Nominal Techniques in Isabelle/HOL*

Christian Urban' and Christine Tasson?

! Ludwig-Maximilians-University Munich (urban@mathematik.uni-muenchen.de)
? ENS Cachan Paris (tasson@dptmaths.ens-cachan.fr)

Abstract. In this paper we define an inductive set that is bijective with
the a-equated lambda-terms. Unlike de-Bruijn indices, however, our in-
ductive definition includes names and reasoning about this definition is
very similar to informal reasoning on paper. For this we provide a struc-
tural induction principle that requires to prove the lambda-case for fresh
binders only. The main technical novelty of this work is that it is compat-
ible with the axiom-of-choice (unlike earlier nominal logic work by Pitts
et al); thus we were able to implement all results in Isabelle/HOL and
use them to formalise the standard proofs for Church-Rosser and strong-
normalisation.

Keywords. Lambda-calculus, nominal logic, structural induction, theorem-
assistants.

1 Introduction

Whenever one wants to formalise proofs about terms involving binders, one faces
a problem: how to represent such terms? The “low-level” representations use
concrete names for binders (that is they represent terms as abstract syntax trees)
or use de-Bruijn indices. However, a brief look in the literature shows that both
representations make formal proofs rather strenuous in places (typically lemmas
about substitution) that are only loosely concerned with the proof at hand. Three
examples from the literature: Vanlnwegen wrote [19, p. 115]:

“Proving theorems about substitutions (and related operations such as
alpha-conversion) required far more time and HOL code than any other
variety of theorem.”

in her PhD-thesis, which describes a formalisation of SML’s subject reduction
property based on a “concrete-name” representation for SML-terms. Altenkirch
formalised in LEGO a strong normalisation proof for System-F (using a de-Bruijn
representation) and concluded [1, p. 26]:

“When doing the formalization, I discovered that the core part of the
proof. .. is fairly straightforward and only requires a good understanding
of the paper version. However, in completing the proof I observed that in
certain places I had to invest much more work than expected, e.g. proving
lemmas about substitution and weakening.”

* Published in Proc. of the 20th Int. Conf. on Automated Deduction (CADE 2005). In
volume 3632 of Lecture Notes in Computer Science. Springer-Verlag. Pages 38-53.



Hirschkoff made a similar comment in [10, p. 167] about a formalisation of the
m-calculus:

“Technical work, however, still represents the biggest part of our imple-
mentation, mainly due to the managing of de Bruijn indexes...Of our 800
proved lemmas, about 600 are concerned with operators on free names.”

The main point of this paper is to give a representation for a-equated lambda-
terms that is based on names, is inductive and comes with a structural induction
principle where the lambda-case needs to be proved for only fresh binders. In
practice this will mean that we come quite close to the informal reasoning using
Barendregt’s variable convention. Our work is based on the nominal logic work
by Pitts et al [16,6]. The main technical novelty is that our work by giving an
explicit construction for a-equated lambda-terms is compatible with the axiom of
choice. Thus we were able to implement all results in Isabelle/HOL and formalise
the simple Church-Rosser proof of Tait and Martin-Lof described in [3], and
the standard Tait-style strong normalisation proof for the simply-typed lambda-
calculus given, for example, in [7,17].

The paper is organised as follow: Sec. 2 reviews a-equivalence for lambda-
terms. Sec. 3 gives a construction of an inductive set that is bijective with the
a-equated lambda-terms and adapts some notions of the nominal logic work for
this construction. An induction principle for this set is derived in Sec. 4. Examples
of Isabelle/HOL formalisations are given in Sec. 5. Related work is mentioned in
Sec. 6, and Sec. 7 concludes.

2 Preliminaries

In order to motivate a design choice later on, we begin with a review of a-
equivalence cast in terms of the nominal logic work. The set of lambda-terms is
inductively defined by the grammar:

A tz=al| tt]| lat

where a is an atom drawn from a countable infinite set, which will in what follows
be denoted by A.

The notion of a-equivalence for A is often defined as the least congruence
of the equation Aa.t =, Ab.tla := b] involving a renaming substitution and a
side-condition, namely that b does not occur freely in ¢. In the nominal logic
work, however, atoms are manipulated not by renaming substitutions, but by
permutations—bijective mappings from atoms to atoms. While permutations
have some technical advantages, for example they preserve a-equivalence which
substitutions do not [18], their primary reason in the nominal logic work is that
one can use them to define the notion of support. This notion generalises what
is meant by the set of free atoms of an object, which is usually clear in case
the object is an abstract syntax tree, but less so if the object is a function. The
generalisation of “free atoms” to functions, however, will play a crucial réle in
our construction of the bijective set.



