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@ The barycentric boolean calculus

Totality
C. Tasson . e
Definition
BB \-calculus o . .
o For all n € N/, we define inductively the terms of Ag, by
Completeness m m
Totality R7 S JE= Zai S; Wlth Za,‘ =S ]., and
=il i=1

S, S = AX1...X,.X; | T| F| if s then S else R.

Notice, that every barycentric boolean term is of type B" = B

Z a,-()\)_( . S,') ~ A\X. Z a;S;
T~XMX.T, F~ )x.F,
if (AXxs) then (AxS) else (AXxR) ~ Axif s then S else R



@ Semantics of Ag,

Totality
C. Tasson
BExcaicil Every S € Ag,, is interpreted by a pair
Definition
o ([SI,,[SI,) € k[X1, ..., Xon] X k[X1, ..., Xan]

inductively defined by

[Caisil=)alsi].
[T]=(1,0),  [FI=(0,1),
[[/\Xl oo Xp X,']] = (Xg,'_l, X2,'),

[if P then Q else R] = ( [P], [Q], + [PI; [RI;
[P1. [Ql; + [Pl [R], ).



%@ Reduction

Totality
C. Tasson
The reduction
BB A-calculus
[?efinition
N if (aT+ bF)then RelseS — aR+bS
Totality

Proposition (Soundeness)
LetS e Ng. IfS — T, then [S] = [T].

Theorem (Computational adequacy)
Let S € Ng. If[S] = (a,b), then S — aT + bF.



@ Boolean polynomials and completeness

Totality

Definition

C. Tasson
Boolean polynomials are the pairs of polynomials (P, Q) such
that there is S € Ag, such that [S] = (P, Q).

BB A-calculus

Completeness

Totality

Boolean polynomials can be algebraically characterized.

Proposition

Let S € Ng, and (x;) € k3",
(Vi, x2i-1 +x2i = 1) = [S], (xi) + [S]; (xi) = 1.

Reciprocally,

Theorem (Completeness)

For every P, Q € k[Xu,..., Xop| such that
P -+ Q — 1 vanishes on the common zeros of Xo;_1 + Xo; — 1,
there is S € Ng, with [S] = (P, Q).




@ Proof of completeness (1)

Totality Some notations:
C. Tasson
-S = if S then F else T,
BB \-calculus
Definition St = if Sthen Telse T,
Completeness
Totality S = if S then F else F,
I'I,- = /\x1,...,x,,-x,-.

Lemma (Basic pairs)

The pairs of polynomials (Xa;, X2i—1), (X2i—1 + X2i,0),
(1 — Xaj—1,X2i—1) and (1 — Xpj, Xa;) are booleans.

(Xo—1, X0i) = [My],

(Xai, Xoi—1) = Xoi—1-(1,0) + Xoi - (0,1)
= [if N; then T else F]
— [-n].



@ Proof of completeness (2)
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BB A-calculus
Definition

Completeness

Totality

Lemma (Affine pairs)

For every polynomial P € k [Xi, ..., Xy], the pair of
polynomials (1 — P, P) is boolean.

Let d be the degree of P.
If d =0, then (1-P,P)=(1—-a,a)=[(1—a)T + aF].
If d >0 and X* = [[ X/ with i1 > 1, then

(T—XxmXt) = (1-X)-(1,0) +

-1 i -1 i
X1 (1 - le Hi;ﬁl X/H ’le Hi;ﬁl Xi“ )
= [if =; then T else Z4_1] = [Z,].

If P=3a,[[X", then

1-PP) = (1-2a,)(1,0)+ (a1 - X, XH)
= [A-2a)T+(Ca) =40



%@ Proof of completeness (3)
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BB A-calculus
Definition

Completeness

Totality

Lemma (Spanning polynomials)

Let P € k[Xy,...,Xon]. If P vanishes on the zeros common to
Xoi—1 + Xoi — 1, then there are Q; € k [Xu,. .., Xon] such that
P=>T7,Qi(Xai1+ Xoi — 1).

Change of variables

Yi =Xoic1+ X5 —1
Yitn = Xoi

} = Py(O,...,O,yn+1,...,y2n) =0.

Since k[Y2,..., Ya,][Y1] is an euclidean ring, there are
Qe Kk[Yi,..., Yo, REKIY,..., Yay] such that

Py = @Y1+

Y(yi) € kK", Ry(Yns1,---,Yy2n) = 0, hence if k is infinite
Py =>7,QY
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Lemma (Spanning polynomials)

Let P € k[Xy,...,Xon]. If P vanishes on the zeros common to
Xoi—1 + Xoi — 1, then there are Q; € k [Xu,. .., Xon] such that
P=>T7,Qi(Xai1+ Xoi — 1).

