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Abstract idea can be realized if one succeeds in interpreting a type as
a collectionA of bits of information and a datum of typ&
Linear Logic is based on the analogy between algebraic as a vectod = ) - , m.a, where each scalai,, "counts”
linearity (i.e. commutation with sums and scalar products) the multiplicity of the bita in @ (see B]).
and the computer science linearity (i.e. calling inputsyonl Interpreting formulee of LL as vector spaces is not
once). Keeping on this analogy, Ehrhard and Regnier in- straightforward, because exponentials generate infirite d
troduced Differential Linear Logic[¥ILL) — an extension =~ mensional spaces. For this reason, the vector spaces must
of Multiplicative Exponential Linear Logic with differdat be endowed with a topology yielding a suitable notion of
constructions. In this setting, promotion (the logicalexp  converging sumi]. In [9, 10] the fundamental intuition of
nentiation) can be approximated by a sum of promotion-free LL becomes concrete. In these models, programs that use

proofs of DILL, via Taylor expansion. their arguments exactly once are interpreted as continuous
We present a constructive way to revert Taylor expan- linear functions and programs that can call their arguments
sion. Precisely, we defimaerging reduction— a rewriting infinitely often are analytic functions. Moreover, anatyti

system which merges a finite sumDfLL proofs into a  functions can be approximated by polynomials throtiag+
proof with promotion whenever the sum is an approxima- lor expansion2]. This approach is possible thanks to the
tion of the Taylor expansion of this proof. We prove that presence of a derivative operator. A natural question then
this algorithm is sound, complete and can be run in non- arose: whatis the meaning of such a derivative from the log-
deterministic polynomial time. ical viewpoint? Ehrhard and Regnier answered to this ques-
tion, introducing thedifferential linear logic(DILL, [5]),
and its functional fragment: theiifferential A-calculus[4].

In LL, only the promotion rule introduces tHemodal-
ity. The semantics of this rule is the exponentiation of
Ehrhard P]. Operationally, the promotion creates inputs

In the 80’s, Girard 7] introduced linear logic (LL) —a that can be called an unbounded number of times. 1InLD
refinement of intuitionistic and classical logics. One fgart  three more rules handle themodality codereliction co-
ularity of LL is to be equipped with a pair of dual modalities contractionandcoweakeninpthat are the duals of the LL
(the exponentiald and?) which give a logical status to the rules dealing with th& modality dereliction contraction
operations of erasing and copying data.The idea is that lin-and weakening In particular, codereliction expresses in
ear proofs (i.e. proofs without exponentials) correspand t the syntax the semantical derivative: it makes available in
programs which call their arguments exactly once, whilst puts of type!A that must be called exactly once, so that
exponential proofs call their arguments at will. The study executing a progranfi on a "coderelicted” input amounts
of LL contributed to unveil the logical nature of resource to calculate the best linear approximationfofn . Notice
consumption and initiated a foundational comprehension ofthat this imposes non-deterministic choices — it made
resource-related runtime properties of programs. of several subroutines each of them demanding for a copy of

Linear logic makes an extensive use of jargon borrowed z, then there are different executions obn z, depending
from vector spaces and analysis: linear, dual, exponential on which subroutine is fed with the unique available copy
etc. Indeed, at the very start of LL, there was the fundamen-of z. Thus we have a formal sum, where each addendum
tal intuition that programs should be modeled as analytic represents a possibility. This sum has a canonical mathe-
functions and approximated by polynomials, representing matical interpretation — it corresponds to the sum obtained
bounded (although possibly non-linear) computationss Thi by computing the derivative of a non-linear function.

Introduction



As expected, the Taylor expansion can be imported ir bottom:  one
the syntaxic realm by iterating differentiatio]| A proof
of LL can be approximated by finite sums of promotion- 1L 1 X xL oAl 1A]
free proofs of DLL. The principle is to decompose a _
. . . B (a) basic cut-free nets.
program into a sum of purely "differential programs”, all

axiom: weakening:  coweakening:

of them containing only bounded (although possibly non- par: tensor: dereliction: mix:

linear) calls to inputs. Understanding the relation betwee | - --- - it -

a program and its Taylor expansion might be the starting | = | o o

point of renewing the logical approach to the quantitative] A1 |B~ AlB” CAL T T oo

analysis of computation started with the inception of LL. ? (D P
A first question is to understand whether a finite sum of ARB A®B A

DILL proofs approximates an LL proof. This paper tack- (b) linear constructions of cut-free Il-nets

les this question with an algorithm computing the proofs
that are approximated by fnite DILL sum. There are

DILL proofs that do not appear in the Taylor expansion of , ,
the same LL proof, in some sense they are catterent '_v -

contraction: promotion:

__________

One should think to the addenda of allD sum as paral-

lel threads of a computation, the sum converges whenevg
these threads can be joined up into a sequential computi
tion, represented by a LL proof. Our algorithm takes a fi- (c) exponential constructions of cut-free ll-nets
nite sumy . a; of DILL proofs as inputs, runs a rewriting
reduction, namely thenerging reductiopand returns a LL
proofr or falls in a deadlock. We prove that this algorithm
is complete (Th1) and sound (Th2): = is reached if, and 1 Taylor expansion: from lI-nets to polynets.
only if, ", ; is in the Taylor expansion of. The algo-

rithm is non deterministic (a finit® , «; can appear in the We consider formulae of propositional multiplicative ex-
Taylor expansion of several LL proofs) and can be run in ponential linear logic (MELL), generated by the grammar:
non-deterministic polynomial time (CorollaB).

The syntax of nets. We represent LL proofs as graphs

calledll-nets (Def. 1). In [7] ll-nets are callecproof struc-  whereX, X range over an enumerable set of propositional
tures The distinction between proof structures and proof variables. The linear negation is involutive, i.4-+ = 4,

nets (the logically correct proof structures) plays no inle  and defined through De Morgan law$ = 1, (A® B)* =
this paper: we will thus omit to speak of any correctnesscri- A1 %% BL and(!4)+ = 74+,

terion. Besides, we consider only cut-free ll-nets. We adop o _ _

the syntax of {3 with generalized contractions and atomic Definition 1. The cut-free linear logic netd|-nets* for

axioms. In addition we have coweakenings, needed to de-short, are inductively defined by the constructions drawn
fine the informative order of Seetand to state our main " Figuresl(a) 1(b) and 1(c), supposing that’ and 7"

theorems (TH, 2). Concerning DLL, we represent its &€ cut-free ll-nets. They are finite hypergraphs m_adg of (i)
proofs agpolynets which are sets adimple netg¢Def.2). In nodes labeled by MELL formulee and callpdrts; (ii) di-
general golynetis a linear combination of simple nets with ~ "écteéd hyperedges labeled by MELL connectives, depicted
coefficients in a field of scalars. Since coefficients ard-ire @S triangles and namells (i) directed hyperedges cross-
evantw.r.t. our questions, we omit them and define polynetsiNd POrts labeled by a same exponential formula and named

as the sets which correspond to the supports of the lineasStructural wires; (iv) undirected edges calleimple wires
combinations. and crossing two ports labeled by the same formula or (only

in the axiom case) labeled by dual formulas.

A cell/stuctural wirec has a unique target, named the
principal port of ¢, the sources, if any, are called thax-
iliary ports of c. We adopt the convention of depicting the

" directed hyperedges with a top-to-bottom orientation.

A port of an ll-netr is free whenever it is not crossed
by any cell. We require that is given together with am-
terface (p; : A;)i<, €numerating its typed free ports. The

Y=

Figure 1: inductive definition of cut-free lI-nets.

AB:=X|X'|1|A®@B|L|A®B|!A|?4A,

Outline. Section1 defines the Taylor expansion of II-
nets into polynets (De¥). In Section2, we definela-
belings(Def.6), an equivalent but more local way to deal
with boxes. We present our rewriting system, the terms
called merging triples(Def.13), and the reduction over
them, calledmerging reductionDef.12). We prove that
the merging reduction is non-deterministically polynomia
(Cor.3), complete (Thl) and sound (Th2) with respect to
the Taylor expansion. 1This definition is kept informal: we refer té&]15] for precisions.
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Figure 2: exponential constructions of cut-free simple nets. Figure 3: codereliction and product of simple nets.
interfaces(p; : Ai)i<n and(q; : B;)i<n arepaired when- Except for boxes and depth which have no meaning in
evern = m and4; = B;. the context of simple nets, we use the vocabulary of ll-nets.