There are several ways for defining the operation of a permutation acting on
a lambda-term. One way [18] that can be easily implemented in Isabelle/HOL is
to represent permutations as finite lists whose elements are swappings (i.e., pairs
of atoms). We write such permutation as (a1 b1)(as b2) - - - (a,, by ); the empty list
[] stands for the identity permutation. The permutation action, written 7e(—),
can then be defined on lambda-terms as:
Jea def
e | @2 if mrea =a; me(ty ta) = (mety wety) (1)
de: .
(a1as) smea = { ap ifmea = as re(Aat) & N(wea). (1)
mea otherwise

where (ab) :: 7 is the composition of a permutation followed by the swapping
(ab). The composition of 7 followed by another permutation 7' is given by list-
concatenation, written as '@, and the inverse of a permutation is given by list
reversal, written as 7.

While the representation of permutations based on lists of swappings is con-
venient for definitions like permutation composition and the inverse of a permu-
tation, this list-representation is not unique; for example the permutation (a a)
is “equal” to the identity permutation. Therefore some means to identify “equal”

permutations is needed.

Definition 1 (Disagreement Set and Permutation Equality). The dis-
agreement set of two permutations, say m and mo, is the set of atoms on which

. . . d
the permutations disagree, that is ds(my,m2) :ef{ a|miea # mwoea }. Two permu-
tations are equal, written m ~ o, provided ds(my,m) = @.

Using the permutation action on lambda-terms, a-equivalence for A can be de-
fined in a syntax directed fashion using the relations (=)~ (—) and (=) & £v(—);
see Fig. 1. Because of the “asymmetric” rule a2y,, it might be surprising, but:

Proposition 1. = is an equivalence relation.

The proof of this proposition is omitted: it can be found in a more general setting

in [18]. (We also omit a proof showing that ~ and =, coincide). In the following,

[t]o will stand for the a-equivalence class of the lambda-term ¢, that is [¢], ef

{t'|t'~t},and A/ for the set A quotient by ~.

3 The Bijective Set

In this section, we will define a set @; inside this set we will subsequently identify
(inductively) a subset, called A,, that is in bijection with A . In order to obtain
the bijection, @ needs to be defined so that it contains elements corresponding,
roughly speaking, to a-equated atoms, applications and lambda-abstractions—
that is to [a]a, [t1t2]a and [Aa.t],. Whereas this is straightforward for atoms and
applications, the lambda-abstractions are non-trivial: for them we shall use some



t1 = s tg%SzN tx~s ~ a#b tz(ab)'s a¢fv(s)~

ama T T it ~sis: P Xat~ das Aa.t = A\b.s e
a#b agfv(ti) adfv(ts) a#b agfv(t)

— v fvapp fval fvae

agfv(b) agtv(tits) agtv(ia.t) agtv(\b.t)

Fig. 1. Inductive definitions for (=) ~ (=) and (—) ¢ fv(—).

specific “partial” functions from A to @ (by “partial” we mean functions that
return “error” for undefined values'). Thus the set @ is defined by the grammar

&: t u= er | am(a) | pr(t,t) | se(fn)

where er stands for “error”, a for atoms and fn stands for functions from A to
&.2 This grammar corresponds to the inductive datatype that one might declare
in Isabelle/HOL as:

datatype phi=er
| am "atom"
| pr "phi X phi"
| se "atom = phi"

where it is presupposed that the type atom has been declared. The constructors
am, pr and se will be used in A, for representing a-equated atoms, applications
and lambda-abstractions. Before the subset A, can be carved out from &, how-
ever, some terminology from the nominal logic work needs to be adapted. For this
we overload the notion of permutation action, that is w«(—), and define abstractly
sets that come with a notion of permutation:

Definition 2 (PSets). A set X equipped with a permutation action we(—) is
said to be a pset, if for all x € X, the permutation action satisfies the following
properties:

(i) [Joz =
(ZZ) 71'1@71'2'37:71'1'(7'(2'37)
(ZZZ) ifTF] ~ Ty then 18X = Tig*X

The informal notation = € pset will be adopted whenever it needs to be indicated
that = comes from a pset. The idea behind the permutation action, roughly
speaking, is to permute all atoms in a given pset-element. For lists, tuples and
sets the permutation action is therefore defined point-wise:

. lef def
lists: 7] = ] tuples: 7we(x1,...,%,) = (wex1,...,ToT,)
f f
me(z i t) L (mex) iz (wet)  sets: T X & {mex |z € X}
! This is one way of dealing with partial functions in Isabelle.
? Employing (on the meta-level) a lambda-calculus-like notation for writing such func-
tions, one could in this grammar just as well have written Aa.f instead of fn.



The permutation action for @ is defined over the structure as follows:

meer  Ler mwepr(t1,to) d:efpr(ﬂ'-tl,ﬂ'-tz)

meam(a) ©an(mea)  wese(fn)  Ese(am(fn (1 +a))

where a lambda-term (on the meta-level!) specifies how the permutation acts on
the function fn, namely as w<fn def Aa.me(fn (7 1ea)).

When reasoning about 4, it will save us some work, if we show that certain
sets are psets and then show properties (abstractly) for pset-elements.

