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a
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t. In this paper we de�ne an indu
tive set that is bije
tive withthe �-equated lambda-terms. Unlike de-Bruijn indi
es, however, our in-du
tive de�nition in
ludes names and reasoning about this de�nition isvery similar to informal reasoning on paper. For this we provide a stru
-tural indu
tion prin
iple that requires to prove the lambda-
ase for freshbinders only. The main te
hni
al novelty of this work is that it is 
ompat-ible with the axiom-of-
hoi
e (unlike earlier nominal logi
 work by Pittset al); thus we were able to implement all results in Isabelle/HOL anduse them to formalise the standard proofs for Chur
h-Rosser and strong-normalisation.Keywords. Lambda-
al
ulus, nominal logi
, stru
tural indu
tion, theorem-assistants.1 Introdu
tionWhenever one wants to formalise proofs about terms involving binders, one fa
esa problem: how to represent su
h terms? The \low-level" representations use
on
rete names for binders (that is they represent terms as abstra
t syntax trees)or use de-Bruijn indi
es. However, a brief look in the literature shows that bothrepresentations make formal proofs rather strenuous in pla
es (typi
ally lemmasabout substitution) that are only loosely 
on
erned with the proof at hand. Threeexamples from the literature: VanInwegen wrote [19, p. 115℄:\Proving theorems about substitutions (and related operations su
h asalpha-
onversion) required far more time and HOL 
ode than any othervariety of theorem."in her PhD-thesis, whi
h des
ribes a formalisation of SML's subje
t redu
tionproperty based on a \
on
rete-name" representation for SML-terms. Altenkir
hformalised in LEGO a strong normalisation proof for System-F (using a de-Bruijnrepresentation) and 
on
luded [1, p. 26℄:\When doing the formalization, I dis
overed that the 
ore part of theproof. . . is fairly straightforward and only requires a good understandingof the paper version. However, in 
ompleting the proof I observed that in
ertain pla
es I had to invest mu
h more work than expe
ted, e.g. provinglemmas about substitution and weakening."? Published in Pro
. of the 20th Int. Conf. on Automated Dedu
tion (CADE 2005). Involume 3632 of Le
ture Notes in Computer S
ien
e. Springer-Verlag. Pages 38-53.



Hirs
hko� made a similar 
omment in [10, p. 167℄ about a formalisation of the�-
al
ulus:\Te
hni
al work, however, still represents the biggest part of our imple-mentation, mainly due to the managing of de Bruijn indexes...Of our 800proved lemmas, about 600 are 
on
erned with operators on free names."The main point of this paper is to give a representation for �-equated lambda-terms that is based on names, is indu
tive and 
omes with a stru
tural indu
tionprin
iple where the lambda-
ase needs to be proved for only fresh binders. Inpra
ti
e this will mean that we 
ome quite 
lose to the informal reasoning usingBarendregt's variable 
onvention. Our work is based on the nominal logi
 workby Pitts et al [16, 6℄. The main te
hni
al novelty is that our work by giving anexpli
it 
onstru
tion for �-equated lambda-terms is 
ompatible with the axiom of
hoi
e. Thus we were able to implement all results in Isabelle/HOL and formalisethe simple Chur
h-Rosser proof of Tait and Martin-L�of des
ribed in [3℄, andthe standard Tait-style strong normalisation proof for the simply-typed lambda-
al
ulus given, for example, in [7, 17℄.The paper is organised as follow: Se
. 2 reviews �-equivalen
e for lambda-terms. Se
. 3 gives a 
onstru
tion of an indu
tive set that is bije
tive with the�-equated lambda-terms and adapts some notions of the nominal logi
 work forthis 
onstru
tion. An indu
tion prin
iple for this set is derived in Se
. 4. Examplesof Isabelle/HOL formalisations are given in Se
. 5. Related work is mentioned inSe
. 6, and Se
. 7 
on
ludes.2 PreliminariesIn order to motivate a design 
hoi
e later on, we begin with a review of �-equivalen
e 
ast in terms of the nominal logi
 work. The set of lambda-terms isindu
tively de�ned by the grammar:� : t ::= a j t t j �a:twhere a is an atom drawn from a 
ountable in�nite set, whi
h will in what followsbe denoted by A .The notion of �-equivalen
e for � is often de�ned as the least 
ongruen
eof the equation �a:t =� �b:t[a := b℄ involving a renaming substitution and aside-
ondition, namely that b does not o

ur freely in t. In the nominal logi
work, however, atoms are manipulated not by renaming substitutions, but bypermutations|bije
tive mappings from atoms to atoms. While permutationshave some te
hni
al advantages, for example they preserve �-equivalen
e whi
hsubstitutions do not [18℄, their primary reason in the nominal logi
 work is thatone 
an use them to de�ne the notion of support. This notion generalises whatis meant by the set of free atoms of an obje
t, whi
h is usually 
lear in 
asethe obje
t is an abstra
t syntax tree, but less so if the obje
t is a fun
tion. Thegeneralisation of \free atoms" to fun
tions, however, will play a 
ru
ial rôle inour 
onstru
tion of the bije
tive set.