In the contraction case (Fid(c)), 7’ is a cut-free ll-net  The wordnet will refer equally to ll-nets or simple nets.
with at least two free portg, ¢ of type 7 A; to obtain the

drawn lI-net, we equab, ¢ with a unique free port : 74 The Taylor expansion decomposes an Ill-néhto a set
and merge the two (hyper)edges sharinin the promotion 7 () of simple nets; each simple net () represents
case, the ll-net’ is put into abox; this box is a cell labeled ~ an "instance” ofr where every box has been replaced by
by a cut-free ll-net: itzontents Notice that given the box  a finite number of copies of its contents. Before giving the
interface(po : 'A,q1 : ?B1,...,q, : ?B,), the interface of ~ definition of 7 (7) (Def. 5), we need to introduce substitu-
its contents igp) : A,q} : ?Bi,...,q, : ?B,) where the  tion (Def.3), cod(p, @) and product (Def4).

principal portsp, andp{, and the auxiliary portg; andg,

match. We require moreover that: Definition 3. Let «, # and~ be three nets such th&tand

;o _ ~ have paired interface®; : A;) and(q; : A;). If Bis a
() taglglgrqege p(g@irugtf;aowirg. contents of a box does subnet ofx then thesubstitution «[vy//3] is the net obtained
‘Flcw)edepth otfoan?f-net is the maximal number of nested from « by replacings with . So, ¢; replaces; and the
boxes, it is defined by induction: the depth of any basic Il- wires sharing;; are merged.
net is0, the depth of a box ig + 1 whenever the depth of o )
its contents is/, the depth of the mix of two Il-nets is the Definition 4. Leta be a simple net and be a free port of
greatest depth of the used ll-nets and the other construc®- We denote asod(p, a) the simple net obtained from
tions do not change the depth. For any ll-netthe set Py adding a-cell with auxiliary portp (Fig. 3(a).

of boxes of dept is denoted bybox,(r) and the set of Let o anda’ be two simple nets with paired interfaces
boxes at any depth byox(r). We define similarly the sets  "€SP-(p = A1, ¢1 = 7B, g 2 7Bn) and(p : 1Ay, qp
of cells celly(7) andcell(r). Finally, we denote: € = if ?Bi,...,q, : 7By). Theproduct « - o is the simple net
¢ € cell(r). By extension, ib andd’ are boxes, we will use resulting from the cocontraction pfandp’ and the contrac-
b ;) bl for Cell(b) ;) Cell(bl). tions Of(h andq; (F|g 3(b))

Notice that, for every, b’ € box(r), cell(b) andcell(d’) The product of simple nets is commutative, associa-
are either disjoint or included one into the other one. This tive and its neutral element is the net only made of
means thaD is a tree-order ovasox(r), i.e. wheneveb,b’ (co)weakenings and written &3.

have a sup then they are comparable.

As mentioned in the Introduction, boxes represent data
that can be called infinitely often during the execution of a
program. In DLL new rules (cocontraction and codere-
liction) deal with !-formulee but keep bounded the num-

Definition 5. The Taylor expansior? of an ll-netr is the
set of simple netd () defined by induction on the depth
of = (Fig. 4(b)). We distinguish two cases according to
whetherr is a boxb, or a generic ll-net:

ber of calls to the data. This allows to represent non- wherek € N, v; € T(p)
linear programs asimple netsvhere boxes are replaced by k pis the cont'enjts o and
(co)contractions which explicitly give the number of calls T(b) := H cod(pj,7;) ; p; is the free port ofy; ¢,

to their contents. j=1 correspondingto the prirl-

Definition 2. The cut-freesimple netsare inductively de- cipal port ofb.

fined by the constructions depicted on Higp)and1(b)and
by the exponential constructions of F&. The cocontrac- { whereboxg (7)) = {b}r<s, }

tion case is defined analogously to the contraction case. A7 () := ¢ 7[8-/b:]-<s ; pr is the contents o, and

polynetis a finite set of simple nets with paired interfaces. Br € T(b)

2This condition is needed to have a canonical representafitmets. SNotice that the Taylor expansion defined by Ehrhard and Redéli
It can be equivalently stated as: evefyis connected by a simple wire to  was defined in terms of sums of nets. Since we are only integest the
a?-cell or to an auxiliary port of another box. support of these sums, our version deals with sets.



Figure 4: (a) a ll-netr s.t.boxg(m) = {b, },r<s; (b) the generic shape of a simple et 7 (r); (c) the linearizatiori(r).

Not every polynet is the Taylor expansion of an Il-net.

2.1 An example.

Indeed, simple nets appearing in the Taylor expansion of an

ll-net = are coherent: their structure reflects the boxes of

m. In Figures5(c) and5(d), we present an example of two
incoherent simple nets; € 7(m;), i = 1,2. However,
m andmy have the same linearization which is intuitively
obtained by forgetting the contour line of boxes. More for-
mally, thelinearization (Fig. 4(c)) {(«x) of an ll-netr is in-
ductively definedi(r) := w[cod(p,, [(pr))/br]r<s, Where
box(m) = {b,}r<s, pr iS the content ob, andp, is the
principal free port of (p,.).

In the sequel(w) will play an important role, since it
describes the structure afexcept from the boxes outline.
Indeed, it is a simple net of (7), obtained by taking ex-
actly one copy of every box of.

(b) 72

(© a1 € T(mi)\T (r2)

(d) a2 € T(m2)\7 (m1)

Figure 5: m; andm, with same linearization.

2 Reversing Taylor expansion:

In this section we present the merging reduction: our
algorithm reversing the Taylor expansion. Given a finite
polynet, theinitial state (Def. 11, Fig. 8(b)) is obtained by
plugging the simple nets inttounters(Def. 10, Fig. 8(a)).

Before going into more details, let us run our algorithm
on an example. The rewriting is depicted step by step on
Fig. 6. We draw in boldface the redex which is about to be
reduced. The run we follow is successful and its result is
the ll-net depicted on Ficx(a)

Initial state. Consider the polynefa;, as}, where(p; :

?1, q¢; : ?'1) is the interface ofy;. The algorithm starts
from the initial state depicted on Fi§(a) Two counters
connect; andas, one for?1 and one for?! L. There are
two tokensl; and1; inside the counters and abphabet
{A} containing araddressA = {1, 12} which is the set of
tokens inside the counters (D&}.

First step. The only possibility is to apply a stegontr to

the right counter, setting; = 2,n, = 3 and som = 2
(see Fig9 for the notation). Indeed we need to choose how
to distribute the three auxiliary ports of the contractidn o
as. Itis a non-deterministic step of the merging algorithm:
different choices may lead to non-confluent reductions. In
this example, apart from the reduction we will pursue, one
choice leads to the lI-net of Fi§(b), and the other ones fail,
i.e. lead to nets with counters that are not further redecibl
Step2. The ?-cells of the redex are merged into a unique
?-cell labelled with the addregs( recall that it is the set of
the tokend. |, 15 in the merging counter).

Step 3. The next redex is reduced by the “crucial” éps
This step has “created” a box by adding three new tokens
11,1112 and a new address= {11,1},13}. The new to-
kens are associated with the coderelictions in the redex and
they extend the old ones in a sense made precise in8Def.
specificallyl} (resp.1},13) extendsl; (resp.1l;). The ad-
dressB represents a box associated with theell labeled
by B and resulting from the merging of the three coderelic-
tions. The new address opens the possibility of applying ers

of type?—P> to the two counters inactive until now.

!
Step4. While =2 ers creates a box adding a new address,
and enters it via the principal port, & ers enters a box

Then these counters explore the simple nets, merge equgﬂllready created using an address available in the alphabet

cells and draw boxes when it is possible. If the algorithm
succeeds, then the result is an ll-net. On Bigve give the
elementary reduction stepar§) of the merging reduction.

(hereB) and via an auxiliary port. Notice also that’® ers
can “consume” contractions (here, the counter increases th
number of its auxiliary ports) but it does not mergyeells



(9) (h) (i) () Labeling.