Lemma 1. The following sets are psets: A, A, @, and every set of lists (similarly
tuples and sets) containing elements from psets.

Proof. By routine inductions. ad

The most important notion of a pset-element is that of its support (a set of
atoms) and derived from this the notion of freshness[6]:

Definition 3 (Support and Freshness). Given an x € pset, its support is
defined as:?

supp(s) = {a | int{b | (ab)z # #}} .

An atom a is said to be fresh for such an x, written a # x, provided a ¢ supp(x).

Note that as soon as one fixes the permutation action for elements of a set, the
notion of support is fixed as well. That means that Def. 3 defines the support for
lists, sets and tuples as long as their elements come from psets. Calculating the
support for terms in A is simple: supp(a) = {a}, supp(t; t2) = supp(t;)Usupp(t2)
and supp(Aa.t) = supp(t) U {a}. Because of the functions in se(fn), the support
for terms in @ is more subtle. However, later on, we shall see that for terms of
the subset A, there is simple structural characterisation for their support, just
like for lambda-terms.
First, some properties of support and freshness are established.

Lemma 2. For all x € pset,

(i) mesupp(z) = supp(wez), and
(i) a # mez if and only if 7 'ea # z.

Proof. (i) follows from the calculation:

mesupp(z) = 7+ {a|int{b] (ab)-x # z}}
© (realint{b] (ab)ex # z}}
= {mea|inf{neb|(ab)ex £ 2}} (+)
= {a|inf{d| (Wﬁl'a Wﬁl'b)'w # z}} .
= {a|inf{b|me(m 'ea 7 eb)ex # wez}} (+*)
= {a|int{b| (ab)-m-z # mx}} = supp(m-z) (')

* The predicate inf will stand for a set being infinite.



where (¥!) holds because the sets {b|...} and {7+b|...} have the same number of
elements, and where (x2) holds because permutations preserve (in)equalities; (x3)
holds because 7 commutes with the swapping, that is 7@(ab) ~ (7ea w-b)Qmr.
(ii): For all 7, a € supp(z) if and only if wea € wesupp(z). The property follows
then from (i) and x € pset. O

Another important property is the fact that the freshness of two atoms w.r.t. an
pset-element means that a permutation swapping those two atoms has no effect:

Lemma 3. For all x € pset, if a # = and b # x then (ab)ex = x.

Proof. The case a = b is clear by Def. 2(i,4ii). In the other case, the assump-
tion implies that both {¢|(ca)ex # z} and {c¢|(cb)sx # =z} are finite, and
therefore also their union must be finite. Hence the corresponding co-set, that
is {c¢|(ca)ex = x A (cb)ex = =z}, is infinite (recall that A is infinite). If one
picks from this co-set one element, which is from now on denoted by ¢ and as-
sumed to be different from a and b, one has (ca)sz = x and (¢b)sz = x. Thus
(ca)+(cb)e(ca)sx = x. The permutations (ca)(cb)(ca) and (ab) are equal, since

conclude with (ab)sx = . O

A further restriction on psets will filter out all psets containing elements with
an infinite support.

Definition 4 (Fs-PSet). A pset X is said to be an fs-pset if every element in
X has finite support.

Lemma 4. The following sets are fs-psets: A, A, and every set, of lists (similarly
tuples and finite sets) containing elements from fs-psets.

Proof. The support of an atom a is {a}. The support of a lambda-term ¢ is the
set of atoms occurring in ¢. The support of a list is the union of the supports of
its elements, and thus finite for fs-pset-elements (ditto tuples and finite sets). O

The set @ is not an fs-pset, because some functions from A to @ have an infi-
nite support. Similarly, some infinite sets have infinite support, even if all their
elements have finite support. On the other hand, the infinite set A has finite sup-
port: supp(A) = @& [6]. The main property of elements of fs-psets is that there is
always a fresh atom.

Lemma 5. For all x € fs-pset, there exists an atom a such that a # =z.

Proof. Since A is an infinite set and the support of z is by assumption finite,
there must be an a ¢ supp(z). O

We mentioned earlier that we are not going to use all functions from A to
& for representing a-equated lambda-abstractions, but some specific functions.*
The following definition states what properties these functions need to satisfy.

* This is in contrast to “weak” and “full” HOAS [15, 4] which use the full function
space for representing lambda-abstractions.



