
The Inverse Taylor Expansion Problem in Linear Logic

Michele Pagani
michele.pagani@pps.jussieu.fr

Christine Tasson
christine.tasson@pps.jussieu.fr

Laboratoire Preuves, Programmes et Systèmes
Université Paris Diderot – Paris 7

Abstract

Linear Logic is based on the analogy between algebraic
linearity (i.e. commutation with sums and scalar products)
and the computer science linearity (i.e. calling inputs only
once). Keeping on this analogy, Ehrhard and Regnier in-
troduced Differential Linear Logic (DILL) — an extension
of Multiplicative Exponential Linear Logic with differential
constructions. In this setting, promotion (the logical expo-
nentiation) can be approximated by a sum of promotion-free
proofs ofDILL , via Taylor expansion.

We present a constructive way to revert Taylor expan-
sion. Precisely, we definemerging reduction— a rewriting
system which merges a finite sum ofDILL proofs into a
proof with promotion whenever the sum is an approxima-
tion of the Taylor expansion of this proof. We prove that
this algorithm is sound, complete and can be run in non-
deterministic polynomial time.

Introduction

In the 80’s, Girard [7] introduced linear logic (LL) — a
refinement of intuitionistic and classical logics. One partic-
ularity of LL is to be equipped with a pair of dual modalities
(theexponentials! and?) which give a logical status to the
operations of erasing and copying data.The idea is that lin-
ear proofs (i.e. proofs without exponentials) correspond to
programs which call their arguments exactly once, whilst
exponential proofs call their arguments at will. The study
of LL contributed to unveil the logical nature of resource
consumption and initiated a foundational comprehension of
resource-related runtime properties of programs.

Linear logic makes an extensive use of jargon borrowed
from vector spaces and analysis: linear, dual, exponential,
etc. Indeed, at the very start of LL, there was the fundamen-
tal intuition that programs should be modeled as analytic
functions and approximated by polynomials, representing
bounded (although possibly non-linear) computations. This

idea can be realized if one succeeds in interpreting a type as
a collectionA of bits of information and a datum of typeA
as a vector~a =

∑

a∈A maa, where each scalarma ”counts”
the multiplicity of the bita in ~a (see [8]).

Interpreting formulæ of LL as vector spaces is not
straightforward, because exponentials generate infinite di-
mensional spaces. For this reason, the vector spaces must
be endowed with a topology yielding a suitable notion of
converging sum [1]. In [9, 10] the fundamental intuition of
LL becomes concrete. In these models, programs that use
their arguments exactly once are interpreted as continuous
linear functions and programs that can call their arguments
infinitely often are analytic functions. Moreover, analytic
functions can be approximated by polynomials throughTay-
lor expansion[2]. This approach is possible thanks to the
presence of a derivative operator. A natural question then
arose: what is the meaning of such a derivative from the log-
ical viewpoint? Ehrhard and Regnier answered to this ques-
tion, introducing thedifferential linear logic(DILL, [5]),
and its functional fragment: thedifferentialλ-calculus[4].

In LL, only the promotion rule introduces the! modal-
ity. The semantics of this rule is the exponentiation of
Ehrhard [2]. Operationally, the promotion creates inputs
that can be called an unbounded number of times. In DILL
three more rules handle the! modality (codereliction, co-
contractionandcoweakening) that are the duals of the LL
rules dealing with the? modality (dereliction, contraction
and weakening). In particular, codereliction expresses in
the syntax the semantical derivative: it makes available in-
puts of type!A that must be called exactly once, so that
executing a programf on a ”coderelicted” inputx amounts
to calculate the best linear approximation off onx. Notice
that this imposes non-deterministic choices — iff is made
of several subroutines each of them demanding for a copy of
x, then there are different executions off on x, depending
on which subroutine is fed with the unique available copy
of x. Thus we have a formal sum, where each addendum
represents a possibility. This sum has a canonical mathe-
matical interpretation — it corresponds to the sum obtained
by computing the derivative of a non-linear function.

As expected, the Taylor expansion can be imported in
the syntaxic realm by iterating differentiation [6]. A proof
of LL can be approximated by finite sums of promotion-
free proofs of DILL. The principle is to decompose a
program into a sum of purely ”differential programs”, all
of them containing only bounded (although possibly non-
linear) calls to inputs. Understanding the relation between
a program and its Taylor expansion might be the starting
point of renewing the logical approach to the quantitative
analysis of computation started with the inception of LL.

A first question is to understand whether a finite sum of
DILL proofs approximates an LL proof. This paper tack-
les this question with an algorithm computing the proofs
that are approximated by afinite DILL sum. There are
DILL proofs that do not appear in the Taylor expansion of
the same LL proof, in some sense they are notcoherent.
One should think to the addenda of a DILL sum as paral-
lel threads of a computation, the sum converges whenever
these threads can be joined up into a sequential computa-
tion, represented by a LL proof. Our algorithm takes a fi-
nite sum

∑

i αi of DILL proofs as inputs, runs a rewriting
reduction, namely themerging reduction, and returns a LL
proofπ or falls in a deadlock. We prove that this algorithm
is complete (Th.1) and sound (Th.2): π is reached if, and
only if,

∑

i αi is in the Taylor expansion ofπ. The algo-
rithm is non deterministic (a finite

∑

i αi can appear in the
Taylor expansion of several LL proofs) and can be run in
non-deterministic polynomial time (Corollary3).

The syntax of nets. We represent LL proofs as graphs
calledll-nets (Def. 1). In [7] ll-nets are calledproof struc-
tures. The distinction between proof structures and proof
nets (the logically correct proof structures) plays no rolein
this paper: we will thus omit to speak of any correctness cri-
terion. Besides, we consider only cut-free ll-nets. We adopt
the syntax of [13] with generalized contractions and atomic
axioms. In addition we have coweakenings, needed to de-
fine the informative order of Sect.2 and to state our main
theorems (Th.1, 2). Concerning DILL, we represent its
proofs aspolynets, which are sets ofsimple nets(Def.2). In
general apolynetis a linear combination of simple nets with
coefficients in a field of scalars. Since coefficients are irrel-
evant w.r.t. our questions, we omit them and define polynets
as the sets which correspond to the supports of the linear
combinations.

Outline. Section 1 defines the Taylor expansion of ll-
nets into polynets (Def.5). In Section2, we definela-
belings(Def.6), an equivalent but more local way to deal
with boxes. We present our rewriting system, the terms,
called merging triples (Def.13), and the reduction over
them, calledmerging reduction(Def.12). We prove that
the merging reduction is non-deterministically polynomial
(Cor.3), complete (Th.1) and sound (Th.2) with respect to
the Taylor expansion.