Figure 6: an example of reduction.

since these can belong to other boxes. with the coweakening in the redex, is stored in a special
Step 5. The address stored in a counter after a number of basket that will be kept until the counter is erased (6f.
*P, ers must be put down on a cell by’a% ers. La;t step. The resulting net is. tabeling (Def. 6). .It has
Step6. Two counters meet and they share exactly the sameheither counter nor cocontraction and every cell is lalelle
address. Thus they can be eliminated b¥astep. by an address. It represents the ll-net drawn in 5{g)

’p H one . .
Step7. The ers— consumes contraction and the efs- In order to be as local as possible, our reduction cannot
merges thé-cells into one?-cell labeled withs. use boxes as they require to define their “frames” all in one

Step 8. Remark that one port of the counter is wired go. Thus, we reconstruct the linearizatign) of an Il-netr

to a coweakening. The® ers creates four more to- and we representthe boxes by labeling the cellg$of with
kens 1!, 12! 12% 122 associated with the coweaken- addresses. A total labeling encodes exactly the boxes of
ing/coderelictions of the redex. A new addreswhich is (Prop.1). During the execution of the merging algorithm,
the set of new tokens appears. These tokens extend the olthe partial labeling is extended step by step up to a total

ones as hinted by the indices. The tolde}f, associated  function. The frames of the boxes ofare recovered from
the addresses labeling the cells 6f).



R 2 Definition 7. Let (a, £) be a labeling. With any-cell b of
Joe ] Jol «, we associate the labelingnt («, £, b) corresponding to
NG B its contents. It is defined by the simple net
A ot An
e {c€al(b) Cas £(0), c £ b},

Figure 7: decomposition of a simple net.

and the labelin@cond( L) = £(b) andLeoni(c) = £(c).
2.2 Labeling We say that a labelinfy, £) is equivalentto an ll-netr
and we write(«, £) = = for short, whenevew = [(7) and

In our example the box associated with theell labeled
by B contains the cells labeled B/and everything above.
Notice that the set of addresses is endowed with an order: . - . .
AC BT C, which means that the bag contains the box Proposmon_ 1. Alabelingis equwale_nt to a unique cut-free
C. Not every labeling is a correct boxing, we give condi- Il-net and vice versa (up to a renaming).
tions (D.ef.6) on labelings sufficient to ensure the equiva- p.yof. We prove that for any labeling, there is a unique
lence with Ii-nets (Propl). _ B equivalent ll-net by induction on the size of the simple net
For every cut-free net there is only one decomposition e labeling (c.f. Annex@, Prop.6). We prove the con-
of a into a subnety made of axioms and pairwise disjoint erse (c.f. Annexé, Prop.7) by building a labeling candi-
trees(f;)i<, Of cells and wires. The leaves 6f canbe  qate: the ordeE reflects the tree-order of boxes (c.f. An-

units (L or 1), (co)weakenings, or axioms if. We set  payen | em.5), the labeling properties (D&j follow. I
a <, b whenevemw, b belong to the same tree ands an

ancestor ob. If o has more than one conclusion thenthere | et ys describe the labeling on Fi§l. The set of names

are several minimals with respect tq,. We introduce a s A/ = {A,B,C}. The algorithm starts with two different
conclusion celf 1, set to be the minimum of,. tokensl; = {z} andl, = {y} that are gathered in the ad-
Let A/ be an infinite set ofiames dressA which is the lowest element of the labeling. Each

o ) ) token corresponds to the lowest element of one of the sim-
Deflr_1|t|0n 6. Let« be a cut-free simple net without €OCON-  ple nets. Step introduces three new tokens = {z, ¢},
traction. LetC : {1,} Ucell(o) — A be a total function 1} = {z,c;} and12 = {x,c3} wherecy, ¢, ¢3 corre-

Vb € box(r) with contents, cont(a, £,0) = I(p). (1)

such that: spond to the-cells in boldface oré(c). These tokens are
o Cisinjective oncoder(a) U {La}; gathered in the address = {1,1;,13} which is used
. . by Steps4, 5 and7. Finally, Step8 introduces the tokens
e the codomairt(«) of £is £(coder(a) U {Ly}). 17 = {2, e1,di ), 150 = {2, e0,w), 120 = {2, ¢3,da)}

and13” = {x,c3,d3} whered,, w, da, ds are thel-cells

in boldface on6(h). The address which corresponds is
n = £(c) B={1]",10" 12" 1%} is used in Step.

m = £(d). We are working with two orders: one is the order of ad-
dresses_, encoding the structure of boxes; the other is the

Let us denote_,, ¢ the transitive closure a7 .. The pair  qrger of tokens (i.e. the set inclusion), encoding the struc

Letus define;g_’,: as theg image of<,, onto £(«), that is:

Vn,m e L£(a), nCy ¢ m <= Jc<,d, {

(a, £) is called dabeling whenever ture of boxes in the simple nets appearing in the Taylor ex-
(i) C..cisapartial tree-order, havingy L) as the min-  Pansion. The merging reduction builds the token orders. At
imdm; the same time, it checks that the boxes of each simple net

o . are compatible and merges them inducing the addresses or-
(i) if ¢ # L, andc is the predecessor cell of then  der. Notice that the order of addresses is an abstraction of

either€(c’) = £(c) andcis notal-cell, or£(c) isthe  the order of tokens, forgetting the cardinality of the Iatte
son of£(c’) andc is al-cell, or finally ¢ is a?-cell;

(iii) for every axiomw, if one port ofw is an auxiliary port ~ 2-3 Reduction

ofacelle suchthatg(c) # £(L,), then the other port

of w is the auxiliary port of a celt and£(¢’) = £(c). The most delicate task of merging reduction is to recon-
struct a correct nesting of boxing, i.e. the ordeof Def.6.
This reconstruction is made step by step, using the set the-
oretical inclusion of the tokens, and the induced orden
addresses (Ded): at the end of the process we will have
4Formally, L, is the set of free ports. <=C and consenquently a ll-net.

From the order induced by the labeling, one can recover
the contents of the box associated withcll. Then a label-
ing and a box match if the contents of their boxes coincide.




e a setA of addresses and a functiadhfrom cell(Jo),
L, included, toA, where for every counter, £(t) =
At (t) U {A:(p) | p auxiliary port oft}.

We will be interested in reductions beginning on an initial
state made of counters linking the given simple nets.

(a) counter (b) initial state Definition 11. Let («;)i<, be a collection of simple nets

with paired interfaces. Lefl;);<, be tokens anad, be
an address such that the tokenstin= A, U {1;},<,, are
pairwise incomparable. Thimitial state associated with
Definition 8. Let X be an enumerable set called theh. (i)i<n, (1:)i<n, anda,, is the triple(a, £, A) wherea =

A token is a finite set of elements iX. An addressis a Inity, (o4, 1;)i<n IS the simple net with counters pictured
finite set of tokens. We sdat m to range over tokens, B on Fig.8(b)with £(t) = A for every countet andA = {A}.

to range over addresses, addB to range over sets of ad- In the sequel, when,, is empty, we will often omit the
dresses. The set-theoretical inclusion on tokens indiees t subscript and writénit (c;, 1;) i<,

following pre-order on addresses:

Figure 8: counter and initial state.

Now we have all the ingredients to introduce a reduction

AdB < VmeB, JleA 1Cm 8, on triples as the context closure of the binary relation
It is immediate to prove that is a pre-order. However let 1rg described in Fig9. In the interaction net paradigm
us stress that! is not antisymmetric (consider= {1,m}, [11], a redex is made of two cells wired by their principal
B = {1} withl c m m'), nor tree-like (consides — ports. On the contrary, a merging redex is made of a counter
(1,2 _ {n;} B— {1 m}’ with L. m disjoint) on the whole ~ Whoseauxiliary ports are linked to the principal ports of
set of addresses. Indeederging triple(defined below) will  CellS of simple nets. For this reason we represent the aux-
handle sets of addresses on whitlis a tree-order. iliary ports of a counter as tips of triangles. It is impottan

) _ ) to notice that though the counters merge cells locally, the
During the reduction, counters will go through the net and |apeling process is global, whence the set of addresses ap-
build a labeling. pearing in the triples.