Definition 5 (Nominal Abstractions). An operation, written [—].(—), taking
an atom and a pset-element is said to be a nominal abstraction, if it satisfies the
following properties (where a #b):

(i) m+([a].z) = [mea].(m+2)

(ii) [a].z1 = [b].xz2 if and only if either:
a=bAx = x9, or
aZbAxz = (ab)exs Aa F# xo

The first property states that the permutation action needs to commute with
nominal abstractions. The second property ensures that nominal abstractions be-
have, roughly speaking, like lambda-abstractions. To see this reconsider the rules
~ )1 and &y, given in Fig. 1, which can be used to decide when two lambda-terms
are a-equivalent. Property (i¢) paraphrases these rules for nominal abstractions.
The similarities, however, do not end here: given a [a].z with & € fs-pset, then
freshness behaves like (=) & fv(—), as shown next;:

Lemma 6. Given a # b and x € fs-pset, then

(i) a # [b].z if and only if a # =z, and
(il) a # [a].x

Proof. (i=): Since = € fs-pset, supp([b].z) C supp(z) U {b} and therefore the
support of [a].z must be finite. Hence (a, b, x, [b].z) is finitely supported and by
Lem. 5 there exists a ¢ with (%) ¢ # (a, b, z, [b].z). Using the assumption a # [b].x
and the fact that ¢ # [b].z (from %), Lem. 3 and Def. 5(i) give [b].z = (ca)[b].z =
[b].(ca)sx. Hence by Def. 5(ii) z = (ca)+z. Now ¢ # z (from %) implies that
¢ # (ca)sx; and moving the permutation to the other side by Lem. 2(ii) gives
a # . (i<): From (%), ¢ # [b].z and therefore by Lem. 2(ii) (ac)+c # (ac).([b].2),
which implies by Def. 5(i) that a # [b].((ac)ez). From (%) ¢ # 2 holds and from
the assumption also a # z; then Lem. 3 implies that z = (ac)«z, and one can
conclude with a # [b].z.

(ii): By ¢ # = and ¢ # a (both from %) we can use (i) to infer ¢ # [a].z. Further,
from Lem. 2(ii) it holds that (ca)sc # (ca)s[a].z. This is a # [c].(ca)+z using
Def. 5(i). Since ¢ # a, ¢ # x and (ca)sz = (ca)sx, Def. 5(ii) implies that
[c].(ca)sx = [a].z. Therefore, a # [a].z. O

The functions from A to @ we identify next satisfy the nominal abstraction
properties. Let [a].t be defined as follows

[a].t def se(A\b.if a = bthent else if b # t then (ab)+t elseer). (2)

This operation takes two arguments: an a € A and a ¢t € @. To see how this oper-
ation encodes an a-equivalence class, consider the a-equivalence class [Aa.(a )],
and the corresponding $-term [a].pr(a,b) (for the moment we ignore the term
constructor se and only consider the function given by [a].pr(a,b)). The graph
of this function is as follows: the atom «a is mapped to pr(a,b) since the first if-
condition is true. For b, the first if-condition obviously fails, but also the second



one fails, because b € supp(pr(a,b)); therefore b is mapped to er. For all other
atoms ¢, we have a # ¢ and ¢ # pr(a,b); so the ¢’s are mapped by the function
to (ac¢)spr(a,b), which is just pr(c,b). Clearly, the function returns er whenever
the corresponding lambda-term is not in the a-equivalence class—in this exam-
ple Ab.(b b) & [Aa.(a b)]s; in all other cases, however, it returns an appropriately
“renamed” version of pr(a,b).

Lemma 7. The operation [—].(—) given for @ in (2) is a nominal abstraction.

Proof. Def. 5(i) follows from the calculation:

melal.t
def

= mese(A\b.if a = b thent else if b # t then (ab)s+t else er)

ef se(Ab.meif a = 7 lebthent else if 7 '«b # ¢ then (a 7 l+b)+t else er)

= se(Ab.if a = 7 '-bthen wet else if b # 7w+t then w+(a 7 L)+t else er) (x)
= se(Ab.if a = m '+b then w+t else if b # 7+t then (wa b)+7+t else er)
= se(\b.if mea = b then 7et else if b # mwe+t then (mea b)emw+t else er)

def

= [mea].(met)

where we use in (x) the fact that w+if...then...else... = if...then we...else 7e...
and Lem 2(ii). In case a = b, Def. 5(i7) is by a simple calculation using exten-
sionality of functions. In case a # b and Def. 5(ii =), the following formula can
be derived from the assumption by extensionality:

Ve. if a = c then t) else if ¢ # t; then (ac)+t; else er =
if b= cthent, else if ¢ # t, then (bc)«t, else er

Instantiating this formula once with a and once with b yields the two equations

ty = if a # t, then (ba)s+ty else er
to = if b # ¢ then (ab)+t; else er

Next, one distinguishes two cases where a # to and —a # t2, respectively. In the
first case, t1 = (ba)ste, which by Lem. 1 and Def. 2(iii) is equal to (ab)«ts; and
obviously a # to by assumption. In the second case t; = er. This substituted
into the second equation gives t; = if b # er then (ab)eer else er. Since
supp(er) = &, ty = (ab)+er = er. Now there is a contradiction with the assump-
tion —a # to, because a # er. Def. 5(ii <) for a # b is by extensionality and a
case-analysis. ad

Note that, in general, one cannot decide whether two functions from A to @ are
equal; however Def. 5(i7) provides means to decide whether [a].t; = [b].t> holds:
one just has to consider whether a = b and then apply the appropriate property
in Def. 5(ii) just like deciding the a-equivalence of two lambda-terms using

()= ().



