
Nominal Tehniques in Isabelle/HOL?Christian Urban1 and Christine Tasson21 Ludwig-Maximilians-University Munih (urban�mathematik.uni-muenhen.de)2 ENS Cahan Paris (tasson�dptmaths.ens-ahan.fr)Abstrat. In this paper we de�ne an indutive set that is bijetive withthe �-equated lambda-terms. Unlike de-Bruijn indies, however, our in-dutive de�nition inludes names and reasoning about this de�nition isvery similar to informal reasoning on paper. For this we provide a stru-tural indution priniple that requires to prove the lambda-ase for freshbinders only. The main tehnial novelty of this work is that it is ompat-ible with the axiom-of-hoie (unlike earlier nominal logi work by Pittset al); thus we were able to implement all results in Isabelle/HOL anduse them to formalise the standard proofs for Churh-Rosser and strong-normalisation.Keywords. Lambda-alulus, nominal logi, strutural indution, theorem-assistants.1 IntrodutionWhenever one wants to formalise proofs about terms involving binders, one faesa problem: how to represent suh terms? The \low-level" representations useonrete names for binders (that is they represent terms as abstrat syntax trees)or use de-Bruijn indies. However, a brief look in the literature shows that bothrepresentations make formal proofs rather strenuous in plaes (typially lemmasabout substitution) that are only loosely onerned with the proof at hand. Threeexamples from the literature: VanInwegen wrote [19, p. 115℄:\Proving theorems about substitutions (and related operations suh asalpha-onversion) required far more time and HOL ode than any othervariety of theorem."in her PhD-thesis, whih desribes a formalisation of SML's subjet redutionproperty based on a \onrete-name" representation for SML-terms. Altenkirhformalised in LEGO a strong normalisation proof for System-F (using a de-Bruijnrepresentation) and onluded [1, p. 26℄:\When doing the formalization, I disovered that the ore part of theproof. . . is fairly straightforward and only requires a good understandingof the paper version. However, in ompleting the proof I observed that inertain plaes I had to invest muh more work than expeted, e.g. provinglemmas about substitution and weakening."? Published in Pro. of the 20th Int. Conf. on Automated Dedution (CADE 2005). Involume 3632 of Leture Notes in Computer Siene. Springer-Verlag. Pages 38-53.

Hirshko� made a similar omment in [10, p. 167℄ about a formalisation of the�-alulus:\Tehnial work, however, still represents the biggest part of our imple-mentation, mainly due to the managing of de Bruijn indexes...Of our 800proved lemmas, about 600 are onerned with operators on free names."The main point of this paper is to give a representation for �-equated lambda-terms that is based on names, is indutive and omes with a strutural indutionpriniple where the lambda-ase needs to be proved for only fresh binders. Inpratie this will mean that we ome quite lose to the informal reasoning usingBarendregt's variable onvention. Our work is based on the nominal logi workby Pitts et al [16, 6℄. The main tehnial novelty is that our work by giving anexpliit onstrution for �-equated lambda-terms is ompatible with the axiom ofhoie. Thus we were able to implement all results in Isabelle/HOL and formalisethe simple Churh-Rosser proof of Tait and Martin-L�of desribed in [3℄, andthe standard Tait-style strong normalisation proof for the simply-typed lambda-alulus given, for example, in [7, 17℄.The paper is organised as follow: Se. 2 reviews �-equivalene for lambda-terms. Se. 3 gives a onstrution of an indutive set that is bijetive with the�-equated lambda-terms and adapts some notions of the nominal logi work forthis onstrution. An indution priniple for this set is derived in Se. 4. Examplesof Isabelle/HOL formalisations are given in Se. 5. Related work is mentioned inSe. 6, and Se. 7 onludes.2 PreliminariesIn order to motivate a design hoie later on, we begin with a review of �-equivalene ast in terms of the nominal logi work. The set of lambda-terms isindutively de�ned by the grammar:� : t ::= a j t t j �a:twhere a is an atom drawn from a ountable in�nite set, whih will in what followsbe denoted by A .The notion of �-equivalene for � is often de�ned as the least ongrueneof the equation �a:t =� �b:t[a := b℄ involving a renaming substitution and aside-ondition, namely that b does not our freely in t. In the nominal logiwork, however, atoms are manipulated not by renaming substitutions, but bypermutations|bijetive mappings from atoms to atoms. While permutationshave some tehnial advantages, for example they preserve �-equivalene whihsubstitutions do not [18℄, their primary reason in the nominal logi work is thatone an use them to de�ne the notion of support. This notion generalises whatis meant by the set of free atoms of an objet, whih is usually lear in asethe objet is an abstrat syntax tree, but less so if the objet is a funtion. Thegeneralisation of \free atoms" to funtions, however, will play a ruial rôle inour onstrution of the bijetive set.