Definition 9. A counter is a cellt with one principal port
andn > 1 auxiliary ports. Every port of is labeled by the
same MELLformula. We consider counters as commuta-
tive cells: their auxiliary ports are interchangeable. Btor
over,t is given with a labeling function, which maps ev-
ery auxiliary port to a token anditself to an address (see
Fig. 8(a). We also require that for every portsq of t  £qr o varying overlnr, mrg, we define thex-reduction
At(p), )\_t(q) are incomparable tokens and also are incompa- (1,21, A1) 5 (a2, £2,.A5) as the context closure of
rable with every element of; (¢). more precisely it holds iff: 3o/, C «a; such thata, =
In order to describe the partially labelled nets that appearai[as/a)], andVe € ag, Lao(c) = £(c) if ¢ € ay,
during the reduction, we introduce triples. otherwise (i.ec € a1 \ o)) £2(c) = £i(c), and finally
(alla ’Ql\o/l ) -Al) X (a/2’ 2‘/27 -’42)

We denote by™> the reflexive and transitive closure of
e an simple netx with counters which can be decom- =\ saythaR : (a, £, A) 5% (a/, &/, A') is successful

posed into two counter-free simple nets and T « T T

joined by counters,, . .. t, as follows:

Definition 12. We consider the following unions of tres-
ementary reduction stepg(ersfor short) in Fig.9:

lnr := axUzeroUoneUtwoU (co)wU contr,

mrg := lnrUl!pU7p.

Definition 10. We considetriples («, £, .A4) made of

if o’ is counter-free.

There are only three cases where a reduction falls into a
( la ) deadlock, (i.e. a triple no further reducible but with coun-
)\ o )\ o ters): when two counters are linked by axioms and have
A, (1 ﬁ ay [ ﬁ different labels; when a counter is linked to one axiom and
( | i l | ) another cell; when there is no possible address to go through
Q

‘ ‘ a contraction link for &p-ers.
Since we want the reduction to produce a labeling, we

We denote byja resp.la the simple net made dfa have to restrict the set of triples that we consider. So we
resp.Ta and the counters, and we identify thecells introduce merging triples such that the result of a sucoéssf
of a, | a andJe; reduction (i.e. a counter-free merging triple) is a labglin



wherex is one betweef?, ®@; moreovelt = A, U {1;};<x andA € A.

ny ng

=~ =~

wherem > 2, and for each < k, m < n; > 2, andf; is a
surjection fromn; to m.

ni ng
AT A AT A
VR S 'ig)ﬂ
4 . AU ()
v
1A

wherel < ¢ < k and for everyi < k, n; = 0iff i > ¢; moreover, there exists a famify/} U {7 };<, j<n, Of pairwise
distinct elements oK which are fresh in4 and such that!, = A,, U {1; U {y} }q<i<x andl} = 1, U {7} }.

wherel < ¢ < k, and for everyi < k, n; = 0iff i > ¢; for everyi < ¢, f; is a surjection fromm; to m; < n;; as for
tokens and addresses, we ask that there exists a fgmiily {z]}.<, j<n. Of pairwise distinct elements of such that
Ay = Ay U{Li U{y}ttgcick, 17 = 1 U {2} andA” = A&, U {1j}icq j<m, € A.

Figure 9: the elementary reduction steps (ers) of merging reductiemnet at left of an ers is thredex, that at right the

contr 7

contractum of the ers. In the=>=, -2, ers, we present a bunch of contractions and wirings as actiugdunctionf from
the auxiliary ports to the principal ones.



Then we prove that the reduction preserves the propertiedDefinition 14. We say that an ll-net’ is less informative
of the merging triples. Since the initial states are merging than an ll-netr and we writer’ < 7, whenever there are

triples and the counter-free merging triples are labelng,
get the wanted result.

Definition 13. The triple («, £,.A) is called amerging
triple if it satisfies

(i) forevery countet € «, the principal port of is wired
toacellc €|a, L, included, and(c) < £(t); more-
over, if £(c) # £(t) then every auxiliary port of is
wired to a7-cell ¢ €Ta, or a weakening;

(i) VA,Be A, (AC),, ¢ B < A<dB),
(i) (la, £)is alabeling and(la) = A.

Notice that the initial state (Del1l) is a merging triple.

As we wrote abovel is notin general an order; however,
if (o, £, A) is merging, then Condii{, (iii) guarantees that
<is a tree-order otd.

It is very important to notice that the property of be-
ing a merging triple is stable under merging reduction (c.f.
Prop.8 of AnnexeB). As a consequence, if a reduction
(a, £, A) =5 (o, £, A') is successful, i.ea’ is counter
free, then(a/, £) (1 o/, &) is a labeling and so rep-
resents an ll-net (Prop.1). In this case, we say that the
reductionleads tor and we write

(o, £, A)

mrg* -
Proposition 2. The number of ers of any-=-reduction
starting from a merging triple(a, £,.4) is polynomially
bounded by the number of portsdn

Proof. c.f. AnnexeB, Prop.2 O

The ers of Fig9 are local and can be implemented on a
Turing Machine in constant time. Thus Pr@yields:

Corollary 3. The runtime of any—2-reduction starting
from a merging triplg «, £, A) is polynomial in the number
of ports ina.

2.4 Completeness and soundness

boxes(b,),<s in box(7) such thatr’ = 7[10/b;],<s.

Itis easy to check thak is an order. Intuitivelys’ is the
result of erasing some subroutinesmofin general a finite
subset of7 (r) does not have enough information to build
7 and we will rather buildr’ < 7. However,

o <m=T(r")CT(n). 2
Theorem 1 (Completeness)Let = be a ll-net, and let
a1,...,a, be simple nets in7(x). For any family
{1;}i<n = A of pairwise distinct tokens, there exists an
ll-net 7y <« 7 and a successful reduction that leadstp

mrgx
7o,

(Init (v, 15)i<n, £a, {A})
whereg, is, as usual, the constant function taking value

Proof. The proof is by induction on the exponential depth
of 7; we split the induction step in two cases: 7fis a
box, we choose tokens extending the initial ones and gather
them in an address We use the induction case wihand
conclude by context closure; in the general case, we make
counter go through the linear part (c.f. Annéxd, Lem.3)
and stop at the entrance of boxes. We use the one box case
and conclude by context closure (c.f. Annéx, Th. 1).

(I

To prove the soundness theorem, we need a splitting
lemma which decomposés in initial states (Defl1).

Lemma 4 (Splitting). Let R be a successful reduction se-
quence from a merging tripléx, £, 4) and s.t. no ers of
R enters an address labeling a counteragfthen« can be
split: there are suitable sequenc@s) ), <s, i<n, Of sSimple
nets,(1),<s, i<n,. Of lists and(A?,),<s of addresses s.t.

(Init% (al, l,})ignlj' . (Init% (a7, 1?)6%)

We prove the completeness and soundness of merging re-
duction. The completeness ensures that simple nets coming

from the Taylor expansion of a same ll-net can be merged.proof. First we prove that sinc is successful, two coun-
The soundness theorem proves the converse: if there is qgrs of the same connected componeritohave the same
successful reduction merging simple nets in an ll-net, then|gpe| (c.f. AnnexeC.3 Lem.5-6). With each labeh, we

the formers are in the Taylor expansion of the latter.
Since our system considefwite subsets{«;};<, of

the Taylor expansion of an Il-net, then some boxes of

can remain undefined from the merging{ef; };<,. For-

mally this means that the merging yields an ll-net that is

the result of replacing some boxes ofwith 10, i.e. with
(co)weakenings.

associate the subngtmade of cells connected to a counter
labelled byA. Then, two connected auxiliary ports of coun-
ters have the same label (Le6). This allows to decompose
[ into an initial state (c.f. Annex€.3, Lem.4). O

Theorem 2 (Soundness)Let m be an ll-net, let(c;)i<n
be a family of simple nets with the same interface and let



(1i)i<n = A be a family of pairwise incomparable tokens.
If there is a successful merging reduction leadingrto

(Init (aia 1i)i§n, /Q’Av {A}) E) ™ (3)

then for evenyi < n, o; € T (7).

Proof. The proof is by induction on the exponential depth

(x): there arg(a;)i<y, in 7 (1') s.t. every succesful reduc-
tion leads tor’. Since(w;)i<n, C 7 (w), by completeness
(Th. 1) there ismy < « such thatlnit (ay )<, —— mp.
By (%), mp = «’ andn’ < 7. The other direction comes
from (2). Second, two ll-netg’ # = satisfy eitherr’ & =
orn’ « «', henceT (') # T ().

of 7. The main idea is to commute the ers in the reduction Acknowledgement. We are grateful to O. Laurent for

to m and to gather the ers that enter a box (c.f. AnnBxe
Fact3). Thanks to the splitting Lemmé, we get an ini-

tial state for each box. Thus, we can apply the induction

hypothesis (c.f. Annex€.3, Th.2).