Now everything is in place for defining the subset A,. It is defined inductively
by the rules:
a €A ty € Ay 1o € Aqy ac€hA teA,
am(a) € A, pr(ti,t2) € Ay [a].t € Ao

using in the third inference rule the operation defined in (2). For A, we have:

Lemma 8. A, is:
(i) an fs-pset, and
(ii) closed under permutations, that is if z € A, then wex € A,.

Proof. (i): The pset-properties of @ carry over to A,. The fs-pset property fol-
lows by a routine induction on the definition of A, using the fact derived from
Lem. 6(i,ii) that for « € fs-pset, supp([a].z) = supp(z) — {a}. (ii) Routine induc-
tion over the definition of A,. a

Taking Lem. 8(i) and Lem. 6 together gives us a simple characterisation of the
support of elements in A,: supp(am(a)) = {a}, supp(pr(ti,t2)) = supp(t1) U
supp(t2) and supp([a].t) = supp(t) — {a}. In other words it coincides with what
one usually means by the free variables of a lambda-term.

Next, one of the main points of this paper: there is a bijection between A
and A,. This is shown by using the following mapping from A to A,:

gla) Eam(a) gt 1) pr(a(t),q(t))  g(hat) Zlalq(t)

and the following lemma:

Lemma 9. ¢ &ty if and only if ¢(¢1) = ¢(t2).

Proof. By routine induction over definition of A,. O
Theorem 1. There is a bijection between A, and A,.

Proof. The mapping g needs to be lifted to a-equivalence classes (see [14]). For
this define ¢'([t]n) as follows: apply ¢ to every element of the set [t], and build
the union of the results. By Lem. 9 this must yield a singleton set. The result of
q'([t]o) is then the singleton. Surjectivity of ¢’ is shown by a routine induction
over the definition of A,. Injectivity of ¢' follows from Lem. 9 since [t1]o = [t2]a
for all t1 & ts. O

4 Structural Induction Principle

The definition of A, provides an induction principle for free. However, this in-
duction principle is not very convenient in practice. Consider Fig. 2 showing a
typical informal proof involving lambda-terms—it is Barendregt’s proof of the
substitution lemma taken from [3]. This informal proof considers in the lambda-
case ouly binders z that have suitable properties (namely being fresh for z, y, N



Substitution Lemma: If x # y and =z ¢ FV (L), then
Mz := N]ly := L] = M|y := L][z := N[y := L]].

Proof: By induction on the structure of M.
Case 1: M is a variable.

Case 1.1. M = x. Then both sides equal N[y := L] since = # y.

Case 1.2. M = y. Then both sides equal L, for x ¢ FV (L) implies

Ljz:=..]=L.

Case 1.3. M = z # z,y. Then both sides equal z.
Case 2: M = Az.M,;. By the variable convention we may assume that z #Z z,y and
z is not free in N, L. Then by induction hypothesis

(Az.My)[z := N[y := L] = Az.(Mi[z := N]|y := L])
Xz.(Mily = L]z == N[y := L]])
(Az.M1)[y := L][z := N[y := L]].
Case 3: M = M, M,. The statement follows again from the induction hypothesis.
O

Fig. 2. The informal proof of the substitution lemma copied from [3]. In the lambda-
case, the variable convention allows Barendregt to move the substitutions under the
binder, to apply the induction hypothesis and then to pull out the substitutions.

and L). If we would prove the substitution lemma by induction over the definition
of A, then we would need to show the lambda-case for all z, not just the ones
being suitably fresh. This would mean we have to rename binders and establish
a number of auxiliary lemmas concerning such renamings. In this section we will
derive an induction principle which allows a similar convenient reasoning as in
Barendregt’s informal proof.

For this we only consider induction hypotheses of the form P t x, where
P is the property to be proved; P depends on a variable ¢ € A, (over which
the induction is done), and a variable z standing for the “other” variables or
context of the induction. Since z is allowed to be a tuple, several variables can be
encoded. In case of the substitution lemma in Fig. 2 the notation P ¢ x should be
understood as follows: the induction variable ¢ is M, the context z is the tuple

(z,y, N, L) and the induction hypothesis P is

AM. XNz,y,N,L). M[z:= N]ly:= L] = M|y := L][z := N[y := L]]

where we use Isabelle’s convenient tuple-notation for the second lambda-abstrac-
tion [11]. So by writing P ¢ x we just make explicit all the variables involved in
the induction.

From the inductive definition of A, we can derive a structural induction prin-
ciple that requires to prove the lambda-case for binders that are fresh for the
context = this is what the variable convention assumes.



Lemma 10 (Induction Principle). Given an induction hypothesis P ¢ x with
t € A, and x € fs-pset, then proving the following:

e Vx a. P am(a) z
e Vritite. Pty NPty :>Ppr(t1,t2)a:
eVia.a#x = (Vi.Ptx = Pla].tx)

gives Vi x. Pt x.