1

1 ?A !A

⊥

⊥ X X⊥

axiom:one:bottom: weakening: coweakening:

(a) basic cut-free nets.

⊗

A B

A⊗B

A

?

?A

π′

π′′

π′π′

par: tensor: dereliction: mix:

`

A B

A`B

π′

(b) linear constructions of cut-free ll-nets

π′

?A ?Bn!A ?B1

π′

A ?B1 ?Bn
· · ·

· · ·

contraction: promotion:

!

(c) exponential constructions of cut-free ll-nets

Figure 1: inductive definition of cut-free ll-nets.

1 Taylor expansion: from ll-nets to polynets.

We consider formulæ of propositional multiplicative ex-
ponential linear logic (MELL), generated by the grammar:

A, B := X | X⊥ | 1 | A ⊗ B | ⊥ | A`B | !A | ?A ,

whereX , X⊥ range over an enumerable set of propositional
variables. The linear negation is involutive, i.e.A⊥⊥ = A,
and defined through De Morgan laws1⊥ = ⊥, (A⊗B)⊥ =
A⊥ `B⊥ and(!A)⊥ = ?A⊥.

Definition 1. The cut-free linear logic nets,ll-nets1 for
short, are inductively defined by the constructions drawn
on Figures1(a), 1(b) and 1(c), supposing thatπ′ and π′′

are cut-free ll-nets. They are finite hypergraphs made of (i)
nodes labeled by MELL formulæ and calledports; (ii) di-
rected hyperedges labeled by MELL connectives, depicted
as triangles and namedcells; (iii) directed hyperedges cross-
ing ports labeled by a same exponential formula and named
structural wires ; (iv) undirected edges calledsimple wires
and crossing two ports labeled by the same formula or (only
in the axiom case) labeled by dual formulas.

A cell/stuctural wirec has a unique target, named the
principal port of c, the sources, if any, are called theaux-
iliary ports of c. We adopt the convention of depicting the
directed hyperedges with a top-to-bottom orientation.

A port of an ll-netπ is free whenever it is not crossed
by any cell. We require thatπ is given together with anin-
terface (pi : Ai)i≤n enumerating its typed free ports. The

1This definition is kept informal: we refer to [5, 15] for precisions.

2

A A

αα

?

α

!

dereliction: contraction: cocontraction:codereliction:

α

?A ?A !A !A

Figure 2: exponential constructions of cut-free simple nets.

interfaces(pi : Ai)i≤n and(qi : Bi)i≤m arepaired when-
evern = m andAi = Bi.

In the contraction case (Fig.1(c)), π′ is a cut-free ll-net
with at least two free portsp, q of type ?A; to obtain the
drawn ll-net, we equalp, q with a unique free portr : ?A
and merge the two (hyper)edges sharingr. In the promotion
case, the ll-netπ′ is put into abox; this box is a cell labeled
by a cut-free ll-net: itscontents. Notice that given the box
interface(p0 : !A, q1 : ?B1, . . . , qn : ?Bn), the interface of
its contents is(p′0 : A, q′1 : ?B1, . . . , q

′
n : ?Bn) where the

principal portsp0 andp′0 and the auxiliary portsqi andq′i
match. We require moreover that:

(∗) any free portq′i : ?Bi of the contents of a box does
not belong to a structural wire.2

Thedepth of an ll-net is the maximal number of nested
boxes, it is defined by induction: the depth of any basic ll-
net is0, the depth of a box isd + 1 whenever the depth of
its contents isd, the depth of the mix of two ll-nets is the
greatest depth of the used ll-nets and the other construc-
tions do not change the depth. For any ll-netπ, the set
of boxes of depth0 is denoted bybox0(π) and the set of
boxes at any depth bybox(π). We define similarly the sets
of cells cell0(π) andcell(π). Finally, we denotec ∈ π if
c ∈ cell(π). By extension, ifb andb′ are boxes, we will use
b ⊇ b′ for cell(b) ⊇ cell(b′).

Notice that, for everyb, b′ ∈ box(π), cell(b) andcell(b′)
are either disjoint or included one into the other one. This
means that⊇ is a tree-order overbox(π), i.e. wheneverb,b′

have a sup then they are comparable.
As mentioned in the Introduction, boxes represent data

that can be called infinitely often during the execution of a
program. In DILL new rules (cocontraction and codere-
liction) deal with !-formulæ but keep bounded the num-
ber of calls to the data. This allows to represent non-
linear programs assimple netswhere boxes are replaced by
(co)contractions which explicitly give the number of calls
to their contents.

Definition 2. The cut-freesimple netsare inductively de-
fined by the constructions depicted on Fig1(a)and1(b)and
by the exponential constructions of Fig.2. The cocontrac-
tion case is defined analogously to the contraction case. A
polynet is a finite set of simple nets with paired interfaces.

2This condition is needed to have a canonical representationof ll-nets.
It can be equivalently stated as: everyq′i is connected by a simple wire to
a?-cell or to an auxiliary port of another box.

cod(p, α) :=
!

!A

A p

α

· · ·

(a) codereliction of a port

α · α′ :=

!A1

α

· · ·

?B1

α′

· · ·

?Bn

· · ·

(b) product of two nets

Figure 3: codereliction and product of simple nets.

Except for boxes and depth which have no meaning in
the context of simple nets, we use the vocabulary of ll-nets.
The wordnet will refer equally to ll-nets or simple nets.

The Taylor expansion decomposes an ll-netπ into a set
T (π) of simple nets; each simple net inT (π) represents
an ”instance” ofπ where every box has been replaced by
a finite number of copies of its contents. Before giving the
definition ofT (π) (Def. 5), we need to introduce substitu-
tion (Def.3), cod(p, α) and product (Def.4).

Definition 3. Let α, β andγ be three nets such thatβ and
γ have paired interfaces(pi : Ai) and(qi : Ai). If β is a
subnet ofα then thesubstitution α[γ/β] is the net obtained
from α by replacingβ with γ. So, qi replacespi and the
wires sharingqi are merged.

Definition 4. Let α be a simple net andp be a free port of
α. We denote ascod(p, α) the simple net obtained fromα
by adding a!-cell with auxiliary portp (Fig. 3(a)).

Let α andα′ be two simple nets with paired interfaces
resp.(p : !A1, q1 : ?B1, . . . , qn : ?Bn) and(p′ : !A1, q

′
1 :

?B1, . . . , q
′
n : ?Bn). Theproduct α · α′ is the simple net

resulting from the cocontraction ofp andp′ and the contrac-
tions ofqi andq′i (Fig. 3(b)).