3 Perspectives

The merging reduction could have been presented differ-

ently, gathering all the non-deterministic choices in a sin
gle initial step and then performing the "deterministic’tpa
of the reduction. This amounts to choose a labelingn
the upper part o of an initial state and to transform the
merging reduction in a rewriting that checks deterministi-
cally whetherg is correct. However we have preferred the
most local presentation of the reconstruction of the boxes.
In LL, the difficulty in reversing Taylor expansion lies
in the uniformity of polynets approximations of an ll-net.
A polynet isuniformwhenever it appears in the Taylor ex-

having suggested counters travelling through nets and to T.
Ehrhard and P.-L. Curien for useful discussions and hints.
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A Labeling

Lemma 5. Let (o, £) be a labeling andy, b2 be two dis-
tinct !-cells ofa. We have:

(i) If £(b2) is a son of£(by), then cont(a, £,b2) C
cont(a, £,b1).

(i) If both £(b;) and £(b2) are sons of£(L,), then
cont(a, £,b1) andcont(a, £, b) are disjoint.

(i) Every auxiliary conclusion ofont(c, £,b1) U {b1},
thatis a minimal cell with respect tg, different from
by, is a?-cell.

Proposition 6. For every labeling «, £) there is a unique
cut-free ll-netr such that(«, £) = .

Proof. We proceed by induction on the size of the
codomain ofg. If this codomain is{£(L,)}, thena has
no!-cells, and we can take = «. Else let(b, ), <, be thel-
cells ofa such that for each < s, £(b,) is a son of¢(L,)

in the tree-ordef_, ¢. We apply the induction hypothesis
on everycont(«, £, b,.), obtaining a unique equivalent cut-
free ll-netp,: let b, be a box with contents,.. Thanks to
the above Lemma&, the only possible Il-net

7 = afbl /cont(a, £,b.) U {b,},<s
is a well defined cut-free ll-net such that= («, £). O
The following proposition shows the converse.

Proposition 7. For every cut-free ll-netr, up to renaming,
there is a unique labelingn, £) = 7.

Proof. Let 7 be a cut-free Il-net. First we defirié(r), £).
For everyc € I(w), we denote by:™ the unique cell inr
correspondingto. Let £ be an embedding @ebder(I(7))U
{Lix}into V. This is the only time in this proof we make

a choice: every other choice will generate the same labeling

up to renaming. We extengdto any other celt of (7). If

c™ has depttt in 7, theng(c) = £( Ly ). If bistheld-cell

of [(m) associated with the bdxX containingc™ at depthD,
then£(c) = £(b). It remains to show thatl(r), £) is a
labeling equivalent tar. This will be a simple consequence
of the remark that for every,, co € I(7) we have

Vb™ € box(m), (c] € b™ = ¢ €b7)
= L(c1) Eyir),e £(c2). (4)
Let us first prove4). Fori € {1, 2}, letbT be the boxes
containinge! at depthd andb; be the!l-cells corresponding
to b7 in I(7). By definition we havel(c;) = £(b;).
First assume that for every boéX € box(w), ¢f € b™ im-
pliesci € b™. If bT = b3, thenL(cy) = L£(c2). If bT # b3,

11

thanks to the box nesting, the setdl(bT) andcell(b]) are
either disjoint or one is contained in the other. Sinfec
b7, we havec] € b7. Thereforegcell(b3) C cell(bT) and
b3 € box(bT). Moreover, the principal port df; in [() is
associated with the principal port of the bgx Due to the
constraints on auxiliary cells of boxes (se®ef. 1), there
isd <y(x) b2, such that eithed = b, or d™ is contained at
depthO0 in the contents 0b7. We havef(b;) = £(d) by
definition of £ and£(d) C;(r),¢ £(b2) = £(c2), by defini-
tion of C.

Second, assume thet(ci) Cyinye £(c2). SinceC
is the transitive closure of-°, there are two sequences
(di)igka (ei)igk of cells Inl(ﬂ') such thath = C1, € = C2
and,ﬂ(dl) [ E(dg) = ,8(62) c° 2(63) = ,S(dg) R
£L(er). Foreveryi < k, £(d;) = £(e;), hence there exists
b7 € box(m) such thatl;, e; € bT. Because of box nesting,
Vb™ € box(m), df € b™ <= e € b". Besides, for every
1 odd, d; <i(n) dit1, €i+1 <i(r) €it+2. SinCEl(ﬂ') is a cut-
free simple net, we deduce that for each b8x we have
di € b™ = df , € b™ ande] | € b™ = e, € b". Com-
bining these implications, we g&b™,c] = df € V™ =
c5 =el b,

We are now in a position to show th@{r), £) is a la-
beling (see Def6). From @) and the nesting of boxes in
we deduce thal;(,) is a tree-like order withe(_L,,)) as
a minimal element (Condi)j; from (4) and the condition
on the conclusions of the contents of a boxrirwe deduce
Cond. {i) and {ii).

It remains to check thata, £) = 7. Letb™ € boxm,
andb be the!-cell of [(w) associated withh™: by (4) we
havec € I(p) iff ¢ € cont(l(n), £,b). O

B Reduction

We give a sequence of simple facts over the labelling,
that will be useful for proving soundness and completeness.

It is immediate thata, £, 4) =% («/, £, A') entails
that(a, £, AUB) =% (o/, £/, A UB). The converse does
not hold in general, however we have:

mrg
—

Factl. If (o, £, AUB)
A, £(a) C A then(q, £, A)

(o, &, A UB)and£(a) C
E (o, 8L A,

o
Fact 2. For every reductionR (a,8,4) =&
(o, &', A"), the alphabetd’ consists ofA and the ad-
dresses introduced by the ers®f

Fact 3 (Postponement) Let (a,£1,.A;) 5
(ag, £2,42) L (a3, £3,A3) for two ersx,y of mrg.
If the counter in the redex gfis not in the contractum of
andy uses an address id; or introduces a new address,
then there igas, £3,.43) such that the following diagram



commutes:

(a1, L1, A1) —— (a2, £2, A2)

I
|y \Ly
¥ x
(044,24,./44) - == (043,23,,,43)

Finally, the next fact states that linear reduction trans-
ports initial configurations.

Fact 4. If (Inity, (s, 1;), £4, {A}) 55 (o, £/, A'), then
Lo/ is an initial configuration that is there argy;);<,, such
thatla’ = Inity, (a}, 1;)i<n, and &’ = £,, A’ = {A}.

If (a,£,A) is a merging triple and
(o, & A" then (o, £, A) is a merging

Proposition 8.
(o, £, 4) =5
triple.

Proof. The proof splits in several cases, depending on the

mrg

type of the ers performed ifay, £, 4) — (o/, £, A’) (see
Figures9). In all cases we will deduce that/, £/, A")
meets the conditions)¢(iii) of the definition of merging
triple (Def. 13), assuming that these conditions hold in
(a, £, A). In the sequel,i}-(iii) refer to the properties)¢
(iii') of Definition 6).

Case i(ax). Assume(a, £, 4) = (o/, £/, A’) and lett;,
to be the two counters af erased by thex-ers andw be
the axiom created in/.

By definition, £(t1) = £(t2), A = A" and g, £ take
the same values on the same cells. Siaceg’, A') has no
new counter, it clearly meets Condl).( Besides, the only
difference betweepa and |’ is in the axiomw created in
lo/: this means that |, ¢ andC |,/ ¢ are the same order
on A, and so(«’, £') satisfies Condii() and ), (ii). Prov-
ing (iii) is subtler: we have to check that it holds for the new
axiomw. Suppose that one port afin |/ is an auxiliary
port of a cellc such thatg'(c) # £(L,), then inJa the
principal port of one the two countets, ¢5, say w.l.o.g. of
t1, is wired to the auxiliary port of. By Cond. {) we have
£(c) = £(t1). This means tha€(t2) = £(¢t1) # £(La),
and so, again by Cond){we deduce that the principal port
of t2 is wired in o to a cell¢’ and£(¢’) = £(t2) = £(¢).
We conclude by remarking thatand ¢’ are the two cells
wired byw in [/ andg'(c) = £'(¢).

Case ii (zero, one, two, contr). Assume(a, £, 4) =
(o, &', A"), let t be the counter involved in thene-ers,

changes, while the principal port ¢fis wired toc’ in Jo/
andg'(t) = £(c).