Proof. By induction over the definition of A,. We need to strengthen the in-
duction hypothesis to V¢t © x. P (wet) x, that means considering ¢ under all
permutations 7. Only the case for terms of the form [a].t will be explained. We
need to show that P (we[a].t) x, where me[a].t = [wea].(wt) by Def. 5(i). By IH,
(') Yz z. P (w+t) x holds. Since x,7+t,m+a € fs-pset holds, one can derive by
Lem. 5 that there is a ¢ such that (¥2) ¢ # (2, 7et,mea). From ¢ # 2 and the
assumption, one can further derive (Vt. Pt x = P [¢].t z). Given (¥!) we have
that P ((¢ wea)::7+t) x holds and thus also P ([¢].((¢ m+a)::7+t)) z. Because
of (¥?) ¢ # mea and ¢ # 7+t, and by Def. 5(ii) we have that [c].((¢c mea)umet =
[rea].(mwet). Therefore we can conclude with P (we[a].t) x. O

With this we have achieved what we set out in the introduction: we have a
representation for a-equivalent lambda-terms based on names (for example [Aa.t],
is represented by [a].t) and we have an induction principle where the lambda-case
needs to be proved for binders that are fresh w.r.t. the variables in the context
of the induction, i.e., we can reason as if we had employed a variable convention.

5 Examples

It is reasonably straightforward to implement the results from Sec. 3 and 4 in
Isabelle/HOL: the set @ is an inductive datatype, the pset and fs-pset properties
can be formulated as axiomatic type-classes [20], and the subset A, can be defined
using the Isabelle’s typedef-mechanism. This section focuses on how reasoning
over A, pans out in practice.

The first obstacle is that so far Isabelle’s datatype package is not general
enough to allow a direct definition of functions over A,: although A, contains
only terms of the form am(a), pr(ti,t2) and [a].t, pattern-matching in Isabelle
requires the injectivity of term-constructors. But clearly, [a].t is not injective.
Fortunately, one can work around this obstacle by, roughly speaking, defining
functions as inductive relations and then use the definite description operator
THE of Isabelle to turn the relations into functions.

We give an example: capture-avoiding substitution can be defined as a four-
place relation (the first argument contains the term into which something is being
substituted, the second the variable that is substituted for, the third the term
that is substituted, and the last contains the result of the substitution):



consts Subst :: "(A, x Ax A, x A,) set"
inductive Subst
intros
s1: "(am(a),a,t’,t’)€ESubst"
s2: "a#b = (am(b),a,t’,am(b))ESubst"
s3: "[(s1,a,t’,s1’)ESubst; (s2,a,t’,sy’)€ESubst]
— (pr(si,ss),a,t’,pr(s;’,sy’))ESubst"
s4: "[b#(a,t’);(s,a,t’,s’)ESubst] = ([bl.s,a,t’,[b].s’)ESubst"

While on first sight this relation looks as if it defined a non-total function, one
should be careful! Clearly, the lambda-case (i.e. ([b].s,a,t’,[b].s’) € Subst)
holds only under the precondition b# (a,s)—roughly meaning that a # b and
b cannot occur freely in s. However, Subst does define a total function, because
Subst is defined over a-equivalent lambda-terms (more precisely A,), not over
lambda-terms. We can indeed show “totality”:

Lemma 11. For all tq, a, t, Jts. (t,,a,t,, t;) € Subst .

Proof. The proof in Isabelle/HOL uses the induction principle derived in Thm. 10.
It is as follows:

proof (nominal_induct tp)
case (1 b) (* variable case *)
show "dtz. (am(b),a,ts,t3)ESubst" by (cases "b=a") (force+)
next
case (2 s; s9) (* application case *)
thus "dt3z. (pr(si,ss),a,ts,t3)ESubst" by force
next
case (3 b s) (* lambda case *)
thus "dJt3. ([bl.s,a,ts,t3)ESubst" by force
qed

The induction method nominal_induct brings the induction hypothesis automat-
ically into the form
(At1 A(a, t2). Jt3.(t1,a,to,t3) € Subst) t; (a,to)
N~ N——

~~

P t T

by collecting all free variables in the goal, and then it applies Thm. 10. This
results in three cases to be proved variable case, application case and lambda-
case. The requirement that the context (a,t2) is a fs-pset-element is enforced by
using axiomatic type-classes and relying on Isabelle’s type-system. Note that in
the lambda-case it is important to know that the binder b is fresh for a and t..
The proof obligation in this case is:

b # (a,ty) A Jts.(s,a, ty, t3) implies Itz.([b].s,a,t,,t3)

which can be easily be shown by rule s4. As a result, the only case in which we
really need to manually “interfere” is in the variable case where we have to give
Isabelle the hint to distinguish the cases b = a and b # a. O