There are several ways for de�ning the operation of a permutation ating ona lambda-term. One way [18℄ that an be easily implemented in Isabelle/HOL isto represent permutations as �nite lists whose elements are swappings (i.e., pairsof atoms). We write suh permutation as (a1 b1)(a2 b2) � � � (an bn); the empty list[℄ stands for the identity permutation. The permutation ation, written ��(�),an then be de�ned on lambda-terms as:[℄�a def= a(a1 a2) :: ��a def= 8<:a2 if ��a = a1a1 if ��a = a2��a otherwise ��(t1 t2) def= (��t1 ��t2)��(�a:t) def= �(��a):(��t) (1)where (a b) :: � is the omposition of a permutation followed by the swapping(a b). The omposition of � followed by another permutation �0 is given by list-onatenation, written as �0��, and the inverse of a permutation is given by listreversal, written as ��1.While the representation of permutations based on lists of swappings is on-venient for de�nitions like permutation omposition and the inverse of a permu-tation, this list-representation is not unique; for example the permutation (a a)is \equal" to the identity permutation. Therefore some means to identify \equal"permutations is needed.De�nition 1 (Disagreement Set and Permutation Equality). The dis-agreement set of two permutations, say �1 and �2, is the set of atoms on whihthe permutations disagree, that is ds(�1; �2) def= f a j �1�a 6= �2�a g. Two permu-tations are equal, written �1 � �2, provided ds(�1; �2) = ?.Using the permutation ation on lambda-terms, �-equivalene for � an be de-�ned in a syntax direted fashion using the relations (�)�(�) and (�) 62 fv(�);see Fig. 1. Beause of the \asymmetri" rule ��2, it might be surprising, but:Proposition 1. � is an equivalene relation.The proof of this proposition is omitted: it an be found in a more general settingin [18℄. (We also omit a proof showing that � and =� oinide). In the following,[t℄� will stand for the �-equivalene lass of the lambda-term t, that is [t℄� def=f t0 j t0 � t g, and �=� for the set � quotient by �.3 The Bijetive SetIn this setion, we will de�ne a set �; inside this set we will subsequently identify(indutively) a subset, alled ��, that is in bijetion with �=�. In order to obtainthe bijetion, � needs to be de�ned so that it ontains elements orresponding,roughly speaking, to �-equated atoms, appliations and lambda-abstrations|that is to [a℄�, [t1t2℄� and [�a:t℄�. Whereas this is straightforward for atoms andappliations, the lambda-abstrations are non-trivial: for them we shall use some

a � a�var t1 � s1 t2 � s2t1 t2 � s1 s2 �app t � s�a:t � �a:s��1 a 6= b t � (a b)�s a 62fv(s)�a:t � �b:s ��2a 6= ba 62fv(b) fvvar a 62fv(t1) a 62fv(t2)a 62fv(t1 t2) fvapp a 62fv(�a:t) fv�1 a 6= b a 62fv(t)a 62fv(�b:t) fv�2Fig. 1. Indutive de�nitions for (�) � (�) and (�) 62fv(�).spei� \partial" funtions from A to � (by \partial" we mean funtions thatreturn \error" for unde�ned values1). Thus the set � is de�ned by the grammar� : t ::= er j am(a) j pr(t; t) j se(fn)where er stands for \error", a for atoms and fn stands for funtions from A to�.2 This grammar orresponds to the indutive datatype that one might delarein Isabelle/HOL as: datatype phi = erj am "atom"j pr "phi� phi"j se "atom) phi"where it is presupposed that the type atom has been delared. The onstrutorsam, pr and se will be used in �� for representing �-equated atoms, appliationsand lambda-abstrations. Before the subset �� an be arved out from �, how-ever, some terminology from the nominal logi work needs to be adapted. For thiswe overload the notion of permutation ation, that is ��(�), and de�ne abstratlysets that ome with a notion of permutation:De�nition 2 (PSets). A set X equipped with a permutation ation ��(�) issaid to be a pset, if for all x 2 X, the permutation ation satis�es the followingproperties:(i) [℄�x = x(ii) �1��2�x = �1�(�2�x)(iii) if �1 � �2 then �1�x = �2�xThe informal notation x 2 pset will be adopted whenever it needs to be indiatedthat x omes from a pset. The idea behind the permutation ation, roughlyspeaking, is to permute all atoms in a given pset-element. For lists, tuples andsets the permutation ation is therefore de�ned point-wise:lists: ��[℄ def= [℄��(x :: t) def= (��x) :: (��t) tuples: ��(x1; : : : ; xn) def= (��x1; : : : ; ��xn)sets: ��X def= f��x jx 2 Xg1 This is one way of dealing with partial funtions in Isabelle.2 Employing (on the meta-level) a lambda-alulus-like notation for writing suh fun-tions, one ould in this grammar just as well have written �a:f instead of fn.