Now we prove thatC, ¢ is equal to < on A
(Cond. {i)), supposing that the latter is equal @0, ¢.
Smce[w ¢ isthe transitive closure af},, ., (Def.6) and
since we are supposing thdtis equal to the transitive clo-
sure ofC{, o, it suffices to prove|, CL}, o, C<donA.
The first inequality is immediate. Let us shcw\ja, «C<.
The only pairs in=§,, o, which might not be irc{ - are
of the form £'(d) Cf,, o £'(c') foracelld <, ¢'. By
Cond. () there is a celk in |« wired to the principal port
of ¢ and such that(c) < £(¢). In |« the cellc is wired
to the principal port of/, sod <, ¢ meansd = ¢ or
d <. c. Inthe first case obviouslg'(d) = £'(¢'), oth-
erwise we haveg(d) < £(c¢) (by the supposed equivalence
<J=LC . ¢ 0n.A), and sof'(d) < £'() by £'(d) = £(d)
and£(c) < £(t) = £'() (recall that< is transitive). We
conclude that{,, .,C<Jand so_ |,/ o/=<.

Cond.{ii) follows immediately from_ |, ¢/=<=C, ¢
on A and from the fact that the only cell created|i’ is an
exponential cell (hence Lali) holds).

The casega, £, A) = (o/, £, A'), for x amongzero,
two, contr, are easy variants. The only notable difference
is in proving Lab. {i) in the two-ers case: in that case the
cell ¢’ created by the ers is not exponential as it is in the
other cases. However we remark that whenefef) #
£(Las), we havel(t) # £(L,) and thus by Cond.i)on
(a, £, A), the principal port of is wired to a cellc €] «
such that€(c) = £(¢). This means that the principal port
of ¢’ is wired toc in |/, which give alsoi().

Caseiii(lp). Assume(a, £,.4) 2, (o, &, A"), lett be the
counter involved in thép-ers, where, as in the former case,
t denotes the counter in both the redex and the contractum,
and let¢’ be theld-cell created in'.

On every cell different front and ¢’ the two labelingsg
andg’ coincide, while we have&(t) <« £'(t) = £/'(¢’). Sim-
ilarly to the previous case, one can prove Coidaiid that

C v .¢ is equal to< on A’ (Cond. (i)). In particular no-
tice that from the hypothesi§(| «) = A, one deduces
&(la))=AUu{L ()}

As for Cond. {ii), Lab. (i)-(iii) are straightforward, the cell
¢’ being exponential and the ngt’ having no new axioms
with respect to| «. However Lab. i) is subtle since from
C,e=<on A" we cannot deduce that ), ¢ is a tree-
order: from the hypothesis |, ¢=< on A we do not know
anything on the relatior? w.r.t. the addres€’(¢’). How-
ever since the definition of thip-ers requires thag’(¢)

where we adopt the convention of denoting with the samejs optained fromg(¢) by elements ofx fresh in A, we

lettert both the counter in the redex and its residue in the
contractum, and lef’ be the?d-cell created in’.

By definition, £(t) = £'(¢) = £/(¢), A= A" andg&, &’
take the same values on the same cellshtit Cond. {) is
immediate, since for the counters different framothing
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can deduce for every addressc A that£'(¢/) 4 A, and
A< g()iff A < £(t). We conclude thatl, hence;ia/yg
stays antisymmetric and tree-like gti, which provesi.

Case iv(?d). Assume(a, £,.4) », (o, &, A"), and lett



be the counter (both in andca’) involved in the?d-ers. can also be the result of contractipg and p” in the II-
By definition, A’ = A andg, £’ take the same values onthe netn” swapping the portg’, p” of 7/, i.e. with interface

same cells but on the countewhere we havel(t) < £'(t) (p" : ?A,p" : TAT). This is the delicate pointr’ and
and £'(t) € A. Cond. () still holds, since the auxiliary = are different ll-nets, but contracting the free pgrtg”
ports oft are wired to?-cells also ina’. Cond. {i) and i) yields in both cases the same Il-ngtsince contraction is
are immediate, sincg o, £) and(|a/, £') denote the same  commutative. Now, let us prove the equivalence between
labeling. the conditions 1 and 2 of the Lemma.

Assume 1 and let us deduce 2. By definition of substi-
tution each simple net; has interfacdp : 7A,T"), and it
Proposition 2. The number of ers of any—-reduction ~ can be obtained by contracting two free pgrts ?A and
starting from a merging triple(a, £,.A) is polynomially ~ p” : 7A of a simple nety; such thatv; = 7'[v,.:/br]-<s OF
bounded by the number of portsdn a; = 7"[v:/br];<s. The pointis that we cannot choose

which one between’, 7" yields @;. Let us enumerate

Proof. Given a countee, we set ¢ is the set cardinality): the family {; }i<,, so that there is @ < n s.t. for every
1 < q, a; = 7[v.:/br]r<s, and for everyi, ¢ < i < n,
width(c) := 1 + (#{pport; p € a\ candp >, c})? ai_:q W//[Wr,i/b[}réi- ]Fgr everyi, ¢ < };L é n, let @

depth(c) := #{b!-cell; b el and&(c) ¢ UA}’ be the simple net obtained from; by swappingp’, p”,

so thatay has interfacdp’ : ?A,p"” : ?A,T) and@} =
then sefc| := width(c) + depth(c), and|(a, £, A)| asthe  7'[vi/brlr<s. By inductive hypothesis we know that:

O

sum of thelc| for every counter: € o. One can check that  (Init (@1, 11,..., @, 1g, @041, 141, - -, 0, 1n), £a, {A})
|(a, £, A)| shrinks under any ers (the squarewiidth(c) is Aoz, (' [Init (Y5, 1:)i<q /brlr<s, £a, {A}) Besides we
contr H 7 1+t . Ip H .
needed for2%, | anddepth is needed for). O have (by omitting the counter dnfor clarity):
C Completeness and soundness it (a5, 1i)i<n =
. I,—al \Ilr—aq \I ;q+1\|---;—an\l
C.1 The linear case Teq! oty
?A ?AM »Lu, {A}
We start by studying the properties of the linear reduc- (PN P B R
tion. oA |

Lemma 3 (Linear reduction) Let = be a ll-net, let
bi,...,bs be thes > 0 boxes at depth in 7, and letp, be Tnit (@1, 11,
the content ob,., for eachr < s. Let(a;)i<,, be a family of
simple nets with the same interfaceradet (1;);<, = A be

a family of pairwise incomparable tokens, and let for each
r <'s, (Vr,i)i<n be a family of simple nets with the same
interface ofb,..

The following two conditions are equivalent:

— —o —o _
s gy L, 00y, Lty -, Oy Ly )icn =

1. foreachi < n, a; = w[yyi/br]r<s,

2. there is a reduction:
from which we conclude. Notice that in the above step it is
(Init (ci, 1;)i<p, Sa, {A}) 225 crucial to be able to swap the free portsgfT, . .., a;, so
s to apply the inductive hypothesis. This justifies our defini-
(it (e, Li)i<n/br]r<s, £a, {A})- tion of thecontr step.

] ) ) ] The proof that 2 implies 1 is symmetric and left to the
Proof. The proof is by induction on the construction cases oader. 0

of an ll-netr, as given in Definitioril. Contraction is the

only delicate case, the other being straightforward artd lef  The following is straightforward from Lemma (with
to the reader. Letr be the result of contracting two free ; _ ).

portsp’, p” of an ll-netr, i.e. = (resp.7’) has interface

(p : TAT) (resp.(p’ : ?A,p" : 7A,T)), whereTl de- Proposition 4 (linear reduction) Let («;);<, be a family
notes the remaining free ports of the interface. Indeed of simple nets with the same interface and withiecells,
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letA = (1;)i<, be a family of pairwise incomparable to-
kens. There is a labelin@y, £) and a successful reduction
sequence

mrg#*

(Init (ai, li)igna £, {A}) I (aa £, A)7
iff for everyi <n, a; = a, £ = £, and. A = {A}.

C.2 Completeness

Theorem 1 (Completeness)Let = be a ll-net, and let
a1,...,a, be simple nets inZ7(x). For any family
{1;}i<n = A of pairwise distinct tokens, there exist a la-
beling(a, £) and a merging reduction sequence

(Init(a, 1) i<n, £a, {A}) e (o, £, A),
whereg, is, as usual, the constant function taking value
Moreover, there are boxég € box () for 0 < r < s such
that

(a, £) = 7[!0/by]r<s-

Proof. The proof is by induction on the exponential depth
of ; we split the induction step in two cases, the one where
m is equal to a boxp and the general case. This splitting

recalls the cases of Taylor expansion (Definiti)n

Case i(no box) If = has no boxes, theff (r) = {m}
(see Def.5) and by Lemma3 (cases = 0) we have
(Init(m,...,7), Lx, {A}) =55 (7, L4, {A}), whereg, is
the constant function taking value Clearly (7, £4) = .