Together with a uniqueness-lemma (whose proof we omit) asserting that
Vsis2.(t1,a,te,81) € Subst A (t1,a,ts,s2) € Subst = s1 = s9 (3)
one can prove the stronger totality-property, namely for all t;, a, to:
Alts. (t,,a,ty,t3) € Subst . (4)

Having this at our disposal, we can use Isabelle’s definite description operator
THE and turn capture-avoiding substitution into a function; we write this func-
tion as (—)[(—) := (—)], and establish the equations:

am(a)la:=t] =t

am(b)[a := t] = am(b) provided a # b (5)
pr(si,sq)[a := t] = pr(si[a := t], s2[a := t])

([b].s)[a:=t] = [b].(s[a :=t]) provided b # (a, t)

These equations can be supplied to Isabelle’s simplifier and one can reason about
substitution “just like on paper”. For this we give in Fig. 3 one simple example
as evidence—giving the whole formalised Church-Rosser proof from [3, p. 60-62]
would be beyond the space constraints of this paper. The complete formalisa-
tions of all the results, the Church-Rosser and strong normalisation proof is at
http://www.mathematik.uni-muenchen.de/~urban/nominal/ .

6 Related Work

There are many approaches to formal treatments of binders; this section describes
the ones from which we have drawn inspiration.

Our work uses many ideas from the nominal logic work by Pitts et al [16, 6].
The main difference is that by constructing, so to say, an explicit model of the
a-equated lambda-terms based on functions, we have no problem with the axiom-
of-choice. This is important. For consider the alternative: if the axiom-of-choice
causes inconsistencies, then one cannot build a framework for binding on top of
Isabelle/HOL with its rich reasoning infrastructure. One would have to inter-
face on a lower level and has to redo the effort that has been spend to develop
Isabelle/HOL. This was attempted in [5], but the attempt was later abandoned.

Closely related to our work is [9] by Gordon and Melham; it has been applied
and further developed by Norrish [13]. This work states five axioms characterising
a-equivalence and then shows that a model based on de-Bruijn indices satisfies the
axioms. This is somewhat similar to our approach where we construct explicitly
the set A, . In [9] they give an induction principle that requires in the lambda-case
to prove (using their notation)

Yzt (Yv. P(tfz := VARv])) = P (LAM =z t)

That means they have to prove P(LAM =z t) for a variable z for which nothing
can be assumed; explicit a-renamings are then necessary in order to get the



lemma substitution_lemma:
assumes al: "x#y"
and a2: "x#L"
shows "M[x:=N][y:=L] = M[y:=L][x:=N[y:=L]1]"
proof (nominal_induct M)
case (1 z) (x case 1: variables *)
have "z=x V (z#x A z=y) V (z#x A z#y)" by force
thus "am(z) [x:=N] [y:=L] = am(z) [y:=L] [x:=N[y:=L]1"
using al a2 forget by force
next
case (2 z M;) (* case 2: lambdas *)
assume ih: "M;[x:=N][y:=L] = M;[y:=L][x:=N[y:=L]1]"
assume f1: "z # (L,N,x,y)"
from f1 fresh factl have f2: "z #N[y:=L]" by simp
show "([z].M;) [x:=N][y:=L]1=([z].M;) [y:=][x:=N[y:=L]]1" (is "?LHS=7RHS")
proof -
have "?LHS = [z].(M;[x:=N][y:=L])" using f1 by simp
also have "...= [z].(M; [y:=L][x:=N[y:=L]1]1)" using ih by simp
"..o.= ([z]. @ [y:=L]1)) [x:=N[y:=L]]" using f1 £2 by simp

also have
also have ..= 7RHS" using f1 by simp
finally show "?7LHS = 7RHS" by simp
qed
next
case (3 My My) (* case 3: applications *)
thus "pr(M;,Mp) [x:=N] [y:=L]=pr (M; ,M») [y:=L] [x:=N[y:=L]]1" by simp
qed

Fig. 3. An Isabelle proof using the Isar language for the substitution lemma shown in
Fig. 2. It uses the following auxiliary lemmas: forget which states that x # L implies
L[x:=T]=L, needed in the variable case. This case proceeds by stating the three subcases
to be considered and then proving them automatically using the assumptions al and a2.
The lemma fresh_fact1 in the lambda-case shows from z # (L,N,x,y) that z # N[x:=L]
holds. This lemma is not explicitly mentioned in Barendregt’s informal proof, but it is
necessary to pull out the substitution from under the binder z. This case proceeds as
follows: the substitutions on left-hand side of the equation can be moved under the
binder z; then one can apply the induction hypothesis; after this one can pull out the
second substitution using z # N[y:=L] and finally move out the first substitution using
z# (L,N,x,y). This gives the right-hand side of the equation.



proof through. This inconvenience has been alleviated by the version of structural
induction given in [8] and [12], which is as follows

IX.FINITEXA(NVzt. 2 g X ANPt= P (LAM x t))

For this principle one has to provide a finite set X and then has to show the
lambda-case for all binders not in this set. This is very similar to our induction
principle, but we claim that our version based on freshness fits better with in-
formal practise and can make use of the infrastructure of Isabelle (namely the
axiomatic type-classes enforce the finite-support property).

Like our A,, HOAS uses functions to encode lambda-abstractions; it comes in
two flavours: weak HOAS [4] and full HOAS [15]. The advantage of full HOAS over
our work is that notions such as capture-avoiding substitution come for free. We,
on the other hand, load the work of such definitions onto the user. The advantage
of our work is that we have no difficulties with notions such as simultaneous-
substitution (a crucial notion in the usual strong normalisation proof), which in
full HOAS seem rather difficult to encode. Another advantage we see is that by
inductively defining A, one has induction for “free”, whereas induction requires
considerable effort in full HOAS. The main difference of our work with weak
HOAS is that we use some specific functions to represent lambda-abstractions;
in contrast, weak HOAS uses the full function space. This causes problems known
by the term “exotic terms”—essentially junk in the model.

7 Conclusion

The paper [2], which sets out some challenges for automated proof assistants,
claims that theorem proving technologies have almost reached the threshold where
they can be used by the masses for formal reasoning about programming lan-
guages. We hope to have pushed with this paper the boundary of the state-of-
the-art in formal reasoning closer to this threshold. We showed all our results
for the lambda-calculus. But the lambda-calculus is only one example. We en-
visage no problems generalising our results to other term-calculi. In fact, there
is already work by Bengtson adapting our results to the m-calculus. We also do
not envisage problems with providing a general framework for reasoning about
binders based on our results. The real (implementation) challenge is to integrate
these results into Isabelle’s datatype package so that the user does not see any of
the tedious details through which we had to go. For example one would like that
the subset construction from a bigger set is done completely behind the scenes.
Deriving an induction principle should also be done automatically. Ideally, a user
just defines an inductive datatype and indicates where binders are—the rest of
the infrastructure should be provided by the theorem prover. This is future work.

Acknowledgements: The first author is very grateful to Andrew Pitts and
Michael Norrish for the many discussions with them on the subject of the paper.
We thank James Cheney, Aaron Bohannon, Daniel Wang and one anonymous
referee for their suggestions. The first author’s interest in this work was sparked



by an email-discussion with Frank Pfenning and by a question from Neil Ghani
at the spring school of Midland Graduate School. The Alexander-von-Humboldt
Foundation funded the first author.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Altenkirch. A Formalization of the Strong Normalisation Proof for System F in
LEGO. In Proc. of TLCA, volume 664 of LNCS, pages 13 28, 1993.

B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized Metatheory
for the Masses: The PoplMark Challenge. accepted at tphol 05.

H. Barendregt. The Lambda Calculus: Its Syntaz and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1981.

. J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-Order Abstract Syntax in Coq.

In Proc. of TLCA, volume 902 of LNCS, pages 124-138, 1995.
M. J. Gabbay. A Theory of Inductive Definitions With a-equivalence. PhD thesis,
University of Cambridge, 2000.

. M. J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with Variable

Binding. Formal Aspects of Computing, 13:341 363, 2001.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

A.D. Gordon. A Mechanisation of Name-Carrying Syntax up to Alpha-Conversion.
In Proc. of Higher-order logic theorem proving and its applications, volume 780 of
LNCS, pages 414-426, 1993.

A. D. Gordon and T. Melham. Five Axioms of Alpha-Conversion. In Proc. of
TPHOL, volume 1125 of LNCS, pages 173-190, 1996.

D. Hirschkoff. A Full Formalisation of w-Calculus Theory in the Calculus of Con-
structions. In Proc. of TPHOL, volume 1275 of LNCS, pages 153 169, 1997.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

M. Norrish. Mechanising A-calculus using a Classical First Order Theory of Terms
with Permutations, forthcoming.

M. Norrish. Recursive Function Definition for Types with Binders. In Proc. of
TPHOL, volume 3223 of LNCS, pages 241 256, 2004.

L. Paulson. Defining Functions on Equivalence Classes. To appear in ACM Trans-
actions on Computational Logic.

F. Pfenning and C. Elliott. Higher-Order Abstract Syntax. In Proc. of the ACM
SIGPLAN Conference PLDI, pages 199-208. ACM Press, 1989.

A. M. Pitts. Nominal Logic, A First Order Theory of Names and Binding. Infor-
mation and Computation, 186:165 193, 2003.

A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2000.

C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal Unification. Theoretical Com-
puter Science, 323(1-2):473-497, 2004.

M. Vanlnwegen. The Machine-Assisted Proof of Programming Language Properties.
PhD thesis, University of Pennsylvania, 1996. Available as MS-CIS-96-31.

M. Wenzel. Using Aziomatic Type Classes in Isabelle. Manual in the Isabelle
distribution.