The permutation ation for � is de�ned over the struture as follows:��er def= er��am(a) def= am(��a) ��pr(t1; t2) def= pr(��t1; ��t2)��se(fn) def= se(�a:��(fn (��1�a))where a lambda-term (on the meta-level !) spei�es how the permutation ats onthe funtion fn , namely as ��fn def= �a:��(fn (��1�a)).When reasoning about �� it will save us some work, if we show that ertainsets are psets and then show properties (abstratly) for pset-elements.Lemma 1. The following sets are psets: A , �, �, and every set of lists (similarlytuples and sets) ontaining elements from psets.Proof. By routine indutions. utThe most important notion of a pset-element is that of its support (a set ofatoms) and derived from this the notion of freshness [6℄:De�nition 3 (Support and Freshness). Given an x 2 pset, its support isde�ned as:3 supp(x) def= fa j inffb j (a b)�x 6= xgg :An atom a is said to be fresh for suh an x, written a # x, provided a 62 supp(x).Note that as soon as one �xes the permutation ation for elements of a set, thenotion of support is �xed as well. That means that Def. 3 de�nes the support forlists, sets and tuples as long as their elements ome from psets. Calulating thesupport for terms in � is simple: supp(a) = fag, supp(t1 t2) = supp(t1)[supp(t2)and supp(�a:t) = supp(t) [fag. Beause of the funtions in se(fn), the supportfor terms in � is more subtle. However, later on, we shall see that for terms ofthe subset �� there is simple strutural haraterisation for their support, justlike for lambda-terms.First, some properties of support and freshness are established.Lemma 2. For all x 2 pset,(i) ��supp(x) = supp(��x), and(ii) a # ��x if and only if ��1�a # x.Proof. (i) follows from the alulation:��supp(x) def= ��fa j inffb j (a b)�x 6= xggdef= f��a j inffb j (a b)�x 6= xgg= f��a j inff��b j (a b)�x 6= xgg (�1)= fa j inffb j (��1�a ��1�b)�x 6= xgg= fa j inffb j��(��1�a ��1�b)�x 6= ��xgg (�2)= fa j inffb j (a b)���x 6= ��xgg def= supp(��x) (�3)3 The prediate inf will stand for a set being in�nite.

where (�1) holds beause the sets fbj : : :g and f��bj : : :g have the same number ofelements, and where (�2) holds beause permutations preserve (in)equalities; (�3)holds beause � ommutes with the swapping, that is ��(a b) � (��a ��b)��.(ii): For all �, a 2 supp(x) if and only if ��a 2 ��supp(x). The property followsthen from (i) and x 2 pset. utAnother important property is the fat that the freshness of two atoms w.r.t. anpset-element means that a permutation swapping those two atoms has no e�et:Lemma 3. For all x 2 pset, if a # x and b # x then (a b)�x = x.Proof. The ase a = b is lear by Def. 2(i; iii). In the other ase, the assump-tion implies that both f j (a)�x 6= xg and f j (b)�x 6= xg are �nite, andtherefore also their union must be �nite. Hene the orresponding o-set, thatis f j (a)�x = x ^ (b)�x = xg, is in�nite (reall that A is in�nite). If onepiks from this o-set one element, whih is from now on denoted by and as-sumed to be di�erent from a and b, one has (a)�x = x and (b)�x = x. Thus(a)�(b)�(a)�x = x. The permutations (a)(b)(a) and (a b) are equal, sinethey have an empty disagreement set. Therefore, by using Def. 2(ii; iii), one anonlude with (a b)�x = x. utA further restrition on psets will �lter out all psets ontaining elements withan in�nite support.De�nition 4 (Fs-PSet). A pset X is said to be an fs-pset if every element inX has �nite support.Lemma 4. The following sets are fs-psets: A , �, and every set of lists (similarlytuples and �nite sets) ontaining elements from fs-psets.Proof. The support of an atom a is fag. The support of a lambda-term t is theset of atoms ourring in t. The support of a list is the union of the supports ofits elements, and thus �nite for fs-pset-elements (ditto tuples and �nite sets). utThe set � is not an fs-pset, beause some funtions from A to � have an in�-nite support. Similarly, some in�nite sets have in�nite support, even if all theirelements have �nite support. On the other hand, the in�nite set A has �nite sup-port: supp(A) = ? [6℄. The main property of elements of fs-psets is that there isalways a fresh atom.Lemma 5. For all x 2 fs-pset, there exists an atom a suh that a # x.Proof. Sine A is an in�nite set and the support of x is by assumption �nite,there must be an a 62 supp(x). utWe mentioned earlier that we are not going to use all funtions from A to� for representing �-equated lambda-abstrations, but some spei� funtions.4The following de�nition states what properties these funtions need to satisfy.4 This is in ontrast to \weak" and \full" HOAS [15, 4℄ whih use the full funtionspae for representing lambda-abstrations.