Case ii (one box) If 7 is a box of contentg, then each
;= H’;;l cod(A4, vi,;), whereA is the label of the princi-
pal free port ofy, k; is an integer andlj < k;,v;; € 7 (p).

Notice that it might bei; = 0, i.e.«; = 1(!0) is made of

where£” labels only two cells, the conclusion cell, with
and theld-cell of principal portp, with B.

As we have remarked after the Definitia@@ of merging
reduction, one can always extend the set of addresses and
keepmrg-ers: this means in particular tha8)(still holds
when replacingB} and B with resp.{A,B} and{A} U B.

We conclude by context closure:

mrg#*
—_—

(Inlt (aia 11)1§n7 EAa {A}) (COd(pa 6)7 'Sllla B)v
whereg/; = £”, so(cod(p, 8), £") = 7[10/b;]r <.

Case iii (otherwise) Assumer hass’ > 1 boxes at expo-
nential depttp, i.e.box(w) = {b., r < s'}, where we use
the ' to distinguish these boxes from the ones mentioned in
the statement of the theorem. For eacl s’ let p,- be the
contents of.. By definition of Taylor expansion (Deb),
eachq; is equal tor[vy,,;/b.],<s, With v, € T (b,) for
everyr < s’. Fix now the index < s’ and let varyi < n:

by the previous case we have

mrg*
—

(Inlt (’YT,ia li)igna SA, {A}) (ﬁra '27‘1 Ar)a (6)

where£, is, as usual, the constant function taking value
and we havéj,, £,) = b,:[10/b,]i<k,., for somek, > 0
boxes inbox(b,). By the way, remark that we might have
k, = 1andb,; = b,, so(5,, £,) = 10. Notice also that we
can suppose that for different< s’ the sets of addresses
A, share onlyA. By Lemma3 we have:

(Init (7[vri /b r<s', Li)i<n, £a, {A})
mrgx

— (w[Init (yr,i, Li)i<n /br]r<s £a, {A}).
Finally, by context closure and), we conclude:

a coweakening and some weakenings. Without loss of gen-

erality we can enumerate thg's so that everyi < ¢ has
k; > 0 and every included between+1 andn hask; = 0.
We suppose moreover> 0, i.e. at least; > 0: the case
g = 0 is straightforward.

We consider an elemeptc X fresh inA, and a family
{z!}i<q,j<k, Of pairwise distinct elements of which are
fresh ina, y. By means of them we defing ; = 1, U {27}
for everyi < g andj < k;, andm; = 1; U {y} for every
i,q < i < n. Finally letB,, = {m; ; for¢g < i < n} and
B =B, U{m;; fori <g¢,j < k;}, and notice that < B.
By induction hypothesis we have:

(Init (7,5, mi,5) i<q » £, {B})
J<ki

mrg*

- (5711/’8)7 (5)

where (3, £') = p[!0/b;],<s, for s > 0 boxes inbox(p).
Moreover, by simple computations we have

(Init (v, 14)i<n, £a, {A}) LN

(cod(p, Inits,, (7i;,mi,;) i<q ). £",{4,B}),
VL)
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(Init (v, 1i)i<n, £a, {A}) —
(ﬂ—[ﬁr/b;]résﬁ Ur<s L, Ur<sr Ar),

with (76, /bl ]r<s, Up<sr L) = 7[10/by] <4, SiNCE fOr
i<k,
everyr < s’ we have(3,, £,) = p.[10/b,i]i<k, -

O
C.3 Soundness

We need some other notations: The grsand 7p are
calledboxing ers. They are the only ones changing an ad-
dresses\ associated with a counter intd; we say that the
ersentersinto the new addregs. Besides, these ers require
that the family{y} U {2/ }:<4 j<n, Of elements ofX added
to the new addresses are pairwise distinct. Thus, the new la-
beling meets the conditions of the definition of counter (see
Def. 13).

We first prove the splitting Lemmé& For this, we need
two other lemmas.



(Init (cvi, 1i)i<n, £a, {A})

(COd(A, Inith (Vi,j y mm) Z<§kq ), £”, {A, B})
VL)

Figure 10: case one box

Lemma 5. Let R be a successful reduction sequence from
a merging triple(a, £,.A); let 54,..., 3, be the trees of
the canonical decomposition of the simple fiet, as in
Figure 7. Letp, ¢ be two distinct free ports dfa, let 5,
(resp.f,) be theg; tree with rootp (resp.q) and lett (resp.

u) be the counter having (resp.q) as auxiliary port. If3,
and, share an axiom then:

(i) t andu are different counters;

(i) bothpairs£(t), £(u)andX,(p), A, (¢) are in the same
order with respect tad for the former andC for the
latter;

(i) if £(t) < £(u), thenR enters the€(u), if £(t) <
£(u) thenR entersC(u).

Proof. We proceed by induction on the length Bf As-
sume thatR starts with(a, £, 4) —2 (o/, £, A), then
the suffix R’ of R defines a successful reduction sequence
starting from(o/, £, A’). The lemma does not follow im-
mediately from the induction hypothesis appliedioonly
in case one of the two countetsu is involved in the ers
(o, £, A) ialN (o/, £, A’). Under this hypothesis the proof
splits in several cases, depending on the type of the ers.
If (o, £,4) 25 (o, £, A), then the only wires which
were not already irf o/, are axioms wiring # u. Notice
that the rule™: forces£(t) = £(u) and the labels of any
two wired auxiliary ports to be equal.

If the first reduction step oR is 2 oor 2, (see Defl12),
let ¢ be the counter imv involved in the reduction, and be
the counter in the resudt’ of the reduction (see Figu®:
t' has one porp’ which is a residue of and such that its
f3,, tree shares an axiom withf. We havec(t) <£'(t') and
At(p) C Aw(p). By induction hypothesis/ # w in o/,
hencet # u in «. Besides, eithef/(t') < £'(u) = £(u)
and A\ (p') € Au(g) (the labelingg, of u is the same
in « and '), then £(¢) < £(u) and A\;(p) C Au(q); or
£L(u) < £'(t). Inthe latter case, we have,(¢) C Ay (p)
by induction hypothesis; moreover, by the definition of the
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ers\:(p) C A\v(p’) and the elements in (p) \ \:(p) are
freshinA > £(u), £(¢). We conclude\,(¢) C A\i(p).
The other cases are easier and left to the reader. O

Lemma 6. Let R be a successful reduction sequence from
a merging triple(«, £,.4), and such that no ers d@t enters

an address labeling a counter of if p, ¢ are free ports of
the same connected component®f then:

and @)
Proof. Let 34, ..., 3, be the trees of the canonical decom-
position of the simple neta, as in Figure7. The two free
portsp and g belong to a same connected component iff
there are3;,, ..., 3;, trees such that (resp.q) is the root
of 3;, (resp.s;,) and for everyj < k, 3;, andg;,,, shares
at least one axiom. We prove Equatiaf) by induction on
the numbetk.

If & = 1, then the two auxiliary port are equal, and the
lemmais satisfied. Else, let us denpteéhe root of3;,, and
t’ the counter with auxiliary pogt’. Sinces;, andg;, share
an axiom, we apply Lemm&to p andp’: sinceR does not
enter the addresseXt¢) and £(¢'), then£(t) = £(¢') and
Ae(p) = A (p'). Finally, we apply the induction hypothesis
top’, ¢ and gete(t’) = L£(u) andy (p) = A (q). O

Lemma 4 (Splitting). Let R be a successful reduction se-
quence from a merging tripléx, £, .4), and such that no
ers of R enters an address labeling a counteragfthen o
can be split: there are suitable sequences$), <, i<n,., Of
simple nets(1}),<s, i<n, Oflists, and(A’)), < of addresses

such that
)ignlj e (InitAg )1§nsj

(oﬁ 13

(R

(InitA}U (a},1}




Proof. SinceR is successful, two counters of the same con-

nected component dfa have the same label (Ler- 6).
With each label, we associate the subn@tmade of cells
connected to a counter labelled hy We are left to de-
compose the subnét which has only one type of counter.
Again, thanks to Lem6, two auxiliary ports of counters

Notice thatRp begins withlp (see Fig.9) B. This means
that there are numbers such that theretare ¢ < n and
(ki)i<q such thatB = {m] = 1, U{z]} ; i < ¢,j <
ki} U{m; =1;U{y}; q <i < n}, wherey is an element
of X fresh ina, and{xz]},<, <k is a family of pairwise
distinct elements oX fresh inA U {y}.

which are connected have the same label. Hence, for everyBecause| Init(«a;,[;)i<», has no cell (except.) and due

1 € A, for any counter of3 and above each auxiliary port
labelled by1, there is a subnet df3 whose conclusions are
auxiliary ports labelled by.. With 1, we associate the net
made of the subnets above each auxiliary port labelled by
So we have split 5 in disconnected components and got an
initial state whose label is. O

Theorem 2 (Soundness)Let = be a ll-net, let(w;)i<n

be a family of simple nets with the same interface and let (i(p)

(1i)i<n = A be a family of pairwise incomparable tokens.
If there is a labeling «, £) < =, a set of addressed and
a merging reduction sequence

mrg*
—_—

R = (Init(ay, 1;)i<n, £a, {A}) (o, £,A4), (8)

then for every < n, a; € 7 (7).