The product of simple nets is commutative, associa-
tive and its neutral element is the net only made of
(co)weakenings and written as!0.

Definition 5. TheTaylor expansion3 of an ll-netπ is the
set of simple netsT (π) defined by induction on the depth
of π (Fig. 4(b)). We distinguish two cases according to
whetherπ is a boxb, or a generic ll-net:

T (b) :=



















k
∏

j=1

cod(pj , γj) ;

wherek ∈ N, γj ∈ T (ρ),
ρ is the contents ofb and
pj is the free port ofγj

corresponding to the prin-
cipal port ofb.



















,

T (π) :=

{

π[βr/br]r≤s ;
wherebox0(π) = {br}r≤s,
ρr is the contents ofbr and
βr ∈ T (br)

}

.

3Notice that the Taylor expansion defined by Ehrhard and Regnier [6]
was defined in terms of sums of nets. Since we are only interesting in the
support of these sums, our version deals with sets.

3

· · ·

α

· · ·

b1

· · ·· · ·

bs

(a) π

γ1,k1
γ1,1

· · ·

!
· · ·

!

· · ·· · ·

· · ·

α

γs,1

· · ·

· · ·

!
· · ·

!

· · · · · ·

γs,ks
· · ·

(b) α ∈ T (π)

! · · ·

l(ρs)

! · · ·

l(ρ1)

· · ·

α

· · ·

(c) l(π)

Figure 4: (a) a ll-netπ s.t.box0(π) = {br}r≤s; (b) the generic shape of a simple netα ∈ T (π); (c) the linearizationl(π).

Not every polynet is the Taylor expansion of an ll-net.
Indeed, simple nets appearing in the Taylor expansion of an
ll-net π are coherent: their structure reflects the boxes of
π. In Figures5(c) and5(d), we present an example of two
incoherent simple netsαi ∈ T (πi), i = 1, 2. However,
π1 andπ2 have the same linearization which is intuitively
obtained by forgetting the contour line of boxes. More for-
mally, thelinearization (Fig. 4(c)) l(π) of an ll-netπ is in-
ductively defined:l(π) := π[cod(pr, l(ρr))/br]r≤s, where
box(π) = {br}r≤s, ρr is the content ofbr andpr is the
principal free port ofl(ρr).

In the sequell(π) will play an important role, since it
describes the structure ofπ except from the boxes outline.
Indeed, it is a simple net ofT (π), obtained by taking ex-
actly one copy of every box ofπ.

?

?

⊥

?

!
!

(a) π1

?
?

⊥

?

!
!

(b) π2

?

⊥

!

?

⊥

!

?

!

?

?

!

(c) α1 ∈ T (π1)\T (π2)

?

⊥

!
!!

??

??

(d) α2 ∈ T (π2)\T (π1)

Figure 5: π1 andπ2 with same linearization.

2 Reversing Taylor expansion:

In this section we present the merging reduction: our
algorithm reversing the Taylor expansion. Given a finite
polynet, theinitial state (Def. 11, Fig. 8(b)) is obtained by
plugging the simple nets intocounters(Def. 10, Fig. 8(a)).
Then these counters explore the simple nets, merge equal
cells and draw boxes when it is possible. If the algorithm
succeeds, then the result is an ll-net. On Fig.9, we give the
elementary reduction steps (ers) of the merging reduction.

2.1 An example.

Before going into more details, let us run our algorithm
on an example. The rewriting is depicted step by step on
Fig. 6. We draw in boldface the redex which is about to be
reduced. The run we follow is successful and its result is
the ll-net depicted on Fig.5(a).
Initial state. Consider the polynet{α1, α2}, where(pi :
?1, qi : ?!⊥) is the interface ofαi. The algorithm starts
from the initial state depicted on Fig.6(a). Two counters
connectα1 andα2, one for?1 and one for?!⊥. There are
two tokensl1 andl2 inside the counters and analphabet
{A} containing anaddressA = {l1, l2} which is the set of
tokens inside the counters (Def.8).
First step. The only possibility is to apply a stepcontr to
the right counter, settingn1 = 2, n2 = 3 and som = 2
(see Fig.9 for the notation). Indeed we need to choose how
to distribute the three auxiliary ports of the contraction of
α2. It is a non-deterministic step of the merging algorithm:
different choices may lead to non-confluent reductions. In
this example, apart from the reduction we will pursue, one
choice leads to the ll-net of Fig.5(b), and the other ones fail,
i.e. lead to nets with counters that are not further reducible.
Step2. The ?-cells of the redex are merged into a unique
?-cell labelled with the addressA (recall that it is the set of
the tokensl1, l2 in the merging counter).
Step3. The next redex is reduced by the “crucial” ers!p.
This step has “created” a box by adding three new tokens
l1
1, l

1
2, l

2
2 and a new addressB = {l1

1, l
1
2, l

2
2}. The new to-

kens are associated with the coderelictions in the redex and
they extend the old ones in a sense made precise in Def.8:
specificallyl1

1 (resp.l1
2, l

2
2) extendsl1 (resp.l2). The ad-

dressB represents a box associated with the!-cell labeled
by B and resulting from the merging of the three coderelic-
tions. The new address opens the possibility of applying ers

of type
?p
−→ to the two counters inactive until now.

Step4. While
!p
−→ ers creates a box adding a new address,

and enters it via the principal port, a
?p
−→ ers enters a box

already created using an address available in the alphabet

(hereB) and via an auxiliary port. Notice also that a
?p
−→ ers

can “consume” contractions (here, the counter increases the
number of its auxiliary ports) but it does not merge?-cells

4

?

⊥

? ? ! !

l1 l2 l1 l2

!!

⊥ ⊥

!

α1 α2

?1 !?⊥

?1 ?1 !?⊥ !?⊥

, {A}

!

?? ? ? ?

(a) Initial step

contr−−−→
Step1

?

?

!

⊥

? ? !

?

!!

⊥ ⊥

!

l1 l2l1 l2
l1 l2

!

? ??

, {A}

(b)

one−−→
Step2

?

?

!

⊥

? ?

?

!!

⊥ ⊥

?

?

l1 l2 A
l1 l2

l1 l2

!
! !

, {A}

(c)

!p

−→
Step3

? l1 l2

!

?

!!

⊥ ⊥

??

!

⊥

l1 l2

B

A

l1
1 l1

2 l2
2

??

?

,{A, B}

(d)

?p

−→
Step4

? l1 l2

?

!!

⊥ ⊥

??

!