De�nition 5 (Nominal Abstrations). An operation, written [�℄:(�), takingan atom and a pset-element is said to be a nominal abstration, if it satis�es thefollowing properties (where a 6= b):(i) ��([a℄:x) = [��a℄:(��x)(ii) [a℄:x1 = [b℄:x2 if and only if either:a = b ^ x1 = x2, ora 6= b ^ x1 = (a b)�x2 ^ a # x2The �rst property states that the permutation ation needs to ommute withnominal abstrations. The seond property ensures that nominal abstrations be-have, roughly speaking, like lambda-abstrations. To see this reonsider the rules��1 and ��2 given in Fig. 1, whih an be used to deide when two lambda-termsare �-equivalent. Property (ii) paraphrases these rules for nominal abstrations.The similarities, however, do not end here: given a [a℄:x with x 2 fs-pset, thenfreshness behaves like (�) 62 fv(�), as shown next:Lemma 6. Given a 6= b and x 2 fs-pset, then(i) a # [b℄:x if and only if a # x, and(ii) a # [a℄:xProof. (i)): Sine x 2 fs-pset, supp([b℄:x) � supp(x) [fbg and therefore thesupport of [a℄:x must be �nite. Hene (a; b; x; [b℄:x) is �nitely supported and byLem. 5 there exists a with (�) # (a; b; x; [b℄:x). Using the assumption a # [b℄:xand the fat that # [b℄:x (from �), Lem. 3 and Def. 5(i) give [b℄:x = (a)[b℄:x =[b℄:(a)�x. Hene by Def. 5(ii) x = (a)�x. Now # x (from �) implies that # (a)�x; and moving the permutation to the other side by Lem. 2(ii) givesa # x. (i(): From (�), # [b℄:x and therefore by Lem. 2(ii) (a)� # (a):([b℄:x),whih implies by Def. 5(i) that a # [b℄:((a)�x). From (�) # x holds and fromthe assumption also a # x; then Lem. 3 implies that x = (a)�x, and one anonlude with a # [b℄:x.(ii): By # x and 6= a (both from �) we an use (i) to infer # [a℄:x. Further,from Lem. 2(ii) it holds that (a)� # (a)�[a℄:x. This is a # [℄:(a)�x usingDef. 5(i). Sine 6= a, # x and (a)�x = (a)�x, Def. 5(ii) implies that[℄:(a)�x = [a℄:x. Therefore, a # [a℄:x. utThe funtions from A to � we identify next satisfy the nominal abstrationproperties. Let [a℄:t be de�ned as follows[a℄:t def= se(�b: if a = b then t else if b # t then (a b)�t else er) : (2)This operation takes two arguments: an a 2 A and a t 2 �. To see how this oper-ation enodes an �-equivalene lass, onsider the �-equivalene lass [�a:(a b)℄�and the orresponding �-term [a℄:pr(a; b) (for the moment we ignore the termonstrutor se and only onsider the funtion given by [a℄:pr(a; b)). The graphof this funtion is as follows: the atom a is mapped to pr(a; b) sine the �rst if-ondition is true. For b, the �rst if-ondition obviously fails, but also the seond

one fails, beause b 2 supp(pr(a; b)); therefore b is mapped to er. For all otheratoms , we have a 6= and # pr(a; b); so the 's are mapped by the funtionto (a)�pr(a; b), whih is just pr(; b). Clearly, the funtion returns er wheneverthe orresponding lambda-term is not in the �-equivalene lass|in this exam-ple �b:(b b) 62 [�a:(a b)℄�; in all other ases, however, it returns an appropriately\renamed" version of pr(a; b).Lemma 7. The operation [�℄:(�) given for � in (2) is a nominal abstration.Proof. Def. 5(i) follows from the alulation:��[a℄:tdef= ��se(�b: if a = b then t else if b # t then (a b)�t else er)def= se(�b: ��if a = ��1�b then t else if ��1�b # t then (a ��1�b)�t else er)= se(�b: if a = ��1�b then ��t else if b # ��t then ��(a ��1�b)�t else er) (�)= se(�b: if a = ��1�b then ��t else if b # ��t then (��a b)���t else er)= se(�b: if ��a = b then ��t else if b # ��t then (��a b)���t else er)def= [��a℄:(��t)where we use in (�) the fat that ��if:::then:::else::: = if:::then ��:::else ��:::and Lem 2(ii). In ase a = b, Def. 5(ii) is by a simple alulation using exten-sionality of funtions. In ase a 6= b and Def. 5(ii)), the following formula anbe derived from the assumption by extensionality:8: if a = then t1 else if # t1 then (a)�t1 else er =if b = then t2 else if # t2 then (b)�t2 else erInstantiating this formula one with a and one with b yields the two equationst1 = if a # t2 then (b a)�t2 else ert2 = if b # t1 then (a b)�t1 else erNext, one distinguishes two ases where a # t2 and : a # t2, respetively. In the�rst ase, t1 = (b a)�t2, whih by Lem. 1 and Def. 2(iii) is equal to (a b)�t2; andobviously a # t2 by assumption. In the seond ase t1 = er. This substitutedinto the seond equation gives t2 = if b # er then (a b)�er else er. Sinesupp(er) = ?, t2 = (a b)�er = er. Now there is a ontradition with the assump-tion : a # t2, beause a# er. Def. 5(ii() for a 6= b is by extensionality and aase-analysis. utNote that, in general, one annot deide whether two funtions from A to � areequal; however Def. 5(ii) provides means to deide whether [a℄:t1 = [b℄:t2 holds:one just has to onsider whether a = b and then apply the appropriate propertyin Def. 5(ii)|just like deiding the �-equivalene of two lambda-terms using(�)�(�).