Change of variables

Yi =Xoic1+ X5 —1
Yitn = Xoi

} = Py(O,...,O,yn+1,...,y2n) =0.

Since k[Y2,..., Ya,][Y1] is an euclidean ring, there are
Q€ ]k[yl, RN an], Riek [Yg, RN YQ,,] such that

Py =0Yi+ R

Y(yi) € kK", Ry(Yns1,---,Yy2n) = 0, hence if k is infinite
Py =>7,QY
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Lemma (Spanning polynomials)

Let P € k[Xy,...,Xon]. If P vanishes on the zeros common to
Xoi—1 + Xoi — 1, then there are Q; € k [Xu,. .., Xon] such that
P=>T7,Qi(Xai1+ Xoi — 1).

Change of variables

Yi =Xoic1+ X5 —1
Yitn = Xoi

} = Py(O,...,O,yn+1,...,y2n) =0.

Since k[Y2,..., Ya,][Y1] is an euclidean ring, there are
Qi ek [Yl, e an], R ek [Y,'_;,_l, ceey Y2,,] such that

Py =@1Y1+ QY2+ R

Y(yi) € kK", Ry(Vns1,---,Yy2n) = 0, hence if k is infinite
Py =>7,QY
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Lemma (Spanning polynomials)

Let P € k[Xy,...,Xon]. If P vanishes on the zeros common to
Xoi—1 + Xoi — 1, then there are Q; € k [Xu,. .., Xon] such that
P=>T7,Qi(Xai1+ Xoi — 1).

Change of variables

Yi =Xoic1+ X5 —1
Yitn = Xoi

} = Py(O,...,O,yn+1,...,y2n) =0.

Since k[Y2,..., Ya,][Y1] is an euclidean ring, there are
Qi € k[Yi,..., Yon], Ro € k[Yps1,. .., You] such that

Py =@Q1Y1+ QYo+ -+ QYo+ Ry

Y(yi) € kK", Ry(Vns1,---,Yy2n) = 0, hence if k is infinite
Py =>7,QY



%@ Proof of completeness (the end)
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BB A-calculus
Definition

Completeness

Totality

Theorem (Completeness)

For every P, Q € k[Xu,..., Xop]| such that
P + Q — 1 vanishes on the common zeros of Xp;_1 + Xo; — 1,
there is t € Ng with [t] = (P, Q).




@ Proof of completeness (the end)

Totality

C. Tasson

BB A-calculus
Definition

Completeness

Totality

Theorem (Completeness)

For every P, Q € k[Xu,..., Xop]| such that
P + Q — 1 vanishes on the common zeros of Xp;_1 + Xo; — 1,
there is t € Ng with [t] = (P, Q).

Spanning: P+ Q —1=>"", Qi(Xai—1 + Xoi — 1).

(P,Q) = X701 —-Q)(1,0)+ Q- (Xoi-1 + X2i,0)]
+(1-Q, Q) — n(1,0).
Basic pairs: [[I'Iﬂ] = (Xpi—1 + X2i,0),
Affine pairs: [Q] = (1 — Q, Q).
(P,Q) = [>Xr,(if Q; then T else M)
+Q—-nT],
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Totality

C. Tasson Thesis subject

BBA-calculus To define a linear space model of linear logic.
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@ Where does it come from?
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C. Tasson Thesis subject

BBA-calculus To define a linear space model of linear logic.

Totality

Totay sl o Interest? Lots of intuitions of linear logic come from linear

Back to BBA

algebra.

o Difficulty? Because of exponential, infinite dimension
appears, hence problem of reflexivity solved with topology.

@ Other attempts?
[3 [Blute96] Linear Laiichli semantics,
[ [Girard99] Coherent Banach spaces,
[ [Ehrhard02] On Kéthe sequence spaces and LL,
[4 [Ehrhard05] Finiteness spaces.



@ Where does it come from?

Totality

C. Tasson Thesis subject

BBA-calculus To define a linear space model of linear logic.

@ Interest? Lots of intuitions of linear logic come from linear
algebra.
o Difficulty? Because of exponential, infinite dimension
appears, hence problem of reflexivity solved with topology.
e My attempt: Linearly topologized spaces (Lefschetz),
o a generalization of finiteness spaces,
@ a natural notion of totality.
The boolean polynomials corresponds to the totality space
associated to !B — B.



@" Denotational semantics.
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C. Tasson
BBA-calculus Linear Logic
o AB =
wim 0 | A®B | ALB
P r;r;x ’ 1 ‘ A (9] B ’ A% B
AL 1A | 7A

Finiteness space

Reflexivity

AL = A

Linear implication
A—-B=A'%B.
Intuitionistic implication
A= B=1A—B.

A is interpreted by a linear space k(A).
7 b Ais interpreted by a vector [r] € k(A).