There are several ways for de�ning the operation of a permutation a
ting ona lambda-term. One way [18℄ that 
an be easily implemented in Isabelle/HOL isto represent permutations as �nite lists whose elements are swappings (i.e., pairsof atoms). We write su
h permutation as (a1 b1)(a2 b2) � � � (an bn); the empty list[℄ stands for the identity permutation. The permutation a
tion, written ��(�),
an then be de�ned on lambda-terms as:[℄�a def= a(a1 a2) :: ��a def= 8<:a2 if ��a = a1a1 if ��a = a2��a otherwise ��(t1 t2) def= (��t1 ��t2)��(�a:t) def= �(��a):(��t) (1)where (a b) :: � is the 
omposition of a permutation followed by the swapping(a b). The 
omposition of � followed by another permutation �0 is given by list-
on
atenation, written as �0��, and the inverse of a permutation is given by listreversal, written as ��1.While the representation of permutations based on lists of swappings is 
on-venient for de�nitions like permutation 
omposition and the inverse of a permu-tation, this list-representation is not unique; for example the permutation (a a)is \equal" to the identity permutation. Therefore some means to identify \equal"permutations is needed.De�nition 1 (Disagreement Set and Permutation Equality). The dis-agreement set of two permutations, say �1 and �2, is the set of atoms on whi
hthe permutations disagree, that is ds(�1; �2) def= f a j �1�a 6= �2�a g. Two permu-tations are equal, written �1 � �2, provided ds(�1; �2) = ?.Using the permutation a
tion on lambda-terms, �-equivalen
e for � 
an be de-�ned in a syntax dire
ted fashion using the relations (�)�(�) and (�) 62 fv(�);see Fig. 1. Be
ause of the \asymmetri
" rule ��2, it might be surprising, but:Proposition 1. � is an equivalen
e relation.The proof of this proposition is omitted: it 
an be found in a more general settingin [18℄. (We also omit a proof showing that � and =� 
oin
ide). In the following,[t℄� will stand for the �-equivalen
e 
lass of the lambda-term t, that is [t℄� def=f t0 j t0 � t g, and �=� for the set � quotient by �.3 The Bije
tive SetIn this se
tion, we will de�ne a set �; inside this set we will subsequently identify(indu
tively) a subset, 
alled ��, that is in bije
tion with �=�. In order to obtainthe bije
tion, � needs to be de�ned so that it 
ontains elements 
orresponding,roughly speaking, to �-equated atoms, appli
ations and lambda-abstra
tions|that is to [a℄�, [t1t2℄� and [�a:t℄�. Whereas this is straightforward for atoms andappli
ations, the lambda-abstra
tions are non-trivial: for them we shall use some



a � a�var t1 � s1 t2 � s2t1 t2 � s1 s2 �app t � s�a:t � �a:s��1 a 6= b t � (a b)�s a 62fv(s)�a:t � �b:s ��2a 6= ba 62fv(b) fvvar a 62fv(t1) a 62fv(t2)a 62fv(t1 t2) fvapp a 62fv(�a:t) fv�1 a 6= b a 62fv(t)a 62fv(�b:t) fv�2Fig. 1. Indu
tive de�nitions for (�) � (�) and (�) 62fv(�).spe
i�
 \partial" fun
tions from A to � (by \partial" we mean fun
tions thatreturn \error" for unde�ned values1). Thus the set � is de�ned by the grammar� : t ::= er j am(a) j pr(t; t) j se(fn)where er stands for \error", a for atoms and fn stands for fun
tions from A to�.2 This grammar 
orresponds to the indu
tive datatype that one might de
larein Isabelle/HOL as: datatype phi = erj am "atom"j pr "phi� phi"j se "atom ) phi"where it is presupposed that the type atom has been de
lared. The 
onstru
torsam, pr and se will be used in �� for representing �-equated atoms, appli
ationsand lambda-abstra
tions. Before the subset �� 
an be 
arved out from �, how-ever, some terminology from the nominal logi
 work needs to be adapted. For thiswe overload the notion of permutation a
tion, that is ��(�), and de�ne abstra
tlysets that 
ome with a notion of permutation:De�nition 2 (PSets). A set X equipped with a permutation a
tion ��(�) issaid to be a pset, if for all x 2 X, the permutation a
tion satis�es the followingproperties:(i) [℄�x = x(ii) �1��2�x = �1�(�2�x)(iii) if �1 � �2 then �1�x = �2�xThe informal notation x 2 pset will be adopted whenever it needs to be indi
atedthat x 
omes from a pset. The idea behind the permutation a
tion, roughlyspeaking, is to permute all atoms in a given pset-element. For lists, tuples andsets the permutation a
tion is therefore de�ned point-wise:lists: ��[℄ def= [℄��(x :: t) def= (��x) :: (��t) tuples: ��(x1; : : : ; xn) def= (��x1; : : : ; ��xn)sets: ��X def= f��x jx 2 Xg1 This is one way of dealing with partial fun
tions in Isabelle.2 Employing (on the meta-level) a lambda-
al
ulus-like notation for writing su
h fun
-tions, one 
ould in this grammar just as well have written �a:f instead of fn.