⊥

!

l1
1 l1

2 l2
2

l
1
1 l

1
2 l

2
2

B

A

??

?

,{A, B}

(e)

one−−→
Step5

? l1 l2

!

?

!

⊥

?

?

!!

⊥ ⊥

?

B

A

B

l1
1 l1

2 l2
2

l1
1 l1

2 l2
2

,{A, B}

(f)

ax−→
Step6

?

!

?
B

!

⊥

!!

⊥ ⊥

B

A

, {A, B}
l1 l2

?
? ?

(g)

?p

−→ one−−→
Step7

?

!

?

⊥
⊥ ⊥

?
B

B

l1
1 l1

2 l2
2

!!
!

B

A , {A, B}

(h)

!p

−→
Step8

?

!

?

?
B

!

B

C

l
2,2
2l

2,1
2l

1,1
1

⊥ ⊥ ⊥

l
1,1
2

B

A , {A, B, C}

(i)

one−−→
Step9

?

!

?

!

⊥

B

C

C

?
B

A

B

, {A, B, C}

(j) Labeling.

Figure 6: an example of reduction.

since these can belong to other boxes.
Step5. The address stored in a counter after a number of
?p
−→ ers must be put down on a cell by a

one
−−→ ers.

Step6. Two counters meet and they share exactly the same
address. Thus they can be eliminated by a

ax
−→ step.

Step7. The ers
?p
−→ consumes contraction and the ers

one
−−→

merges the?-cells into one?-cell labeled withB.
Step 8. Remark that one port of the counter is wired

to a coweakening. The
!p
−→ ers creates four more to-

kens l
1,1
1 , l1,1

2 , l2,1
2 , l2,2

2 associated with the coweaken-
ing/coderelictions of the redex. A new addressC which is
the set of new tokens appears. These tokens extend the old
ones as hinted by the indices. The tokenl

1,1
2 , associated

with the coweakening in the redex, is stored in a special
basket that will be kept until the counter is erased (Def.10).
Last step. The resulting net is alabeling (Def. 6). It has
neither counter nor cocontraction and every cell is labelled
by an address. It represents the ll-net drawn in Fig.5(a).

In order to be as local as possible, our reduction cannot
use boxes as they require to define their “frames” all in one
go. Thus, we reconstruct the linearizationl(π) of an ll-netπ
and we represent the boxes by labeling the cells ofl(π) with
addresses. A total labeling encodes exactly the boxes ofπ
(Prop.1). During the execution of the merging algorithm,
the partial labeling is extended step by step up to a total
function. The frames of the boxes ofπ are recovered from
the addresses labeling the cells ofl(π).

5

p1 : A1 pn : An

γ

β1 βn

· · · · · ·

Figure 7: decomposition of a simple net.

2.2 Labeling

In our example the box associated with the!-cell labeled
by B contains the cells labeled byB and everything above.
Notice that the set of addresses is endowed with an order:
A ⊑ B ⊑ C, which means that the boxB contains the box
C. Not every labeling is a correct boxing, we give condi-
tions (Def.6) on labelings sufficient to ensure the equiva-
lence with ll-nets (Prop.1).

For every cut-free netα there is only one decomposition
of α into a subnetγ made of axioms and pairwise disjoint
trees(βi)i≤n of cells and wires. The leaves ofβi can be
units (⊥ or 1), (co)weakenings, or axioms inγ. We set
a ≤α b whenevera, b belong to the same tree anda is an
ancestor ofb. If α has more than one conclusion then there
are several minimals with respect to≤α. We introduce a
conclusion cell4 ⊥α set to be the minimum of≤α.

Let N be an infinite set ofnames.

Definition 6. Let α be a cut-free simple net without cocon-
traction. LetL : {⊥α} ∪ cell(α) → N be a total function
such that:

• L is injective oncoder(α) ∪ {⊥α};

• the codomainL(α) of L is L(coder(α) ∪ {⊥α}).

Let us define⊑◦
α,L as theL image of≤α ontoL(α), that is:

∀n, m ∈ L(α), n ⊑◦
α,L m ⇐⇒ ∃ c ≤α d,

{

n = L(c)
m = L(d).

Let us denote⊑α,L the transitive closure of⊑◦
α,L. The pair

(α, L) is called alabeling whenever

(i) ⊑α,L is a partial tree-order, havingL(⊥α) as the min-
imum;

(ii) if c 6= ⊥α and c′ is the predecessor cell ofc, then
eitherL(c′) = L(c) andc is not a!-cell, orL(c) is the
son ofL(c′) andc is a !-cell, or finallyc is a?-cell;

(iii) for every axiomw, if one port ofw is an auxiliary port
of a cellc such thatL(c) 6= L(⊥α), then the other port
of w is the auxiliary port of a cellc′ andL(c′) = L(c).

From the order induced by the labeling, one can recover
the contents of the box associated with a!-cell. Then a label-
ing and a box match if the contents of their boxes coincide.

4Formally,⊥α is the set of free ports.

Definition 7. Let (α, L) be a labeling. With any!-cell b of
α, we associate the labelingcont(α, L, b) corresponding to
its contents. It is defined by the simple net

{c ∈ α |L(b) ⊑α,L L(c), c 6= b},

and the labelingLcont(⊥) = L(b) andLcont(c) = L(c).
We say that a labeling(α, L) is equivalent to an ll-netπ

and we write(α, L) ≡ π for short, wheneverα = l(π) and

∀b ∈ box(π) with contentsρ, cont(α, L, b) = l(ρ). (1)

Proposition 1. A labeling is equivalent to a unique cut-free
ll-net and vice versa (up to a renaming).

Proof. We prove that for any labeling, there is a unique
equivalent ll-net by induction on the size of the simple net
of the labeling (c.f. AnnexeA, Prop.6). We prove the con-
verse (c.f. AnnexeA, Prop.7) by building a labeling candi-
date: the order⊑ reflects the tree-order of boxes (c.f. An-
nexeA, Lem.5), the labeling properties (Def6) follow.

Let us describe the labeling on Fig.6. The set of names
is N = {A, B, C}. The algorithm starts with two different
tokensl1 = {x} andl2 = {y} that are gathered in the ad-
dressA which is the lowest element of the labeling. Each
token corresponds to the lowest element of one of the sim-
ple nets. Step3 introduces three new tokensl1

1 = {x, c1},
l1
2 = {x, c2} andl2

2 = {x, c3} wherec1, c2, c3 corre-
spond to the!-cells in boldface on6(c). These tokens are
gathered in the addressB = {l1

1, l
1
2, l

2
2} which is used

by Steps4, 5 and7. Finally, Step8 introduces the tokens
l
1,1
1 = {x, c1, d1}, l1,1

2 = {x, c2, w}, l2,1
2 = {x, c3, d2}

andl2,2
2 = {x, c3, d3} whered1, w, d2, d3 are the!-cells

in boldface on6(h). The address which corresponds is
B = {l1,1

1 , l1,1
2 , l2,1

2 , l2,2
2 } is used in Step9.

We are working with two orders: one is the order of ad-
dresses⊑, encoding the structure of boxes; the other is the
order of tokens (i.e. the set inclusion), encoding the struc-
ture of boxes in the simple nets appearing in the Taylor ex-
pansion. The merging reduction builds the token orders. At
the same time, it checks that the boxes of each simple net
are compatible and merges them inducing the addresses or-
der. Notice that the order of addresses is an abstraction of
the order of tokens, forgetting the cardinality of the latter.

2.3 Reduction

The most delicate task of merging reduction is to recon-
struct a correct nesting of boxing, i.e. the order⊑ of Def.6.
This reconstruction is made step by step, using the set the-
oretical inclusion of the tokens, and the induced orderE on
addresses (Def.8): at the end of the process we will have
E=⊑ and consenquently a ll-net.

6

A

l1 lnAw

p1 pnAA

(a) counter

A1 Ak

· · ·

α1 αn

· · · · · ·

· · ·

l1Aw
ln

A1A1 Ak

l1Aw
ln

Ak

(b) initial state

Figure 8: counter and initial state.

Definition 8. Let X be an enumerable set called theweb.
A token is a finite set of elements inX . An addressis a
finite set of tokens. We setl, m to range over tokens,A, B
to range over addresses, andA,B to range over sets of ad-
dresses. The set-theoretical inclusion on tokens induces the
following pre-order on addresses:

A E B ⇐⇒ ∀m ∈ B, ∃l ∈ A, l ⊆ m.

It is immediate to prove thatE is a pre-order. However let
us stress thatE is not antisymmetric (considerA = {l, m},
B = {l, m′}, with l ⊂ m, m′), nor tree-like (considerA =
{l}, A′ = {m}, B = {l, m}, with l, m disjoint) on the whole
set of addresses. Indeed,merging triple(defined below) will
handle sets of addresses on whichE is a tree-order.

During the reduction, counters will go through the net and
build a labeling.

Definition 9. A counter is a cellt with one principal port
andn ≥ 1 auxiliary ports. Every port oft is labeled by the
same MELLformula. We consider counters as commuta-
tive cells: their auxiliary ports are interchangeable. More-
over,t is given with a labeling functionλt which maps ev-
ery auxiliary port to a token andt itself to an address (see
Fig. 8(a)). We also require that for every portsp, q of t
λt(p), λt(q) are incomparable tokens and also are incompa-
rable with every element ofλt(t).

In order to describe the partially labelled nets that appear
during the reduction, we introduce triples.

Definition 10. We considertriples (α, L,A) made of

• an simple netα with counters which can be decom-
posed into two counter-free simple nets↓ α and↑ α
joined by counterst1, . . . , tn as follows:

· · ·

↓α

· · ·

↑α
· · · · · ·

A1
w

l1
1 l1

k An
w

ln
1 ln

k

We denote by

7→

α resp. 7→α the simple net made of↓α
resp.↑α and the counters, and we identify the⊥ cells
of α, ↓α and

7→

α;

• a setA of addresses and a functionL from cell(
7→

α),
⊥α included, toA, where for every countert, L(t) =
λt(t) ∪ {λt(p) | p auxiliary port oft}.

We will be interested in reductions beginning on an initial
state made of counters linking the given simple nets.

Definition 11. Let (αi)i≤n be a collection of simple nets
with paired interfaces. Let(li)i≤n be tokens andAw be
an address such that the tokens inA = Aw ∪ {li}i≤n are
pairwise incomparable. Theinitial state associated with
(αi)i≤n, (li)i≤n, andAw is the triple(α, L,A) whereα =
InitAw

(αi, li)i≤n is the simple net with counters pictured
on Fig.8(b)with L(t) = A for every countert andA = {A}.
In the sequel, whenAw is empty, we will often omit the
subscript and writeInit(αi, li)i≤n.

Now we have all the ingredients to introduce a reduction
mrg
−−→ on triples as the context closure of the binary relation
mrg described in Fig.9. In the interaction net paradigm
[11], a redex is made of two cells wired by their principal
ports. On the contrary, a merging redex is made of a counter
whoseauxiliary ports are linked to the principal ports of
cells of simple nets. For this reason we represent the aux-
iliary ports of a counter as tips of triangles. It is important
to notice that though the counters merge cells locally, the
labeling process is global, whence the set of addresses ap-
pearing in the triples.

Definition 12. We consider the following unions of theel-
ementary reduction steps(ers for short) in Fig.9:

lnr := ax ∪ zero∪ one ∪ two ∪ (co)w ∪ contr,

mrg := lnr ∪ !p ∪ ?p.

For x varying overlnr, mrg, we define thex-reduction
(α1, L1,A1)

x
−→ (α2, L2,A2) as the context closure ofx,

more precisely it holds iff:∃α′
i ⊆ αi such thatα2 =

α1[α
′
2/α′

1], and ∀c ∈ α2, L2(c) = L
′
2(c) if c ∈ α′

2,
otherwise (i.e.c ∈ α1 \ α′

1) L2(c) = L1(c), and finally
(α′

1, L1|α′

1
,A1) x (α′

2, L
′
2,A2).

We denote by
x∗
−→ the reflexive and transitive closure of

x
−→. We say thatR : (α, L,A)

mrg∗
−−−→(α′, L′,A′) is successful

if α′ is counter-free.

There are only three cases where a reduction falls into a
deadlock, (i.e. a triple no further reducible but with coun-
ters): when two counters are linked by axioms and have
different labels; when a counter is linked to one axiom and
another cell; when there is no possible address to go through
a contraction link for a?p-ers.

Since we want the reduction to produce a labeling, we
have to restrict the set of triples that we consider. So we
introduce merging triples such that the result of a successful
reduction (i.e. a counter-free merging triple) is a labeling.

7

A⊥A

Aw
l1 lkAw

l1 lk

A⊥ A⊥AA

,A ax
−→

A A⊥
,A

∗
· · ·

∗

Aw
l1 lk

A

A A
,A zero

−−−→
∗

A

A
,A

where∗ is one between1,⊥; moreoverA = Aw∪{li}i≤k andA ∈ A.

?
· · ·

?

A A

Aw
l1 lk

?A

?A ?A ,A one
−−→

Aw
l1 lk

?

· · ·

A

AA

?A

A

,A

whereA = Aw ∪ {li}i≤k andA ∈ A.

∗

Aw
l1

· · ·

lk

BA A B

A∗B

∗

A∗B

A∗B

,A two
−−→

Aw
l1 lkAw

l1 lk

· · ·

∗

B A BA

A B

· · ·

A∗B

A

,A

where∗ is one betweeǹ ,⊗; moreoverA = Aw ∪ {li}i≤k andA ∈ A.

Aw
l1 lk

∗A

∗A ∗A
· · ·

,A (co)w
−−−→ ∗A ,A

where∗ is one between?, !.

Aw
l1 lk

?A

?A ?A
· · ·

· · ·

n1
z}|{

nk
z}|{

· · ·

,A contr
−−−→

Aw
l1 lkAw

l1 lk

· · · · · ·

· · ·
fkf1

· · ·

?A

n1
z}|{

nk
z}|{

· · · · · ·
m

z}|{

m
z}|{

,A

wherem ≥ 2, and for eachi ≤ k, m ≤ ni ≥ 2, andfi is a
surjection fromni to m.

!A

!

A

!

A

!

A

!

A

n1
z }| {

nk
z }| {

Aw
l1

· · ·
!A !A

· · · · · ·

lk

,A !p
−→

A′w

· · ·
A

· · ·
A AA

n1
z }| {

nq

z }| {

A

A′
!

!A

l1
ql

n1
1l1

1 l
nq
q

,A∪ {A′}

where1 < q ≤ k and for everyi ≤ k, ni = 0 iff i > q; moreover, there exists a family{y} ∪ {xj
i}i≤q,j≤ni

of pairwise
distinct elements ofX which are fresh inA and such thatA′w = Aw ∪ {li ∪ {y}}q<i≤k andlj

i = li ∪ {xj
i}.

?A

?

A

?

A

?

A

?

A

· · · · · ·

nk
z }| {

n1
z }| {

Aw
l1

?A
· · ·

lk

?A ,A ?p
−→

?A

?

A

f1 fk

n1
z }| {

nq
z }| {

?

A

· · · · · ·

A

?

A

?

m1
z }| {

mq
z }| {

A′w

· · ·

l1
1 l

m1
1 l1

q

?A ?A ?A
· · ·

?A ?A
· · ·

l
mq
q

,A

where1 < q ≤ k, and for everyi ≤ k, ni = 0 iff i > q; for everyi ≤ q, fi is a surjection fromni to mi ≤ ni; as for
tokens and addresses, we ask that there exists a family{y} ∪ {xj

i}i≤q,j≤ni
of pairwise distinct elements ofX such that

A′w = Aw ∪ {li ∪ {y}}q<i≤k, lj
i = li ∪ {xj

i} andA′ = A′w ∪ {lj
i}i≤q,j≤mi

∈ A.

Figure 9: the elementary reduction steps (ers) of merging reduction;the net at left of an ers is theredex, that at right the

contractum of the ers. In the
contr
−−−→,

?p
−→ ers, we present a bunch of contractions and wirings as a surjective functionf from

the auxiliary ports to the principal ones.

8

Then we prove that the reduction preserves the properties
of the merging triples. Since the initial states are merging
triples and the counter-free merging triples are labeling,we
get the wanted result.

Definition 13. The triple (α, L,A) is called amerging
triple if it satisfies

(i) for every countert ∈ α, the principal port oft is wired
to a cellc ∈↓α, ⊥α included, andL(c) E L(t); more-
over, if L(c) 6= L(t) then every auxiliary port oft is
wired to a?-cell c ∈↑α, or a weakening;

(ii) ∀A, B ∈ A, (A ⊑↓α,L B ⇐⇒ A E B),

(iii) (↓α, L) is a labeling andL(↓α) = A.

Notice that the initial state (Def.11) is a merging triple.
As we wrote aboveE is not in general an order; however,

if (α, L,A) is merging, then Cond. (ii), (iii) guarantees that
E is a tree-order onA.

It is very important to notice that the property of be-
ing a merging triple is stable under merging reduction (c.f.
Prop.8 of AnnexeB). As a consequence, if a reduction
(α, L,A)

mrg∗
−−−→ (α′, L′,A′) is successful, i.e.α′ is counter

free, then(α′, L′) = (↓ α′, L′) is a labeling and so rep-
resents an ll-netπ (Prop.1). In this case, we say that the
reductionleads toπ and we write

(α, L,A)
mrg∗
−−−→ π.

Proposition 2. The number of ers of any
mrg
−−→-reduction

starting from a merging triple(α, L,A) is polynomially
bounded by the number of ports inα.

Proof. c.f. AnnexeB, Prop.2

The ers of Fig.9 are local and can be implemented on a
Turing Machine in constant time. Thus Prop.2 yields:

Corollary 3. The runtime of any
mrg
−−→-reduction starting

from a merging triple(α, L,A) is polynomial in the number
of ports inα.

2.4 Completeness and soundness

We prove the completeness and soundness of merging re-
duction. The completeness ensures that simple nets coming
from the Taylor expansion of a same ll-net can be merged.
The soundness theorem proves the converse: if there is a
successful reduction merging simple nets in an ll-net, then
the formers are in the Taylor expansion of the latter.

Since our system considersfinite subsets{αi}i≤n of
the Taylor expansion of an ll-netπ, then some boxes ofπ
can remain undefined from the merging of{αi}i≤n. For-
mally this means that the merging yields an ll-net that is
the result of replacing some boxes ofπ with !0, i.e. with
(co)weakenings.

Definition 14. We say that an ll-netπ′ is less informative
than an ll-netπ and we writeπ′ ≪ π, whenever there are
boxes(br)r≤s in box(π) such thatπ′ = π[!0/br]r≤s.

It is easy to check that≪ is an order. Intuitively,π′ is the
result of erasing some subroutines ofπ. In general a finite
subset ofT (π) does not have enough information to build
π and we will rather buildπ′ ≪ π. However,

π′ ≪ π ⇒ T (π′) ⊆ T (π). (2)

Theorem 1 (Completeness). Let π be a ll-net, and let
α1, . . . , αn be simple nets inT (π). For any family
{li}i≤n = A of pairwise distinct tokens, there exists an
ll-net π0 ≪ π and a successful reduction that leads toπ0:

(Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ π0,

whereLA is, as usual, the constant function taking valueA.

Proof. The proof is by induction on the exponential depth
of π; we split the induction step in two cases: ifπ is a
box, we choose tokens extending the initial ones and gather
them in an addressB. We use the induction case withB and
conclude by context closure; in the general case, we make
counter go through the linear part (c.f. AnnexeC.1, Lem.3)
and stop at the entrance of boxes. We use the one box case
and conclude by context closure (c.f. AnnexeC.2, Th.1).

To prove the soundness theorem, we need a splitting
lemma which decomposes↑α in initial states (Def.11).

Lemma 4 (Splitting). Let R be a successful reduction se-
quence from a merging triple(α, L,A) and s.t. no ers of
R enters an address labeling a counter ofα; thenα can be
split: there are suitable sequences(αr

i)r≤s, i≤nr
of simple

nets,(lr
i)r≤s, i≤nr

of lists and(Ar
w)r≤s of addresses s.t.

α =

↓α
· · ·

· · · InitAn
w
(αs

i , l
s
i)i≤ns

InitA1w(α1
i , l

1
i)i≤n1

· · · · · ·

.

Proof. First we prove that sinceR is successful, two coun-
ters of the same connected component of↑α have the same
label (c.f. AnnexeC.3, Lem. 5-6). With each labelA, we
associate the subnetβ made of cells connected to a counter
labelled byA. Then, two connected auxiliary ports of coun-
ters have the same label (Lem.6). This allows to decompose
β into an initial state (c.f. AnnexeC.3, Lem.4).

Theorem 2 (Soundness). Let π be an ll-net, let(αi)i≤n

be a family of simple nets with the same interface and let

9

(li)i≤n = A be a family of pairwise incomparable tokens.
If there is a successful merging reduction leading toπ:

(Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ π (3)

then for everyi ≤ n, αi ∈ T (π).

Proof. The proof is by induction on the exponential depth
of π. The main idea is to commute the ers in the reduction
to π and to gather the ers that enter a box (c.f. AnnexeB,
Fact3). Thanks to the splitting Lemma4, we get an ini-
tial state for each box. Thus, we can apply the induction
hypothesis (c.f. AnnexeC.3, Th.2).

3 Perspectives

The merging reduction could have been presented differ-
ently, gathering all the non-deterministic choices in a sin-
gle initial step and then performing the ”deterministic” part
of the reduction. This amounts to choose a labelingL on
the upper part↑α of an initial state and to transform the
merging reduction in a rewriting that checks deterministi-
cally whetherL is correct. However we have preferred the
most local presentation of the reconstruction of the boxes.

In LL, the difficulty in reversing Taylor expansion lies
in the uniformity of polynets approximations of an ll-net.
A polynet isuniformwhenever it appears in the Taylor ex-
pansion of the same ll-net, that is when there is a successful
run of our algorithm. Inλ-calculus, uniformity is character-
ized by a binary coherence relation [6]. In D ILL, the scene
is far more complex. The uniformity is a hypercoherence:
there are examples of non-uniform polynets made of simple
nets pairwise (cf. AnnexeD). This can be linked with the
Gustave function. Ehrhard and Laurent have used the sum
constructor in DILL to model concurrent computing [3].
The uniformity question opens a logical approach to a typ-
ical problem of synchronization: how to link up multiple
processes.

The informative order (2) (see Sect.2.4) suggests a nat-
ural question: Is the Taylor expansion injective? Till now,
the first author and Mazza [12] have shown the equivalence
between the injectivity of the Taylor expansion and the in-
jectivity of the LL relational semantics for cut-free LL nets.
This is an open problem first addressed in [14]. Our results
allow to deduce the injectivity from a confluence property
of the merging reduction:

(∗) for every cut-free ll-netπ′, there are simple nets
(αi)i≤n ∈ T (π′) s.t. every successful reduction leads

to π′: Init(αi)i≤n
mrg∗
−−−→ π′.

First, (∗) givesT (π′) ⊆ T (π) ⇒ π′ ≪ π, the converse
of (2). Let π′ andπ be ll-nets s.t.T (π′) ⊆ T (π). Assume

(∗): there are(αi)i≤n in T (π′) s.t. every succesful reduc-
tion leads toπ′. Since(αi)i≤n ⊆ T (π), by completeness

(Th. 1) there isπ0 ≪ π such thatInit(αi)i≤n
mrg∗
−−−→ π0.

By (∗), π0 = π′ andπ′ ≪ π. The other direction comes
from (2). Second, two ll-netsπ′ 6= π satisfy eitherπ′ 6≪ π
or π′ 6≪ π′, henceT (π′) 6= T (π).

Acknowledgement. We are grateful to O. Laurent for
having suggested counters travelling through nets and to T.
Ehrhard and P.-L. Curien for useful discussions and hints.

References

[1] M. Barr. ∗-autonomous categories and linear logic.Math.
Struct. in Comput. Sci., 1(2):159–178, 1991.

[2] T. Ehrhard. Finiteness spaces.Math. Struct. Comput. Sci.,
15(4):615–646, 2005.

[3] T. Ehrhard and O. Laurent. Interpreting a finitary pi-calculus
in differential interaction nets. InConcurrency Theory
(CONCUR ’07), volume 4703 ofLecture Notes in Comput.
Sci., pages 333–348. Springer, Sept. 2007.

[4] T. Ehrhard and L. Regnier. The differential lambda-calculus.
Theor. Comput. Sci., 309(1-3):1–41, 2003.

[5] T. Ehrhard and L. Regnier. Differential interaction nets.
Theor. Comput. Sci., 364(2):166–195, 2006.

[6] T. Ehrhard and L. Regnier. Uniformity and the Taylor expan-
sion of ordinary lambda-terms.Theor. Comput. Sci., 2008.

[7] J.-Y. Girard. Linear logic.Theor. Comput. Sci., 50:1–102,
1987.

[8] J.-Y. Girard. Normal functors, power series andλ-calculus.
Annals of Pure and Applied Logic, 37(2):129–177, 1988.

[9] J.-Y. Girard. Coherent banach spaces: a continuous denota-
tional semantics.Theor. Comput. Sci., 3:227–275, 1996.

[10] R. Hasegawa. Two applications of analytic functors.Theo-
retical Computer Science, 272(1-2):113–175, 2002.

[11] Y. Lafont. Interaction nets. InPOPL ’90: Proceedings,
pages 95–108, New York, NY, USA, 1990. ACM.

[12] D. Mazza and M. Pagani. The separation theorem for dif-
ferential interaction nets. InLPAR, volume 4790 ofLecture
Notes in Comput. Sci., pages 393–407. Springer, 2007.