Proof. Sincery < 7 implies that7 (r) C T (w)’, we only
need to prove the theorem whem, 7) = 7.

The proof is by induction on the exponential depthrof
we split the induction step in two cases, the one wheie

equal to one box and the general case. Notice this splitting

recalls the cases of Taylor expansion (C®fand the cases
of the proof of Theoreri. In general notice thdty, £) = 7
entailsa = I(r) (Def. 7).

Case i(no box) If = has no boxes, thel{z) = =, hence
a = m, and7 (r) = {«a}. In particulara has no!-cell.
Since (Init (@i, 1:)i<n, L4, {A}) —5 (o, £,.A), we de-
duce that every; has nd-cell, and we conclude by Propo-
sition4.

Case ii (one box) Assume thatr is reduced to only one
box b whose content ig. Let p be the principal port op
in I(m) = w[cod(p, p)/b]. Sincer = («, £) is a labeling,
a = cod(p, l(p)), thatisl(p) = cont(a, £, £(D)) = {c €
o] £(b) Ca,c £(c)}\{0} andp = (I(p), £1(,)) Whereg(b)
is the labeling of thé-cell associated witth in a. In the
sequel, we will denotd = £(b) andB = £(1(p)) U {B}.
Since the only cell ok labelled byA is |, R does not use
it. Moreover,B is a lower bound of3, hence we can ap-
ply Fact3 and decomposg into two reductions: oneR g,
made only of ers producirgjand the othe?’ which does
not produce ang

(Init (o, 13)icn, £, {A)) T2 (o, €, {8.B})

mrg*
—
’

(o, £, 4), (9)
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to the shape ofs, the simple net| o/ is made of only
one!d-cell labelled byB, and the counters dfx’ are also
labelled byB. So we havex’ = cod(p,la’) on the one
side of R’ anda = cod(p, I(p)) on the other side (where
we abusively identify the auxiliary port of the redex and
the reduct). Moreovedd = B U {A}, £(a’) C {B} and
£(1(p)) C B, hence Fact implies that(lo/, £/, {B}) ==

o
, Tl(p),B). Notice that both sides are merging triples
thanks to the restriction of the set of addresses to the
codomain of the labeling.

Since R” is successful and does not produBe we
can apply the splitting lemma (Lemmd) and de-
compose] <« into a family (v;;)i<q, j<k; Of Sim-

ple nets such thaﬁa’ Inith(’7i7j,mi,j)i§q,j§ki.

We are now ready to apply the induction hypoth-
esis to (Initg, (i, mi;)i<q, j<ki> Lo, {B}) =
(Up); &1y, B) and gewi < n, j < ki, vi; € T(p).
Becausey' = cod(p, Initg,, (Vi j,mi,;j)i<q, j<k;) @and due to

the shape of2 g, we havevi < n, a; = Hf;l cod(p, 7i,5)-
Applying the definition of Taylor expansion, we can con-
cludew; € 7 ().

Case iii (Otherwise) Assume that, at exponential defith

m hass > 1 boxes(b,),<s whose respective contents are
(pr)r<s. For eachr < s, letp, be the principal port op,
ina = I(r) = wcod(py, l(pr))/br]r<s. Sincer = (a, £)

is a labeling, for every < s, I(p,) = cont(a, £, £(b,))
{C SR | S(bT) Ea,ﬂ 2(0)}\{137“} andpr = (l(pr)vﬂ\l(pr))
where£(b,.) is the labeling of theé-cell associated withh,.

in . In the sequel, we will denote,. = £(b,.) andB, =
£(1(p,))U{B, } for eachr < s. Notice thatd = W, <3, U

{A}. Moreover, the boxes are disjoint, hen8e and 5,

are also disjoint.

Now, let us consider the reductidghdefined by 8): remark

that along the reduction, the set of addresses is increasing
henced is in the set of addresses of every merging triple oc-
curring in R. We can apply Fac3 several times and antic-
ipate the ers using before all other ers, thus transforming
Rinto

Inr*

(Init (v, 14)i<n, £a, {A}) W (o, L4, {A})

mrg#*
—
R//

(a, £, A).

where R’ is made of the linear ers oR using the ad-
dressA, while R” is made of the ers of? using or in-



troducing some address i _, 3,. SinceR” has no ers
using A, then | o’ is the subnet ofx made of the cells
of a with label 4, i.e. o/ [y /br]r<s, fOr some sim-
ple netsy, whose conclusions are auxiliary ports of the
counters. Moreover?' is linear, thanks to Fact, each
~r = Init (v, ,,1;)i<, fOr some simple nets; ,.. Finally,

by Lemma3, Vi < n, o; = W[Wi,r/br]rgs-

Letr < s. We focus on showing; , € 7 (!p,) for every

1 < s. Notice that every ers aR” using an addresB in

B, can be anticipated before any ers using or introducing

an address’ in B,., for ' # r, since neither the latter can
introduceB (otherwiseB = B’ € B,.), nor its contractum
can have the redex of the former (otherw#$ed B, which
would implyB € B,/). So we can apply Fa& and trans-
form R” into R!’ which uses3,, and R"” does not use any
address i3,

mrg*

—

(7 [Init (73,7 1 )i<n /brlr<s; £a, {A}) I

mrg*
—_—

(aTa Ly {A} W BT) R

(o, £, A)

with oy = W[l(!p,«)/br][lnit(’}/i,r/,li)ign/b,n/]r/gs7r/;ﬁr.
Due to Def. 12 R/ is the reduction
(Init (vi,r, Li)i<n, L, {Br}) == (I('pr), &, By) in
a context. We are now ready to apply (case iiyte- !p,.:
Vi<n,vi,r€T(p).

We have shown that for any < s, for everyi < n, v, , €
T (!p). Recall that for every < n, a; = 7[vir/br]r<s.
Finally, by definition of Taylor expansion (see DB}, Vi <
n, a; € T(m).

O

D Hypercoherence

Consider the following three simple nets, with sequent
conclusion1,!1,!1,7.L,71,71.

Q- \l/\l/\l/ \V\?/\V
=

Qg \l/\l/\l/ \V\?/\V
=

Qs \l/\l/\l/ \V\?/\V

17

Each of them has threlecells, named resphl, b2, b3,
and three?-cells, named respwl, w2, w3. We merge
(co)weakening, (co)contraction and (co)dereliction in a
unique cell? (resp.!).

Now, every pair of simple nets between, as, a3 is co-
herent, in the sense that there is a Taylor expansion of a
[I-net which contains both elements of the pair:

a1, ag is contained in the Taylor expansion of the lI-net:

wl auxiliary port of b2
w?2 auxiliary port of bl
w3 weakening

as, a3 is contained in the Taylor expansion of the lI-net:

wl weakening
w2 auxiliary port of b3
w3 auxiliary port of b2

a1, a3 is contained in the Taylor expansion of the lI-net:

wl auxiliary port of b3
w2 weakening
w3 auxiliary port of bl

However there is no ll-net whose Taylor expansion con-
tains all threevy, as, a3. Suppose such a ll-netdoes ex-
ist. Then byay,ay € T(r) we have thabl hasw?2 as an
auxiliary port; but then byvs € 7 (7) we should havev2
a dereliction inas and not a weakening, as it is. We thus
conclude such a ll-net cannot exist.
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