The permutation a
tion for � is de�ned over the stru
ture as follows:��er def= er��am(a) def= am(��a) ��pr(t1; t2) def= pr(��t1; ��t2)��se(fn) def= se(�a:��(fn (��1�a))where a lambda-term (on the meta-level !) spe
i�es how the permutation a
ts onthe fun
tion fn , namely as ��fn def= �a:��(fn (��1�a)).When reasoning about �� it will save us some work, if we show that 
ertainsets are psets and then show properties (abstra
tly) for pset-elements.Lemma 1. The following sets are psets: A , �, �, and every set of lists (similarlytuples and sets) 
ontaining elements from psets.Proof. By routine indu
tions. utThe most important notion of a pset-element is that of its support (a set ofatoms) and derived from this the notion of freshness [6℄:De�nition 3 (Support and Freshness). Given an x 2 pset, its support isde�ned as:3 supp(x) def= fa j inffb j (a b)�x 6= xgg :An atom a is said to be fresh for su
h an x, written a # x, provided a 62 supp(x).Note that as soon as one �xes the permutation a
tion for elements of a set, thenotion of support is �xed as well. That means that Def. 3 de�nes the support forlists, sets and tuples as long as their elements 
ome from psets. Cal
ulating thesupport for terms in � is simple: supp(a) = fag, supp(t1 t2) = supp(t1)[supp(t2)and supp(�a:t) = supp(t) [ fag. Be
ause of the fun
tions in se(fn), the supportfor terms in � is more subtle. However, later on, we shall see that for terms ofthe subset �� there is simple stru
tural 
hara
terisation for their support, justlike for lambda-terms.First, some properties of support and freshness are established.Lemma 2. For all x 2 pset,(i) ��supp(x) = supp(��x), and(ii) a # ��x if and only if ��1�a # x.Proof. (i) follows from the 
al
ulation:��supp(x) def= ��fa j inffb j (a b)�x 6= xggdef= f��a j inffb j (a b)�x 6= xgg= f��a j inff��b j (a b)�x 6= xgg (�1)= fa j inffb j (��1�a ��1�b)�x 6= xgg= fa j inffb j��(��1�a ��1�b)�x 6= ��xgg (�2)= fa j inffb j (a b)���x 6= ��xgg def= supp(��x) (�3)3 The predi
ate inf will stand for a set being in�nite.



where (�1) holds be
ause the sets fbj : : :g and f��bj : : :g have the same number ofelements, and where (�2) holds be
ause permutations preserve (in)equalities; (�3)holds be
ause � 
ommutes with the swapping, that is ��(a b) � (��a ��b)��.(ii): For all �, a 2 supp(x) if and only if ��a 2 ��supp(x). The property followsthen from (i) and x 2 pset. utAnother important property is the fa
t that the freshness of two atoms w.r.t. anpset-element means that a permutation swapping those two atoms has no e�e
t:Lemma 3. For all x 2 pset, if a # x and b # x then (a b)�x = x.Proof. The 
ase a = b is 
lear by Def. 2(i; iii). In the other 
ase, the assump-tion implies that both f
 j (
 a)�x 6= xg and f
 j (
 b)�x 6= xg are �nite, andtherefore also their union must be �nite. Hen
e the 
orresponding 
o-set, thatis f
 j (
 a)�x = x ^ (
 b)�x = xg, is in�nite (re
all that A is in�nite). If onepi
ks from this 
o-set one element, whi
h is from now on denoted by 
 and as-sumed to be di�erent from a and b, one has (
 a)�x = x and (
 b)�x = x. Thus(
 a)�(
 b)�(
 a)�x = x. The permutations (
 a)(
 b)(
 a) and (a b) are equal, sin
ethey have an empty disagreement set. Therefore, by using Def. 2(ii; iii), one 
an
on
lude with (a b)�x = x. utA further restri
tion on psets will �lter out all psets 
ontaining elements withan in�nite support.De�nition 4 (Fs-PSet). A pset X is said to be an fs-pset if every element inX has �nite support.Lemma 4. The following sets are fs-psets: A , �, and every set of lists (similarlytuples and �nite sets) 
ontaining elements from fs-psets.Proof. The support of an atom a is fag. The support of a lambda-term t is theset of atoms o

urring in t. The support of a list is the union of the supports ofits elements, and thus �nite for fs-pset-elements (ditto tuples and �nite sets). utThe set � is not an fs-pset, be
ause some fun
tions from A to � have an in�-nite support. Similarly, some in�nite sets have in�nite support, even if all theirelements have �nite support. On the other hand, the in�nite set A has �nite sup-port: supp(A ) = ? [6℄. The main property of elements of fs-psets is that there isalways a fresh atom.Lemma 5. For all x 2 fs-pset, there exists an atom a su
h that a # x.Proof. Sin
e A is an in�nite set and the support of x is by assumption �nite,there must be an a 62 supp(x). utWe mentioned earlier that we are not going to use all fun
tions from A to� for representing �-equated lambda-abstra
tions, but some spe
i�
 fun
tions.4The following de�nition states what properties these fun
tions need to satisfy.4 This is in 
ontrast to \weak" and \full" HOAS [15, 4℄ whi
h use the full fun
tionspa
e for representing lambda-abstra
tions.