Totality space

A is interpreted by an affine subspace 7 (A) of k(A).
7 F A is interpreted by a vector [r] € 7(A).
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C. Tasson

BB A-calculus

Totality
Finiteness spaces
Totality spaces
Back

Relational Finiteness Spaces

Let Z be countable, for each 7 C P(Z), let us denote

Fr={u CI|VueF, und finite}.

Definition

A relational finiteness space is a pair A = (|A|, F(A)) where
the web |A| is countable and the collection F(A) of finitary
subsets satisfies (F(A))*+ = F(A).

Example
Booleans.
B — (B.P(B ith B :{TvF}
= (B, P(B)) wi {P(B) = {0,{T}, {F},{T.F}} ~
Integers.

N = (N, Psin(N)) and N+ = (N, P(N)).




@ Linear Finiteness Spaces

Totality
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BB A-calculus

Totality

Finiteness spaces

Totality spaces
Back to BBA

For every x € k4l the support of x is |x| = {a € |A||xs # 0}.

Definition

The linear finiteness space associated to A = (|A|, F(A)) is
k(A) = {x € kK| |x| € F(A)}.
The linearized topology is generated by the neighborhoods of 0
V)= {x e k(A)||x|nJ =0}, with Jc F(A)" .

Example

Booleans.  k(B) = k2.
Integers.  k(N) =k®) and KkNT) =k



@" Finiteness Spaces

Totality
C. Tasson .
A Linear Logic Model
BBA-calculus
Totality AL ~ ]k<A>/

Finiteness spaces
Totality spaces
Back to BBA

0 > {O}
:‘g% } k(A) @ k(B)
1 ~ Lk
A—B ~ LA B)
A® B ~  k(A) @ k(B)
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Totality
Finiteness spaces

Totality spaces
Back to BBA

Finiteness Spaces

A Linear Logic Model

AJ_

A&B
Ad B

A—oB
A® B

|

>

§

$

§

k(A

= Reflexivity

= Infinite dimension



@" Exponentials

Totality i L. i i i
- The relational finiteness space associated with A is
. asson

BB A-calculus ‘IA| = Mﬁn(‘AD,

Totality

FA) = {M S Ma(IA) | Uyl € F(A)}.

Back to BBA



@" Exponentials

Totality
- ) The relational finiteness space associated with A is
BB A-calculus ‘IA| = Mﬁn(‘A‘),
L FA) = {M S Ma(IA) | Uyl € F(A)}.

Totality spaces
Back to BBA

Example B = {T,F} F(B)=P({T,F})
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Totality
Finiteness spaces

Totality spaces
Back to BBA

Exponentials

The relational finiteness space associated with A is

1A

F(A)

Example

7B
F(IB)
F(2Bh)

= Mﬁn(‘A‘)v
— {M C Man(JAD) | Upemlrl € f(A)}'

Bl ={T,F}  F(B)=P{T,F})
[1B] = Mgn(T,F) ~ N?

{M S Men(T,F) | Upem |u| € F(B)} = P(N?)
{MCN? | VM CN?, MM fin.} = Ppn(N?)




@" Exponentials

::amy The linear finiteness space associated with A is
BB\-calculus Ik<|A> = {Z [ ﬂ;{Mﬁn(lA‘) ‘ U“€|Z||/4’4| S ]:(A)} .
Totality
Back to BB Examp|e |B| — {T’ F} ]:'(B) — ’P({T7 F})

F(B) = {MC Mgu(T,F) | Usem |p| € F(B)} = P(V?)
F(Bt) = {MCN? | VM C N> MM fin.} = Pgn(N?)

k (Xe, X¢)
k [Xt7 Xf]

K(B) = {zekW||z|e P(NQ)}
k(?BY) = {ze o ||z| € Pfin(N2)}




@ Finiteness Spaces

Totality
C. Tasson
Theorem (Taylor expansion)
BB \-calculus
Totality For every f € L.(k('A),k(B)), there is an analytic function ¢
friwnes w2 such that Vx € k(A), ¢(x) € k(B).

Back to BBA

Vb € |B|, ¢p(x) = Z fupx!"  with xt = Hx,ff(a).
1 a

Example
k(1B —1) = Kk(?B) =k[X;, X¢],
k(IB—-B) = k(IB—-1®1l)=Kk(IB—1)?
= k[Xp, X¢] x k[Xe, X] -



@ What is totality ?

Totality
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BB A-calculus

Totality

Finiteness spaces

Totality spaces
Back to BBA

A way to refine the semantics of a calculus and a hope to have
completeness.

Let A be a finiteness space A = (|A|, F(A)).
The associate linear space is k(A) = {x € kl4l||x| € F(A)}.

Definition
A totality candidate is an affine subspace 7 of k(A) such that
7°* =T with

T* = {¥ e k(A |¥x € T, (x,x) = 1}.