[13] L. Regnier.Lambda-Calcul et Réseaux. Thèse de doctorat,
Université Paris VII, 1992.

[14] L. Tortora de Falco. Obsessional experiments for linear
logic proof-nets.Math. Struct. Comput. Sci., 13(6):799–855,
2003.

[15] L. Vaux. λ-calcul différentiel et logique classique : inter-
actions calculatoires. Thèse de doctorat, Université Aix-
Marseille II, 2007.

10

A Labeling

Lemma 5. Let (α, L) be a labeling andb1, b2 be two dis-
tinct !-cells ofα. We have:

(i) If L(b2) is a son ofL(b1), then cont(α, L, b2) ⊂
cont(α, L, b1).

(ii) If both L(b1) and L(b2) are sons ofL(⊥α), then
cont(α, L, b1) andcont(α, L, b2) are disjoint.

(iii) Every auxiliary conclusion ofcont(α, L, b1) ∪ {b1},
that is a minimal cell with respect to≤α different from
b1, is a?-cell.

Proposition 6. For every labeling(α, L) there is a unique
cut-free ll-netπ such that(α, L) ≡ π.

Proof. We proceed by induction on the size of the
codomain ofL. If this codomain is{L(⊥α)}, thenα has
no !-cells, and we can takeπ = α. Else let(br)r≤s be the!-
cells ofα such that for eachr ≤ s, L(br) is a son ofL(⊥α)
in the tree-order⊑α,L. We apply the induction hypothesis
on everycont(α, L, br), obtaining a unique equivalent cut-
free ll-netρr: let b′r be a box with contentsρr. Thanks to
the above Lemma5, the only possible ll-net

π = α[b′r/cont(α, L, br) ∪ {br}]r≤s

is a well defined cut-free ll-net such thatπ ≡ (α, L).

The following proposition shows the converse.

Proposition 7. For every cut-free ll-netπ, up to renaming,
there is a unique labeling(α, L) ≡ π.

Proof. Let π be a cut-free ll-net. First we define(l(π), L).
For everyc ∈ l(π), we denote bycπ the unique cell inπ
corresponding toc. LetL be an embedding ofcoder(l(π))∪
{⊥l(π)} intoN . This is the only time in this proof we make
a choice: every other choice will generate the same labeling
up to renaming. We extendL to any other cellc of l(π). If
cπ has depth0 in π, thenL(c) = L(⊥l(π)). If b is the!d-cell
of l(π) associated with the boxbπ containingcπ at depth0,
thenL(c) = L(b). It remains to show that(l(π), L) is a
labeling equivalent toπ. This will be a simple consequence
of the remark that for everyc1, c2 ∈ l(π) we have

∀bπ ∈ box(π), (cπ
1 ∈ bπ ⇒ cπ

2 ∈ bπ)

⇐⇒ L(c1) ⊑l(π),L L(c2). (4)

Let us first prove (4). For i ∈ {1, 2}, let bπ
i be the boxes

containingcπ
i at depth0 andbi be the!-cells corresponding

to bπ
i in l(π). By definition we haveL(ci) = L(bi).

First assume that for every boxbπ ∈ box(π), cπ
1 ∈ bπ im-

pliescπ
2 ∈ bπ. If bπ

1 = bπ
2 , thenL(c1) = L(c2). If bπ

1 6= bπ
2 ,

thanks to the box nesting, the setscell(bπ
1) andcell(bπ

2) are
either disjoint or one is contained in the other. Sincecπ

1 ∈
bπ
1 , we havecπ

2 ∈ bπ
1 . Therefore,cell(bπ

2) (cell(bπ
1) and

bπ
2 ∈ box(bπ

1). Moreover, the principal port ofb2 in l(π) is
associated with the principal port of the boxbπ

2 . Due to the
constraints on auxiliary cells of boxes (see∗ Def. 1), there
is d ≤l(π) b2, such that eitherd = b1 or dπ is contained at
depth0 in the contents ofbπ

1 . We haveL(b1) = L(d) by
definition ofL andL(d) ⊑l(π),L L(b2) = L(c2), by defini-
tion of⊑.
Second, assume thatL(c1) ⊑l(π),L L(c2). Since ⊑
is the transitive closure of⊑◦, there are two sequences
(di)i≤k, (ei)i≤k of cells in l(π) such thatd1 = c1, ek = c2

andL(d1) ⊑◦
L(d2) = L(e2) ⊑◦

L(e3) = L(d3) . . . ⊑◦

L(ek). For everyi ≤ k, L(di) = L(ei), hence there exists
bπ
i ∈ box(π) such thatdi, ei ∈ bπ

i . Because of box nesting,
∀bπ ∈ box(π), dπ

i ∈ bπ ⇐⇒ eπ
i ∈ bπ. Besides, for every

i odd,di ≤l(π) di+1, ei+1 ≤l(π) ei+2. Sincel(π) is a cut-
free simple net, we deduce that for each boxbπ, we have
dπ

i ∈ bπ ⇒ dπ
i+1 ∈ bπ andeπ

i+1 ∈ bπ ⇒ eπ
i+2 ∈ bπ. Com-

bining these implications, we get∀bπ, cπ
1 = dπ

1 ∈ bπ ⇒
cπ
2 = eπ

2 ∈ bπ.
We are now in a position to show that(l(π), L) is a la-

beling (see Def.6). From (4) and the nesting of boxes inπ,
we deduce that⊑l(π) is a tree-like order withL(⊥l(π)) as
a minimal element (Cond. (i)); from (4) and the condition
on the conclusions of the contents of a box inπ, we deduce
Cond. (ii) and (iii).

It remains to check that(α, L) ≡ π. Let bπ ∈ box π,
and b be the!-cell of l(π) associated withbπ: by (4) we
havec ∈ l(ρ) iff c ∈ cont(l(π), L, b).

B Reduction

We give a sequence of simple facts over the labelling,
that will be useful for proving soundness and completeness.

It is immediate that(α, L,A)
mrg
−−→ (α′, L′,A′) entails

that(α, L,A∪B)
mrg
−−→ (α′, L′,A′ ∪B). The converse does

not hold in general, however we have:

Fact 1. If (α, L,A ∪ B)
mrg
−−→ (α′, L′,A′ ∪ B) andL(α) ⊆

A, L
′(α′) ⊆ A′ then(α, L,A)

mrg
−−→ (α′, L′,A′).

Fact 2. For every reductionR : (α, L,A)
mrg∗
−−−→

(α′, L′,A′), the alphabetA′ consists ofA and the ad-
dresses introduced by the ers ofR.

Fact 3 (Postponement). