 3! s € T(M) such that { :
s — m(s)e

« s is the version of M with the explicit resources used for computation. »

Example: M = (Ax (x)x)Az z and t = (Ax (x)[x])[\z z, \z Z]
Conclusion :
M—=*eo <— M= Z ﬁt%*o

teT (M)
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Semantics :

Taylor expansion and derivatives
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Type :

Data :

Type :

Program :

Interaction :

Denotational Semantics :

o || is the set of basic values
X0 [x] part of [o]
o—=T lo| x ||
Pio—rT [P] C |o| x |7]| is a relation

from input to output values

Pio—rT [P;Q] = [Q] o [P] is the
Q:7— Y composition of relations.
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Quantitative Semantics : Resources

In order to take into account resources, we introduce multisets.
Type : oc=T Miin (o) x | 7|
Program : Pio=rT [P] € Miin([o]) x [7] is a

multi relation between in-
puts and outputs

Interaction: P:o =1 [P; Q] = [Q] o' [P] is the
Q: 7= composition of multi rela-
tions.

Proposition :
Rel is a cartesian closed category cpo-enriched, a model of
various functional programing languages.
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Quantitative Semantics : Counting

In order to count the number of non-deterministic reductions, the
probability to get a result,... we move to vector spaces.

C. Tasson

Type :

Data :

Type :

Program :

Interaction :

o RI°l the set of vectors with
coefficients in R.

X:0 [x] is a vector
o —oT Rlolx|7l
P:og—orT [P] € RIFXITI matrix or

[P] : Rlel — RI7I the as-
sociated linear map.

P:g—orT [P; Q] = [Q] o [P] is the
Q:7—o composition of matrix.
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Quantitative Semantics : Counting
Type . o=T RMﬁn(|0'|)><|T|

Program : Pio=r1 [P] : Rlel = RI7l s
an entire function.

vbelrl [PIx)s= Y [Plus-x"

HEMiin(lol)
with x* = H X:(B)
aESupp(p)
Interaction: P:o =17 [P;q] = [q] o' [P]
Q: 7= the composition of

entire functions.

Proposition : For a suitable R, we can interpret various func-
tional programing languages.
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Quantitative Semantics and Operational semantics

PCF** : LM, P :=x|Ax M| (M)P|fix(M) |0 | pred(M) | succ(M)
| if (M =0)thenPelseL | p- M| Moz P
p-ME M MorPL& M  MorPL P
Program Analysis : M : nat a program and R a semiring.

B={T,F},V,ANF,T,F<T [M]3=T < M —~*n.

N =N,+,-,0,1,< [[I\/I]]f,v number of M —* n.
R =R+, +,-,0,1,< [M]® probability of M —* n.
T =N, min, +, 00,0, > [M]T number of 3 and fix()

redexes induced in M —* n.
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Quantitative Semantics and Topology

Problematics :

e If R is a Field, then [o] = RI°l is a linear space of infinite

dimension.
@ What means : [P[(x)- = Z [P]p— - x"
HEMiin(lo|)
Solutions : Choose R and properties of [o] for convergence
e RT with usual topology Probabilistic Coherent Spaces
@ R with discrete topology Finiteness Spaces
@ R with usual topology Convenient Vector Spaces

C. Tasson Syntax Semantics Semantics vs Syntax 15/33



Probabilistic Coherent Spaces
Topology :

Zxa converges in RT iff the sum is absolutely convergent.

a

Orthogonality : x,y € Rlol.

xly < ZxayaE[O,l].

a€|o|

Types :

[o] € RV!
[o]++ = [o]

with [o]* = {x e Rl°l | vy € [0], x L y}

[o] is a probabilistic coherent space, that is {

Proposition : Probabilistic Coherent Spaces interpret PCF°".
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Finiteness Spaces

Discrete topology :

Zxa converges in R iff the sum is finite.

a

Orthogonality : x,y € Rlol.

xly < ZxayaeR.

aclo]

Types :

[0] € R
[o]*++ = [o]

with [o]* = {x e Rl*l | vy € [o], x L y}

[o] is a finiteness space, that is {
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Finiteness Spaces

Properties :
@ [[o] is a linear space with infinite dimension
@ [o] is endowed with a linearized topology
@ opens and bounded are orthogonal

Linear Program : P:o—oT.
[P] : [e] — [7] is a continuous linear map.
Usual Program : P:o=r.
[P] : [e] — [7] is an analytic function :

vxe[o], P(x)= ZPk(X, ...,X)  with Py the k'™ linearization of P;
k<n M

Proposition :
Finiteness Spaces interpret differential A-calculus but no fixpoints.
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Convenient Vector Spaces

Types : [o] is a convenient vector space
@ Locally Convex Vector Spaces over R (usual).
@ Duality bounded vs. opens

o Mackey complete

Linear Programs : P:og—or

[P] € Lc([o], [7]) is linear and continuous.

Usual Programs : Pio=r
[P] € C>=([e],[7]) is smooth.

i.e. preserves smooth curves.

Proposition : Convenient Vector Spaces interpret differential
A-calculus without reference to basis and with usual topology.
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Semantics vs Syntax :

The full abstraction question
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« Decide what you want to say before you worry how you are going

to say It. » The Scott-Strachey Approach to Progr ing L Theory, preface, Scott (77)

Denotational semantics :
a program as a function between mathematical spaces

Operational semantics :
a program as a sequence of computation steps

« Full Abstraction studies connections between denotational and
operational semantics. » LCF Considered as a Programming | Plotkin (77)
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Full Abstraction = Adequacy + Full completeness

FA relates Semantical and Observational equivalences :

Adequacy
IM] = [N] = M~, N
Full Completeness  (vc[], ciM] = v < Cc[N] — v)

How to prove Full Completeness :
@ By contradiction, start with [M] # [N]
@ Find testing context : f such that f[M] # f[N]

© Prove definability :

AC[-], VM, f[M] = [C[M]] and C[M] — m.
@ Conclude :

3C[, [CIM]] # [CIN]] = m # n= M %o N.
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Syntax vs Semantics :

Probabilistic PCF

C. Tasson Syntax Semantics Semantics vs Syntax 23/33



A Typed Probabilistic Functional Programing Language

Functions and Composition :

Integers : .
n:nat (A M) = MN/X]
1
pred(k + 1 +11) “k Fixpoints :
succ(k) = k+1 fix(M) £ (M)fix(M)
Case Zero :
if (0= 0) then Py else P, 4+ Py + Context Rules

if (k+ 1 =0)then Py else Py & P,

Probabilities : for p+qg <1

p-M+qg-NB M where M Z5 M’ means that :
p-M+gqg-NLH N M reduces to M’ with probability p
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Probabilistic Coherent Spaces

Definition and Adequacy

C. Tasson Syntax Semantics Semantics vs Syntax 25/33



Pcoh : Probabilistic Coherent Spaces

E le :
Types : xampie

|nat| is the set N of natural
[o] C (R+)|"| numbers
[nat] is the set of subprobability
distributions over N.

Programs : Example :

zon+t g
For M:o, [Ml€[o]|  (o,... 0.1,

m is interpreted by
0,.

..,0,1,0,...)

Adequacy Lemma :

Let M : nat be a closed program. Then for all n,

Proba(M = n) = [M],.
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PCoh : Probabilistic Coherent Spaces

Types : [o = 7] € (RT)Man(loDx]]

Example :
[nat = nat] set of functions preserving subprobability
distributions.

Programs : For M : 0 = 7, [M] : (RT)l°l — (R*)I"]

o x € (RH)ll
[M](x)- = Z [M],—-x" | ® [M] - coefficients
BEMen(lo]) oxt= [[ x@
a€Supp(x)
Compositionality :
ForPio=r,M:o,| [(PIM]-= > [P [M]"
HEMiin(lo|)

C. Tasson Syntax Semantics Semantics vs Syntax 27/33



Probabilistic Full Abstraction :

The completeness theorem
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Full Abstraction : Pcoh = Proba-PCF

FA relates Semantical and Observational equivalences :
Let M,N : o Va € |o|, [M]a = [N]a

Adequacy |} 1} Full Completeness

VP : o = nat, Vn € |nat]|,
Proba((P)M - n) = Proba((P)N = n))

How to prove Adequacy :

@ Apply Adequacy Lemma :
Vn, Proba((P)M = n) = [(P)M],.
@ Apply Compositionality :

Vo, [(PYMIn= > [Plun [JIM]A*
rEMiin(lol) acp
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Full Abstraction : Pcoh = Proba-PCF

FA relates Semantical and Observational equivalences :
Let M,N : o Va € |o|, [M]a = [N]a

Adequacy |} 1} Full Completeness

VP : o = nat, Vn € |nat]|,
Proba((P)M - n) = Proba((P)N = n))

How to prove Full Completeness :

@ By contradiction : Ja € |o|, [M]a # [N]a

@ Find testing context : P, such that [(Py)M]o # [(Pa)N]o

© Prove definability : P, € PPCF

@ Apply Adequacy : Proba((P,)M -5 0) # Proba((P,)N = 0).
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How to prove Full Completeness :

@ By contradiction : Ja € |o|, [M]a # [N]a
@ Find testing context : P, such that [(Py)M]o # [(Pa)N]o

o Base case : ¢ = nat, a = n, take

If P, = Ax"if (x = n) then0Q Then [(P)M]o = [M],

e Induction case : by Compositionality,

[(PaXDMIo = Y [Pa(X)]uo JTIMIL®

HEMiin(lo]) sep
If [Po(X)],.0 is Then [(Pa(X))M]o is
@ a power series in X @ a power series in X
o with coeff of o with coeff of [] X
[[X#0 < pn=1|q] proportional to [M],.

[(Po(X))Mo and [(Pa(X))N]o are different power series
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@ Find testing context : VX € [0, 1], P,(X) € PPCF and the
series [(Pn(A))M]o and [(P.(X))N]o converge absolutely
with different coefficients.

© Prove definability :
El)_" € [07 1]Na [[(Pa(x))M]]O 7& [[(Pa(x))N]]O

By contradiction :

e If they were equal, their derivatives near zero would be equal.
e Coefficients of power series are computed by derivation at zero.

/A PCoh is NOT a model of differential lambda-calculus.
@ Apply Adequacy : 3X € [0, 1]N, P,(X) € PPCF

Proba((Pu(X))M = 0) # Proba((P.(X))N =5 0).
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Conclusion : Quantitative semantics

@ Syntactical Taylor expansion and Resource consumption

@ Taylor expansion in Semantics

© Semantics vs Syntax : The full abstraction question

C. Tasson Syntax Semantics Semantics vs Syntax 32/33



) &) & D =

C. Tasson

Bibliographie

[Ehrhard, Regnier] Uniformity and the Taylor expansion of
ordinary lambda-terms, 2008

[Girard], Between logic and quantic : a tract, 1999
[Ehrhard], Finiteness Spaces, 2005

[Kriegle, Michor]|, The Convenient Setting of Global Analysis,
1997

[Laird, Manzonetto, McCusker, Pagani], Weighted relational
models of typed lambda-calculi, 2013

Syntax Semantics Semantics vs Syntax 33/33



	Syntactical Taylor expansion and Resource consumption
	Taylor expansion in Semantics
	Semantics vs Syntax : The full abstraction question