De�nition 5 (Nominal Abstra
tions). An operation, written [�℄:(�), takingan atom and a pset-element is said to be a nominal abstra
tion, if it satis�es thefollowing properties (where a 6= b):(i) ��([a℄:x) = [��a℄:(��x)(ii) [a℄:x1 = [b℄:x2 if and only if either:a = b ^ x1 = x2, ora 6= b ^ x1 = (a b)�x2 ^ a # x2The �rst property states that the permutation a
tion needs to 
ommute withnominal abstra
tions. The se
ond property ensures that nominal abstra
tions be-have, roughly speaking, like lambda-abstra
tions. To see this re
onsider the rules��1 and ��2 given in Fig. 1, whi
h 
an be used to de
ide when two lambda-termsare �-equivalent. Property (ii) paraphrases these rules for nominal abstra
tions.The similarities, however, do not end here: given a [a℄:x with x 2 fs-pset, thenfreshness behaves like (�) 62 fv(�), as shown next:Lemma 6. Given a 6= b and x 2 fs-pset, then(i) a # [b℄:x if and only if a # x, and(ii) a # [a℄:xProof. (i)): Sin
e x 2 fs-pset, supp([b℄:x) � supp(x) [ fbg and therefore thesupport of [a℄:x must be �nite. Hen
e (a; b; x; [b℄:x) is �nitely supported and byLem. 5 there exists a 
 with (�) 
 # (a; b; x; [b℄:x). Using the assumption a # [b℄:xand the fa
t that 
 # [b℄:x (from �), Lem. 3 and Def. 5(i) give [b℄:x = (
 a)[b℄:x =[b℄:(
 a)�x. Hen
e by Def. 5(ii) x = (
 a)�x. Now 
 # x (from �) implies that
 # (
 a)�x; and moving the permutation to the other side by Lem. 2(ii) givesa # x. (i(): From (�), 
 # [b℄:x and therefore by Lem. 2(ii) (a 
)�
 # (a 
):([b℄:x),whi
h implies by Def. 5(i) that a # [b℄:((a 
)�x). From (�) 
 # x holds and fromthe assumption also a # x; then Lem. 3 implies that x = (a 
)�x, and one 
an
on
lude with a # [b℄:x.(ii): By 
 # x and 
 6= a (both from �) we 
an use (i) to infer 
 # [a℄:x. Further,from Lem. 2(ii) it holds that (
 a)�
 # (
 a)�[a℄:x. This is a # [
℄:(
 a)�x usingDef. 5(i). Sin
e 
 6= a, 
 # x and (
 a)�x = (
 a)�x, Def. 5(ii) implies that[
℄:(
 a)�x = [a℄:x. Therefore, a # [a℄:x. utThe fun
tions from A to � we identify next satisfy the nominal abstra
tionproperties. Let [a℄:t be de�ned as follows[a℄:t def= se(�b: if a = b then t else if b # t then (a b)�t else er) : (2)This operation takes two arguments: an a 2 A and a t 2 �. To see how this oper-ation en
odes an �-equivalen
e 
lass, 
onsider the �-equivalen
e 
lass [�a:(a b)℄�and the 
orresponding �-term [a℄:pr(a; b) (for the moment we ignore the term
onstru
tor se and only 
onsider the fun
tion given by [a℄:pr(a; b)). The graphof this fun
tion is as follows: the atom a is mapped to pr(a; b) sin
e the �rst if-
ondition is true. For b, the �rst if-
ondition obviously fails, but also the se
ond



one fails, be
ause b 2 supp(pr(a; b)); therefore b is mapped to er. For all otheratoms 
, we have a 6= 
 and 
 # pr(a; b); so the 
's are mapped by the fun
tionto (a 
)�pr(a; b), whi
h is just pr(
; b). Clearly, the fun
tion returns er wheneverthe 
orresponding lambda-term is not in the �-equivalen
e 
lass|in this exam-ple �b:(b b) 62 [�a:(a b)℄�; in all other 
ases, however, it returns an appropriately\renamed" version of pr(a; b).Lemma 7. The operation [�℄:(�) given for � in (2) is a nominal abstra
tion.Proof. Def. 5(i) follows from the 
al
ulation:��[a℄:tdef= ��se(�b: if a = b then t else if b # t then (a b)�t else er)def= se(�b: ��if a = ��1�b then t else if ��1�b # t then (a ��1�b)�t else er)= se(�b: if a = ��1�b then ��t else if b # ��t then ��(a ��1�b)�t else er) (�)= se(�b: if a = ��1�b then ��t else if b # ��t then (��a b)���t else er)= se(�b: if ��a = b then ��t else if b # ��t then (��a b)���t else er)def= [��a℄:(��t)where we use in (�) the fa
t that ��if:::then:::else::: = if:::then ��:::else ��:::and Lem 2(ii). In 
ase a = b, Def. 5(ii) is by a simple 
al
ulation using exten-sionality of fun
tions. In 
ase a 6= b and Def. 5(ii)), the following formula 
anbe derived from the assumption by extensionality:8
: if a = 
 then t1 else if 
 # t1 then (a 
)�t1 else er =if b = 
 then t2 else if 
 # t2 then (b 
)�t2 else erInstantiating this formula on
e with a and on
e with b yields the two equationst1 = if a # t2 then (b a)�t2 else ert2 = if b # t1 then (a b)�t1 else erNext, one distinguishes two 
ases where a # t2 and : a # t2, respe
tively. In the�rst 
ase, t1 = (b a)�t2, whi
h by Lem. 1 and Def. 2(iii) is equal to (a b)�t2; andobviously a # t2 by assumption. In the se
ond 
ase t1 = er. This substitutedinto the se
ond equation gives t2 = if b # er then (a b)�er else er. Sin
esupp(er) = ?, t2 = (a b)�er = er. Now there is a 
ontradi
tion with the assump-tion : a # t2, be
ause a# er. Def. 5(ii() for a 6= b is by extensionality and a
ase-analysis. utNote that, in general, one 
annot de
ide whether two fun
tions from A to � areequal; however Def. 5(ii) provides means to de
ide whether [a℄:t1 = [b℄:t2 holds:one just has to 
onsider whether a = b and then apply the appropriate propertyin Def. 5(ii)|just like de
iding the �-equivalen
e of two lambda-terms using(�)�(�).



Now everything is in pla
e for de�ning the subset ��. It is de�ned indu
tivelyby the rules: a 2 Aam(a) 2 �� t1 2 �� t2 2 ��pr(t1; t2) 2 �� a 2 A t 2 ��[a℄:t 2 ��using in the third inferen
e rule the operation de�ned in (2). For �� we have:Lemma 8. �� is:(i) an fs-pset, and(ii) 
losed under permutations, that is if x 2 �� then ��x 2 ��.Proof. (i): The pset-properties of � 
arry over to ��. The fs-pset property fol-lows by a routine indu
tion on the de�nition of �� using the fa
t derived fromLem. 6(i,ii) that for x 2 fs-pset, supp([a℄:x) = supp(x)�fag. (ii) Routine indu
-tion over the de�nition of ��. utTaking Lem. 8(i) and Lem. 6 together gives us a simple 
hara
terisation of thesupport of elements in ��: supp(am(a)) = fag, supp(pr(t1; t2)) = supp(t1) [supp(t2) and supp([a℄:t) = supp(t) � fag. In other words it 
oin
ides with whatone usually means by the free variables of a lambda-term.Next, one of the main points of this paper: there is a bije
tion between �=�and ��. This is shown by using the following mapping from � to ��:q(a) def= am(a) q(t1 t2) def= pr(q(t1); q(t2)) q(�a:t) def= [a℄:q(t)and the following lemma:Lemma 9. t1 � t2 if and only if q(t1) = q(t2).Proof. By routine indu
tion over de�nition of ��. utTheorem 1. There is a bije
tion between �=� and ��.Proof. The mapping q needs to be lifted to �-equivalen
e 
lasses (see [14℄). Forthis de�ne q0([t℄�) as follows: apply q to every element of the set [t℄� and buildthe union of the results. By Lem. 9 this must yield a singleton set. The result ofq0([t℄�) is then the singleton. Surje
tivity of q0 is shown by a routine indu
tionover the de�nition of ��. Inje
tivity of q0 follows from Lem. 9 sin
e [t1℄� = [t2℄�for all t1 � t2. ut4 Stru
tural Indu
tion Prin
ipleThe de�nition of �� provides an indu
tion prin
iple for free. However, this in-du
tion prin
iple is not very 
onvenient in pra
ti
e. Consider Fig. 2 showing atypi
al informal proof involving lambda-terms|it is Barendregt's proof of thesubstitution lemma taken from [3℄. This informal proof 
onsiders in the lambda-
ase only binders z that have suitable properties (namely being fresh for x, y, N



Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.Proof: By indu
tion on the stru
ture of M .Case 1: M is a variable.Case 1.1. M � x. Then both sides equal N [y := L℄ sin
e x 6� y.Case 1.2. M � y. Then both sides equal L, for x 62 FV (L) impliesL[x := : : :℄ � L.Case 1.3. M � z 6� x; y. Then both sides equal z.Case 2: M � �z:M1. By the variable 
onvention we may assume that z 6� x; y andz is not free in N; L. Then by indu
tion hypothesis(�z:M1)[x := N ℄[y := L℄ � �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.Case 3: M � M1M2. The statement follows again from the indu
tion hypothesis.�Fig. 2. The informal proof of the substitution lemma 
opied from [3℄. In the lambda-
ase, the variable 
onvention allows Barendregt to move the substitutions under thebinder, to apply the indu
tion hypothesis and then to pull out the substitutions.and L). If we would prove the substitution lemma by indu
tion over the de�nitionof ��, then we would need to show the lambda-
ase for all z, not just the onesbeing suitably fresh. This would mean we have to rename binders and establisha number of auxiliary lemmas 
on
erning su
h renamings. In this se
tion we willderive an indu
tion prin
iple whi
h allows a similar 
onvenient reasoning as inBarendregt's informal proof.For this we only 
onsider indu
tion hypotheses of the form P t x, whereP is the property to be proved; P depends on a variable t 2 �� (over whi
hthe indu
tion is done), and a variable x standing for the \other" variables or
ontext of the indu
tion. Sin
e x is allowed to be a tuple, several variables 
an been
oded. In 
ase of the substitution lemma in Fig. 2 the notation P t x should beunderstood as follows: the indu
tion variable t is M , the 
ontext x is the tuple(x; y;N; L) and the indu
tion hypothesis P is�M: �(x; y;N; L): M [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄where we use Isabelle's 
onvenient tuple-notation for the se
ond lambda-abstra
-tion [11℄. So by writing P t x we just make expli
it all the variables involved inthe indu
tion.From the indu
tive de�nition of �� we 
an derive a stru
tural indu
tion prin-
iple that requires to prove the lambda-
ase for binders that are fresh for the
ontext x|this is what the variable 
onvention assumes.



Lemma 10 (Indu
tion Prin
iple). Given an indu
tion hypothesis P t x witht 2 �� and x 2 fs-pset, then proving the following:� 8x a: P am(a) x� 8x t1 t2: P t1 x ^ P t2 x ) P pr(t1; t2) x� 8x a: a # x ) (8t: P t x ) P [a℄:t x)gives 8t x: P t x.Proof. By indu
tion over the de�nition of ��. We need to strengthen the in-du
tion hypothesis to 8t � x: P (��t) x, that means 
onsidering t under allpermutations �. Only the 
ase for terms of the form [a℄:t will be explained. Weneed to show that P (��[a℄:t) x, where ��[a℄:t = [��a℄:(��t) by Def. 5(i). By IH,(�1) 8� x: P (��t) x holds. Sin
e x; ��t; ��a 2 fs-pset holds, one 
an derive byLem. 5 that there is a 
 su
h that (�2) 
 # (x; ��t; ��a). From 
 # x and theassumption, one 
an further derive (8t: P t x ) P [
℄:t x). Given (�1) we havethat P ((
 ��a) ::� � t) x holds and thus also P ([
℄:((
 ��a) ::� � t)) x. Be
auseof (�2) 
 6= ��a and 
 # ��t, and by Def. 5(ii) we have that [
℄:((
 ��a) ::� � t =[��a℄:(��t). Therefore we 
an 
on
lude with P (��[a℄:t) x. utWith this we have a
hieved what we set out in the introdu
tion: we have arepresentation for �-equivalent lambda-terms based on names (for example [�a:t℄�is represented by [a℄:t) and we have an indu
tion prin
iple where the lambda-
aseneeds to be proved for binders that are fresh w.r.t. the variables in the 
ontextof the indu
tion, i.e., we 
an reason as if we had employed a variable 
onvention.5 ExamplesIt is reasonably straightforward to implement the results from Se
. 3 and 4 inIsabelle/HOL: the set � is an indu
tive datatype, the pset and fs-pset properties
an be formulated as axiomati
 type-
lasses [20℄, and the subset �� 
an be de�nedusing the Isabelle's typedef-me
hanism. This se
tion fo
uses on how reasoningover �� pans out in pra
ti
e.The �rst obsta
le is that so far Isabelle's datatype pa
kage is not generalenough to allow a dire
t de�nition of fun
tions over ��: although �� 
ontainsonly terms of the form am(a), pr(t1; t2) and [a℄:t, pattern-mat
hing in Isabellerequires the inje
tivity of term-
onstru
tors. But 
learly, [a℄:t is not inje
tive.Fortunately, one 
an work around this obsta
le by, roughly speaking, de�ningfun
tions as indu
tive relations and then use the de�nite des
ription operatorTHE of Isabelle to turn the relations into fun
tions.We give an example: 
apture-avoiding substitution 
an be de�ned as a four-pla
e relation (the �rst argument 
ontains the term into whi
h something is beingsubstituted, the se
ond the variable that is substituted for, the third the termthat is substituted, and the last 
ontains the result of the substitution):




onsts Subst :: "(�� � A � �� � ��) set"indu
tive Substintross1: "(am(a),a,t',t')2Subst"s2: "a6=b =) (am(b),a,t',am(b))2Subst"s3: "J(s1,a,t',s1')2Subst; (s2,a,t',s2')2SubstK=) (pr(s1,s2),a,t',pr(s1',s2'))2Subst"s4: "Jb#(a,t');(s,a,t',s')2SubstK =) ([b℄.s,a,t',[b℄.s')2Subst"While on �rst sight this relation looks as if it de�ned a non-total fun
tion, oneshould be 
areful! Clearly, the lambda-
ase (i.e. ([b℄.s,a,t',[b℄.s')2 Subst)holds only under the pre
ondition b#(a,s)|roughly meaning that a 6= b andb 
annot o

ur freely in s. However, Subst does de�ne a total fun
tion, be
auseSubst is de�ned over �-equivalent lambda-terms (more pre
isely ��), not overlambda-terms. We 
an indeed show \totality":Lemma 11. For all t1, a, t2, 9t3: (t1; a; t2; t3) 2 Subst :Proof. The proof in Isabelle/HOL uses the indu
tion prin
iple derived in Thm. 10.It is as follows:proof (nominal indu
t t1)
ase (1 b) (* variable 
ase *)show "9t3. (am(b),a,t2,t3)2Subst" by (
ases "b=a") (for
e+)next
ase (2 s1 s2) (* appli
ation 
ase *)thus "9t3. (pr(s1,s2),a,t2,t3)2Subst" by for
enext
ase (3 b s) (* lambda 
ase *)thus "9t3. ([b℄.s,a,t2,t3)2Subst" by for
eqedThe indu
tion method nominal indu
t brings the indu
tion hypothesis automat-i
ally into the form(�t1 �(a; t2): 9t3:(t1; a; t2; t3) 2 Subst)| {z }P t1|{z}t (a; t2)| {z }xby 
olle
ting all free variables in the goal, and then it applies Thm. 10. Thisresults in three 
ases to be proved|variable 
ase, appli
ation 
ase and lambda-
ase. The requirement that the 
ontext (a; t2) is a fs-pset-element is enfor
ed byusing axiomati
 type-
lasses and relying on Isabelle's type-system. Note that inthe lambda-
ase it is important to know that the binder b is fresh for a and t2.The proof obligation in this 
ase is:b # (a; t2) ^ 9t3:(s; a; t2; t3) implies 9t3:([b℄:s; a; t2; t3)whi
h 
an be easily be shown by rule s4. As a result, the only 
ase in whi
h wereally need to manually \interfere" is in the variable 
ase where we have to giveIsabelle the hint to distinguish the 
ases b = a and b 6= a. ut



Together with a uniqueness-lemma (whose proof we omit) asserting that8s1s2:(t1; a; t2; s1) 2 Subst ^ (t1; a; t2; s2) 2 Subst) s1 = s2 (3)one 
an prove the stronger totality-property, namely for all t1, a, t2:9!t3: (t1; a; t2; t3) 2 Subst : (4)Having this at our disposal, we 
an use Isabelle's de�nite des
ription operatorTHE and turn 
apture-avoiding substitution into a fun
tion; we write this fun
-tion as (�)[(�) := (�)℄, and establish the equations:am(a)[a := t℄ = tam(b)[a := t℄ = am(b) provided a 6= bpr(s1; s2)[a := t℄ = pr(s1[a := t℄; s2[a := t℄)([b℄:s)[a := t℄ = [b℄:(s[a := t℄) provided b # (a; t) (5)These equations 
an be supplied to Isabelle's simpli�er and one 
an reason aboutsubstitution \just like on paper". For this we give in Fig. 3 one simple exampleas eviden
e|giving the whole formalised Chur
h-Rosser proof from [3, p. 60{62℄would be beyond the spa
e 
onstraints of this paper. The 
omplete formalisa-tions of all the results, the Chur
h-Rosser and strong normalisation proof is athttp://www.mathematik.uni-muen
hen.de/�urban/nominal/ .6 Related WorkThere are many approa
hes to formal treatments of binders; this se
tion des
ribesthe ones from whi
h we have drawn inspiration.Our work uses many ideas from the nominal logi
 work by Pitts et al [16, 6℄.The main di�eren
e is that by 
onstru
ting, so to say, an expli
it model of the�-equated lambda-terms based on fun
tions, we have no problem with the axiom-of-
hoi
e. This is important. For 
onsider the alternative: if the axiom-of-
hoi
e
auses in
onsisten
ies, then one 
annot build a framework for binding on top ofIsabelle/HOL with its ri
h reasoning infrastru
ture. One would have to inter-fa
e on a lower level and has to redo the e�ort that has been spend to developIsabelle/HOL. This was attempted in [5℄, but the attempt was later abandoned.Closely related to our work is [9℄ by Gordon and Melham; it has been appliedand further developed by Norrish [13℄. This work states �ve axioms 
hara
terising�-equivalen
e and then shows that a model based on de-Bruijn indi
es satis�es theaxioms. This is somewhat similar to our approa
h where we 
onstru
t expli
itlythe set ��. In [9℄ they give an indu
tion prin
iple that requires in the lambda-
aseto prove (using their notation)8x t: (8 v: P (t[x := VAR v℄)) =) P (LAM x t)That means they have to prove P (LAM x t) for a variable x for whi
h nothing
an be assumed; expli
it �-renamings are then ne
essary in order to get the



lemma substitution lemma:assumes a1: "x 6= y"and a2: "x# L"shows "M[x:=N℄[y:=L℄ = M[y:=L℄[x:=N[y:=L℄℄"proof (nominal indu
t M)
ase (1 z) (* 
ase 1: variables *)have "z=x _ (z6=x ^ z=y) _ (z6=x ^ z6=y)" by for
ethus "am(z)[x:=N℄[y:=L℄ = am(z)[y:=L℄[x:=N[y:=L℄℄"using a1 a2 forget by for
enext
ase (2 z M1) (* 
ase 2: lambdas *)assume ih: "M1[x:=N℄[y:=L℄ = M1[y:=L℄[x:=N[y:=L℄℄"assume f1: "z# (L,N,x,y)"from f1 fresh fa
t1 have f2: "z# N[y:=L℄" by simpshow "([z℄.M1)[x:=N℄[y:=L℄=([z℄.M1)[y:=℄[x:=N[y:=L℄℄" (is "?LHS=?RHS")proof -have "?LHS = [z℄.(M1[x:=N℄[y:=L℄)" using f1 by simpalso have "...= [z℄.(M1[y:=L℄[x:=N[y:=L℄℄)" using ih by simpalso have "...= ([z℄.(M1[y:=L℄))[x:=N[y:=L℄℄" using f1 f2 by simpalso have "...= ?RHS" using f1 by simpfinally show "?LHS = ?RHS" by simpqednext
ase (3 M1 M2) (* 
ase 3: appli
ations *)thus "pr(M1,M2)[x:=N℄[y:=L℄=pr(M1,M2)[y:=L℄[x:=N[y:=L℄℄" by simpqedFig. 3. An Isabelle proof using the Isar language for the substitution lemma shown inFig. 2. It uses the following auxiliary lemmas: forget whi
h states that x# L impliesL[x:=T℄=L, needed in the variable 
ase. This 
ase pro
eeds by stating the three sub
asesto be 
onsidered and then proving them automati
ally using the assumptions a1 and a2.The lemma fresh fa
t1 in the lambda-
ase shows from z# (L,N,x,y) that z# N[x:=L℄holds. This lemma is not expli
itly mentioned in Barendregt's informal proof, but it isne
essary to pull out the substitution from under the binder z. This 
ase pro
eeds asfollows: the substitutions on left-hand side of the equation 
an be moved under thebinder z; then one 
an apply the indu
tion hypothesis; after this one 
an pull out these
ond substitution using z# N[y:=L℄ and �nally move out the �rst substitution usingz# (L,N,x,y). This gives the right-hand side of the equation.



proof through. This in
onvenien
e has been alleviated by the version of stru
turalindu
tion given in [8℄ and [12℄, whi
h is as follows9X: FINITE X ^ (8 x t: x 62 X ^ P t =) P (LAM x t))For this prin
iple one has to provide a �nite set X and then has to show thelambda-
ase for all binders not in this set. This is very similar to our indu
tionprin
iple, but we 
laim that our version based on freshness �ts better with in-formal pra
tise and 
an make use of the infrastru
ture of Isabelle (namely theaxiomati
 type-
lasses enfor
e the �nite-support property).Like our ��, HOAS uses fun
tions to en
ode lambda-abstra
tions; it 
omes intwo 
avours: weak HOAS [4℄ and full HOAS [15℄. The advantage of full HOAS overour work is that notions su
h as 
apture-avoiding substitution 
ome for free. We,on the other hand, load the work of su
h de�nitions onto the user. The advantageof our work is that we have no diÆ
ulties with notions su
h as simultaneous-substitution (a 
ru
ial notion in the usual strong normalisation proof), whi
h infull HOAS seem rather diÆ
ult to en
ode. Another advantage we see is that byindu
tively de�ning �� one has indu
tion for \free", whereas indu
tion requires
onsiderable e�ort in full HOAS. The main di�eren
e of our work with weakHOAS is that we use some spe
i�
 fun
tions to represent lambda-abstra
tions;in 
ontrast, weak HOAS uses the full fun
tion spa
e. This 
auses problems knownby the term \exoti
 terms"|essentially junk in the model.7 Con
lusionThe paper [2℄, whi
h sets out some 
hallenges for automated proof assistants,
laims that theorem proving te
hnologies have almost rea
hed the threshold wherethey 
an be used by the masses for formal reasoning about programming lan-guages. We hope to have pushed with this paper the boundary of the state-of-the-art in formal reasoning 
loser to this threshold. We showed all our resultsfor the lambda-
al
ulus. But the lambda-
al
ulus is only one example. We en-visage no problems generalising our results to other term-
al
uli. In fa
t, thereis already work by Bengtson adapting our results to the �-
al
ulus. We also donot envisage problems with providing a general framework for reasoning aboutbinders based on our results. The real (implementation) 
hallenge is to integratethese results into Isabelle's datatype pa
kage so that the user does not see any ofthe tedious details through whi
h we had to go. For example one would like thatthe subset 
onstru
tion from a bigger set is done 
ompletely behind the s
enes.Deriving an indu
tion prin
iple should also be done automati
ally. Ideally, a userjust de�nes an indu
tive datatype and indi
ates where binders are|the rest ofthe infrastru
ture should be provided by the theorem prover. This is future work.A
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