Now everything is in plae for de�ning the subset ��. It is de�ned indutivelyby the rules: a 2 Aam(a) 2 �� t1 2 �� t2 2 ��pr(t1; t2) 2 �� a 2 A t 2 ��[a℄:t 2 ��using in the third inferene rule the operation de�ned in (2). For �� we have:Lemma 8. �� is:(i) an fs-pset, and(ii) losed under permutations, that is if x 2 �� then ��x 2 ��.Proof. (i): The pset-properties of � arry over to ��. The fs-pset property fol-lows by a routine indution on the de�nition of �� using the fat derived fromLem. 6(i,ii) that for x 2 fs-pset, supp([a℄:x) = supp(x)�fag. (ii) Routine indu-tion over the de�nition of ��. utTaking Lem. 8(i) and Lem. 6 together gives us a simple haraterisation of thesupport of elements in ��: supp(am(a)) = fag, supp(pr(t1; t2)) = supp(t1) [supp(t2) and supp([a℄:t) = supp(t) � fag. In other words it oinides with whatone usually means by the free variables of a lambda-term.Next, one of the main points of this paper: there is a bijetion between �=�and ��. This is shown by using the following mapping from � to ��:q(a) def= am(a) q(t1 t2) def= pr(q(t1); q(t2)) q(�a:t) def= [a℄:q(t)and the following lemma:Lemma 9. t1 � t2 if and only if q(t1) = q(t2).Proof. By routine indution over de�nition of ��. utTheorem 1. There is a bijetion between �=� and ��.Proof. The mapping q needs to be lifted to �-equivalene lasses (see [14℄). Forthis de�ne q0([t℄�) as follows: apply q to every element of the set [t℄� and buildthe union of the results. By Lem. 9 this must yield a singleton set. The result ofq0([t℄�) is then the singleton. Surjetivity of q0 is shown by a routine indutionover the de�nition of ��. Injetivity of q0 follows from Lem. 9 sine [t1℄� = [t2℄�for all t1 � t2. ut4 Strutural Indution PrinipleThe de�nition of �� provides an indution priniple for free. However, this in-dution priniple is not very onvenient in pratie. Consider Fig. 2 showing atypial informal proof involving lambda-terms|it is Barendregt's proof of thesubstitution lemma taken from [3℄. This informal proof onsiders in the lambda-ase only binders z that have suitable properties (namely being fresh for x, y, N

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.Proof: By indution on the struture of M .Case 1: M is a variable.Case 1.1. M � x. Then both sides equal N [y := L℄ sine x 6� y.Case 1.2. M � y. Then both sides equal L, for x 62 FV (L) impliesL[x := : : :℄ � L.Case 1.3. M � z 6� x; y. Then both sides equal z.Case 2: M � �z:M1. By the variable onvention we may assume that z 6� x; y andz is not free in N; L. Then by indution hypothesis(�z:M1)[x := N ℄[y := L℄ � �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.Case 3: M � M1M2. The statement follows again from the indution hypothesis.�Fig. 2. The informal proof of the substitution lemma opied from [3℄. In the lambda-ase, the variable onvention allows Barendregt to move the substitutions under thebinder, to apply the indution hypothesis and then to pull out the substitutions.and L). If we would prove the substitution lemma by indution over the de�nitionof ��, then we would need to show the lambda-ase for all z, not just the onesbeing suitably fresh. This would mean we have to rename binders and establisha number of auxiliary lemmas onerning suh renamings. In this setion we willderive an indution priniple whih allows a similar onvenient reasoning as inBarendregt's informal proof.For this we only onsider indution hypotheses of the form P t x, whereP is the property to be proved; P depends on a variable t 2 �� (over whihthe indution is done), and a variable x standing for the \other" variables orontext of the indution. Sine x is allowed to be a tuple, several variables an beenoded. In ase of the substitution lemma in Fig. 2 the notation P t x should beunderstood as follows: the indution variable t is M , the ontext x is the tuple(x; y;N; L) and the indution hypothesis P is�M: �(x; y;N; L): M [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄where we use Isabelle's onvenient tuple-notation for the seond lambda-abstra-tion [11℄. So by writing P t x we just make expliit all the variables involved inthe indution.From the indutive de�nition of �� we an derive a strutural indution prin-iple that requires to prove the lambda-ase for binders that are fresh for theontext x|this is what the variable onvention assumes.

Lemma 10 (Indution Priniple). Given an indution hypothesis P t x witht 2 �� and x 2 fs-pset, then proving the following:� 8x a: P am(a) x� 8x t1 t2: P t1 x ^ P t2 x) P pr(t1; t2) x� 8x a: a # x) (8t: P t x) P [a℄:t x)gives 8t x: P t x.Proof. By indution over the de�nition of ��. We need to strengthen the in-dution hypothesis to 8t � x: P (��t) x, that means onsidering t under allpermutations �. Only the ase for terms of the form [a℄:t will be explained. Weneed to show that P (��[a℄:t) x, where ��[a℄:t = [��a℄:(��t) by Def. 5(i). By IH,(�1) 8� x: P (��t) x holds. Sine x; ��t; ��a 2 fs-pset holds, one an derive byLem. 5 that there is a suh that (�2) # (x; ��t; ��a). From # x and theassumption, one an further derive (8t: P t x) P [℄:t x). Given (�1) we havethat P ((��a) ::� � t) x holds and thus also P ([℄:((��a) ::� � t)) x. Beauseof (�2) 6= ��a and # ��t, and by Def. 5(ii) we have that [℄:((��a) ::� � t =[��a℄:(��t). Therefore we an onlude with P (��[a℄:t) x. utWith this we have ahieved what we set out in the introdution: we have arepresentation for �-equivalent lambda-terms based on names (for example [�a:t℄�is represented by [a℄:t) and we have an indution priniple where the lambda-aseneeds to be proved for binders that are fresh w.r.t. the variables in the ontextof the indution, i.e., we an reason as if we had employed a variable onvention.5 ExamplesIt is reasonably straightforward to implement the results from Se. 3 and 4 inIsabelle/HOL: the set � is an indutive datatype, the pset and fs-pset propertiesan be formulated as axiomati type-lasses [20℄, and the subset �� an be de�nedusing the Isabelle's typedef-mehanism. This setion fouses on how reasoningover �� pans out in pratie.The �rst obstale is that so far Isabelle's datatype pakage is not generalenough to allow a diret de�nition of funtions over ��: although �� ontainsonly terms of the form am(a), pr(t1; t2) and [a℄:t, pattern-mathing in Isabellerequires the injetivity of term-onstrutors. But learly, [a℄:t is not injetive.Fortunately, one an work around this obstale by, roughly speaking, de�ningfuntions as indutive relations and then use the de�nite desription operatorTHE of Isabelle to turn the relations into funtions.We give an example: apture-avoiding substitution an be de�ned as a four-plae relation (the �rst argument ontains the term into whih something is beingsubstituted, the seond the variable that is substituted for, the third the termthat is substituted, and the last ontains the result of the substitution):

onsts Subst :: "(�� � A � �� � ��) set"indutive Substintross1: "(am(a),a,t',t')2Subst"s2: "a6=b =) (am(b),a,t',am(b))2Subst"s3: "J(s1,a,t',s1')2Subst; (s2,a,t',s2')2SubstK=) (pr(s1,s2),a,t',pr(s1',s2'))2Subst"s4: "Jb#(a,t');(s,a,t',s')2SubstK =) ([b℄.s,a,t',[b℄.s')2Subst"While on �rst sight this relation looks as if it de�ned a non-total funtion, oneshould be areful! Clearly, the lambda-ase (i.e. ([b℄.s,a,t',[b℄.s')2 Subst)holds only under the preondition b#(a,s)|roughly meaning that a 6= b andb annot our freely in s. However, Subst does de�ne a total funtion, beauseSubst is de�ned over �-equivalent lambda-terms (more preisely ��), not overlambda-terms. We an indeed show \totality":Lemma 11. For all t1, a, t2, 9t3: (t1; a; t2; t3) 2 Subst :Proof. The proof in Isabelle/HOL uses the indution priniple derived in Thm. 10.It is as follows:proof (nominal indut t1)ase (1 b) (* variable ase *)show "9t3. (am(b),a,t2,t3)2Subst" by (ases "b=a") (fore+)nextase (2 s1 s2) (* appliation ase *)thus "9t3. (pr(s1,s2),a,t2,t3)2Subst" by forenextase (3 b s) (* lambda ase *)thus "9t3. ([b℄.s,a,t2,t3)2Subst" by foreqedThe indution method nominal indut brings the indution hypothesis automat-ially into the form(�t1 �(a; t2): 9t3:(t1; a; t2; t3) 2 Subst)| {z }P t1|{z}t (a; t2)| {z }xby olleting all free variables in the goal, and then it applies Thm. 10. Thisresults in three ases to be proved|variable ase, appliation ase and lambda-ase. The requirement that the ontext (a; t2) is a fs-pset-element is enfored byusing axiomati type-lasses and relying on Isabelle's type-system. Note that inthe lambda-ase it is important to know that the binder b is fresh for a and t2.The proof obligation in this ase is:b # (a; t2) ^ 9t3:(s; a; t2; t3) implies 9t3:([b℄:s; a; t2; t3)whih an be easily be shown by rule s4. As a result, the only ase in whih wereally need to manually \interfere" is in the variable ase where we have to giveIsabelle the hint to distinguish the ases b = a and b 6= a. ut

Together with a uniqueness-lemma (whose proof we omit) asserting that8s1s2:(t1; a; t2; s1) 2 Subst ^ (t1; a; t2; s2) 2 Subst) s1 = s2 (3)one an prove the stronger totality-property, namely for all t1, a, t2:9!t3: (t1; a; t2; t3) 2 Subst : (4)Having this at our disposal, we an use Isabelle's de�nite desription operatorTHE and turn apture-avoiding substitution into a funtion; we write this fun-tion as (�)[(�) := (�)℄, and establish the equations:am(a)[a := t℄ = tam(b)[a := t℄ = am(b) provided a 6= bpr(s1; s2)[a := t℄ = pr(s1[a := t℄; s2[a := t℄)([b℄:s)[a := t℄ = [b℄:(s[a := t℄) provided b # (a; t) (5)These equations an be supplied to Isabelle's simpli�er and one an reason aboutsubstitution \just like on paper". For this we give in Fig. 3 one simple exampleas evidene|giving the whole formalised Churh-Rosser proof from [3, p. 60{62℄would be beyond the spae onstraints of this paper. The omplete formalisa-tions of all the results, the Churh-Rosser and strong normalisation proof is athttp://www.mathematik.uni-muenhen.de/�urban/nominal/ .6 Related WorkThere are many approahes to formal treatments of binders; this setion desribesthe ones from whih we have drawn inspiration.Our work uses many ideas from the nominal logi work by Pitts et al [16, 6℄.The main di�erene is that by onstruting, so to say, an expliit model of the�-equated lambda-terms based on funtions, we have no problem with the axiom-of-hoie. This is important. For onsider the alternative: if the axiom-of-hoieauses inonsistenies, then one annot build a framework for binding on top ofIsabelle/HOL with its rih reasoning infrastruture. One would have to inter-fae on a lower level and has to redo the e�ort that has been spend to developIsabelle/HOL. This was attempted in [5℄, but the attempt was later abandoned.Closely related to our work is [9℄ by Gordon and Melham; it has been appliedand further developed by Norrish [13℄. This work states �ve axioms haraterising�-equivalene and then shows that a model based on de-Bruijn indies satis�es theaxioms. This is somewhat similar to our approah where we onstrut expliitlythe set ��. In [9℄ they give an indution priniple that requires in the lambda-aseto prove (using their notation)8x t: (8 v: P (t[x := VAR v℄)) =) P (LAM x t)That means they have to prove P (LAM x t) for a variable x for whih nothingan be assumed; expliit �-renamings are then neessary in order to get the

lemma substitution lemma:assumes a1: "x 6= y"and a2: "x# L"shows "M[x:=N℄[y:=L℄ = M[y:=L℄[x:=N[y:=L℄℄"proof (nominal indut M)ase (1 z) (* ase 1: variables *)have "z=x _ (z6=x ^ z=y) _ (z6=x ^ z6=y)" by forethus "am(z)[x:=N℄[y:=L℄ = am(z)[y:=L℄[x:=N[y:=L℄℄"using a1 a2 forget by forenextase (2 z M1) (* ase 2: lambdas *)assume ih: "M1[x:=N℄[y:=L℄ = M1[y:=L℄[x:=N[y:=L℄℄"assume f1: "z# (L,N,x,y)"from f1 fresh fat1 have f2: "z# N[y:=L℄" by simpshow "([z℄.M1)[x:=N℄[y:=L℄=([z℄.M1)[y:=℄[x:=N[y:=L℄℄" (is "?LHS=?RHS")proof -have "?LHS = [z℄.(M1[x:=N℄[y:=L℄)" using f1 by simpalso have "...= [z℄.(M1[y:=L℄[x:=N[y:=L℄℄)" using ih by simpalso have "...= ([z℄.(M1[y:=L℄))[x:=N[y:=L℄℄" using f1 f2 by simpalso have "...= ?RHS" using f1 by simpfinally show "?LHS = ?RHS" by simpqednextase (3 M1 M2) (* ase 3: appliations *)thus "pr(M1,M2)[x:=N℄[y:=L℄=pr(M1,M2)[y:=L℄[x:=N[y:=L℄℄" by simpqedFig. 3. An Isabelle proof using the Isar language for the substitution lemma shown inFig. 2. It uses the following auxiliary lemmas: forget whih states that x# L impliesL[x:=T℄=L, needed in the variable ase. This ase proeeds by stating the three subasesto be onsidered and then proving them automatially using the assumptions a1 and a2.The lemma fresh fat1 in the lambda-ase shows from z# (L,N,x,y) that z# N[x:=L℄holds. This lemma is not expliitly mentioned in Barendregt's informal proof, but it isneessary to pull out the substitution from under the binder z. This ase proeeds asfollows: the substitutions on left-hand side of the equation an be moved under thebinder z; then one an apply the indution hypothesis; after this one an pull out theseond substitution using z# N[y:=L℄ and �nally move out the �rst substitution usingz# (L,N,x,y). This gives the right-hand side of the equation.

proof through. This inonveniene has been alleviated by the version of struturalindution given in [8℄ and [12℄, whih is as follows9X: FINITE X ^ (8 x t: x 62 X ^ P t =) P (LAM x t))For this priniple one has to provide a �nite set X and then has to show thelambda-ase for all binders not in this set. This is very similar to our indutionpriniple, but we laim that our version based on freshness �ts better with in-formal pratise and an make use of the infrastruture of Isabelle (namely theaxiomati type-lasses enfore the �nite-support property).Like our ��, HOAS uses funtions to enode lambda-abstrations; it omes intwo avours: weak HOAS [4℄ and full HOAS [15℄. The advantage of full HOAS overour work is that notions suh as apture-avoiding substitution ome for free. We,on the other hand, load the work of suh de�nitions onto the user. The advantageof our work is that we have no diÆulties with notions suh as simultaneous-substitution (a ruial notion in the usual strong normalisation proof), whih infull HOAS seem rather diÆult to enode. Another advantage we see is that byindutively de�ning �� one has indution for \free", whereas indution requiresonsiderable e�ort in full HOAS. The main di�erene of our work with weakHOAS is that we use some spei� funtions to represent lambda-abstrations;in ontrast, weak HOAS uses the full funtion spae. This auses problems knownby the term \exoti terms"|essentially junk in the model.7 ConlusionThe paper [2℄, whih sets out some hallenges for automated proof assistants,laims that theorem proving tehnologies have almost reahed the threshold wherethey an be used by the masses for formal reasoning about programming lan-guages. We hope to have pushed with this paper the boundary of the state-of-the-art in formal reasoning loser to this threshold. We showed all our resultsfor the lambda-alulus. But the lambda-alulus is only one example. We en-visage no problems generalising our results to other term-aluli. In fat, thereis already work by Bengtson adapting our results to the �-alulus. We also donot envisage problems with providing a general framework for reasoning aboutbinders based on our results. The real (implementation) hallenge is to integratethese results into Isabelle's datatype pakage so that the user does not see any ofthe tedious details through whih we had to go. For example one would like thatthe subset onstrution from a bigger set is done ompletely behind the senes.Deriving an indution priniple should also be done automatially. Ideally, a userjust de�nes an indutive datatype and indiates where binders are|the rest ofthe infrastruture should be provided by the theorem prover. This is future work.Aknowledgements: The �rst author is very grateful to Andrew Pitts andMihael Norrish for the many disussions with them on the subjet of the paper.We thank James Cheney, Aaron Bohannon, Daniel Wang and one anonymousreferee for their suggestions. The �rst author's interest in this work was sparked

by an email-disussion with Frank Pfenning and by a question from Neil Ghaniat the spring shool of Midland Graduate Shool. The Alexander-von-HumboldtFoundation funded the �rst author.Referenes1. T. Altenkirh. A Formalization of the Strong Normalisation Proof for System F inLEGO. In Pro. of TLCA, volume 664 of LNCS, pages 13{28, 1993.2. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Piere, P. Sewell,D. Vytiniotis, G. Washburn, S. Weirih, and S. Zdanewi. Mehanized Metatheoryfor the Masses: The PoplMark Challenge. aepted at tphol 05.3. H. Barendregt. The Lambda Calulus: Its Syntax and Semantis, volume 103 ofStudies in Logi and the Foundations of Mathematis. North-Holland, 1981.4. J. Despeyroux, A. Felty, and A. Hirshowitz. Higher-Order Abstrat Syntax in Coq.In Pro. of TLCA, volume 902 of LNCS, pages 124{138, 1995.5. M. J. Gabbay. A Theory of Indutive De�nitions With �-equivalene. PhD thesis,University of Cambridge, 2000.6. M. J. Gabbay and A. M. Pitts. A New Approah to Abstrat Syntax with VariableBinding. Formal Aspets of Computing, 13:341{363, 2001.7. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of CambridgeTrats in Theoretial Computer Siene. Cambridge University Press, 1989.8. A. D. Gordon. A Mehanisation of Name-Carrying Syntax up to Alpha-Conversion.In Pro. of Higher-order logi theorem proving and its appliations, volume 780 ofLNCS, pages 414{426, 1993.9. A. D. Gordon and T. Melham. Five Axioms of Alpha-Conversion. In Pro. ofTPHOL, volume 1125 of LNCS, pages 173{190, 1996.10. D. Hirshko�. A Full Formalisation of �-Calulus Theory in the Calulus of Con-strutions. In Pro. of TPHOL, volume 1275 of LNCS, pages 153{169, 1997.11. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle HOL: A Proof Assistant forHigher-Order Logi, volume 2283 of LNCS. Springer-Verlag, 2002.12. M. Norrish. Mehanising �-alulus using a Classial First Order Theory of Termswith Permutations, forthoming.13. M. Norrish. Reursive Funtion De�nition for Types with Binders. In Pro. ofTPHOL, volume 3223 of LNCS, pages 241{256, 2004.14. L. Paulson. De�ning Funtions on Equivalene Classes. To appear in ACM Trans-ations on Computational Logi.15. F. Pfenning and C. Elliott. Higher-Order Abstrat Syntax. In Pro. of the ACMSIGPLAN Conferene PLDI, pages 199{208. ACM Press, 1989.16. A. M. Pitts. Nominal Logi, A First Order Theory of Names and Binding. Infor-mation and Computation, 186:165{193, 2003.17. A. S. Troelstra and H. Shwihtenberg. Basi Proof Theory, volume 43 of CambridgeTrats in Theoretial Computer Siene. Cambridge University Press, 2000.18. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal Uni�ation. Theoretial Com-puter Siene, 323(1-2):473{497, 2004.19. M. VanInwegen. The Mahine-Assisted Proof of Programming Language Properties.PhD thesis, University of Pennsylvania, 1996. Available as MS-CIS-96-31.20. M. Wenzel. Using Axiomati Type Classes in Isabelle. Manual in the Isabelledistribution.