A totality space is a pair (A,7(A)) with 7(A)** =7 (A).



@” A model of linear logic

Totality A refinement of finiteness spaces.

C. Tasson Let A€ LL and 7 : A an affine linear logic proof.
BBA-calculus [7] € k(A).
Totality

Finiteness spaces

: We define by induction a totality candidate 7 (A) such that
Back to BBA [[7_[_]] 6 T(A)
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BB A-calculus

Totality

Finiteness spaces

Totality spaces
Back to BBA

A refinement of finiteness spaces.
Let A € LL and 7 : A an affine linear logic proof.

[7] € k(A).
We define by induction a totality candidate 7 (A) such that
[7] € T(A).
Some constructions
AL~ (K(A), T(A))
with 7(A)* = {x’ € k(A)'|Vx € T(A), (X’

i

,x) =1}.
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Totality spaces
Back to BBA

A refinement of finiteness spaces.
Let A € LL and 7 : A an affine linear logic proof.

[7] € k(A).
We define by induction a totality candidate 7 (A) such that
[7] € T(A).
Some constructions
A® B~ (k(A) @ k(B), aff(T(A) x {0} U{0} x T(B))).
Example

T(B) = {(xt,y)€ k%[ x + yr = 1},
T(BY) = T(1&1) =(1,1).
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Back to BBA

A refinement of finiteness spaces.
Let A € LL and 7 : A an affine linear logic proof.

[7] € k(A).
We define by induction a totality candidate 7 (A) such that
[7] € T(A).
Some constructions
A —o B~ (Lc(A B), {f | f(T(A)) € T(B)}).
Example
T(B—-B) = {feL(k K]

xt +yr =1= f(xt,xr) € T(B)}
= {fi.fr e L(K*K)|

xt +yr = 1= fi(xe, x¢) + fr(xe, x¢) = 1}

v
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Back to BBA

A refinement of finiteness spaces.
Let A € LL and 7 : A an affine linear logic proof.

[7] € k(A).
We define by induction a totality candidate 7 (A) such that
[7] € T(A).
Some constructions
1A ~ (k{1A), ﬁ{x‘ | x € T(A))} .
Example
T<|B> = a?{(xtT+yfF)!\xt+yf:l}
(S =1},




@@ Totality Spaces

Totality
C. Tasson
BB A-calculus Theorem (Taylor expan5|on)
o For every f € T(!A — B), the associated an analytic function

Ty oo ¢ k(A) = k(B) satisfies

Back to BBA

x € T(A) = ¢(x) € T(B).

Example

k(1B — B) = k[X¢, X¢] x k[X, X¢],
T(B—-B) = {(P,Q)€k[X:, Xe]*|
Xt +yr = 1= P(xt,yt) + Q(x¢, yt) = 1} )




@ Back to barycentric boolean lambda-calculus

Totality

C. Tasson Def|n|t|0n

BBxcalcn We define inductively the terms of Ag by

R, S = Zm:a,- s; with ia,- =1, and
i=1 i=1

s,s;i:=x€V | Ax.s|(s)S|T|F|if s then S else R.

Totality

Back to BBA

Types
We consider only simply typed lambda-term with

> aist A T,F: 5,
if (=) then (=) else (=) : (B" = B)® = (B" = B).

Notice that term of Ag, is a term of Ag with type B" = B.
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BB A-calculus

Totality
Finiteness spaces
Totality spaces

Back to BBA

Semantics

We use the translation of the intuitionist implication into linear
logic
A= B~I!A—B.

To each typed barycentric boolean term is associated a proof of
affine linear logic.

[S] is the semantics of the proof associated to S.

Let S € Ng. IfS of type A, then [S] € T(A).




@ Soundness and partial completeness
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Totality

Finiteness spaces

Totality spaces
Back to BBA

Corollary

For every term S : B = B ~ 1B — B,
[S] € T (!B — B) which is equal to
{(P, Q) € k[Xe, X[ | + ye = 1 = P(xe, yt) + Q(xe, yt) = 1}

Reciprocally, we have already seen

Theorem

For every pair of polynomials (P, Q) € T (!B — B), there is
S € A such that [S] = (P, Q).

This is a completeness theorem for first order boolean terms
which has even been proved for "8 — B.



@ Conclusion
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BB A-calculus Comp/eteness
Totality
Finiteness spaCil o Total completeness for LL 7
Totality spaces .
Back to BBA no, it is not even complete for MALL: (B — B) — B

o Total completeness for higher order hierarchy Ag ?

@ How to complete Az to get completeness ?

Totality

Totality spaces constitute an elegant affine model of linear logic
where linear logic construction are algebraically defined and
completeness also seem to have an algebraic characterization.
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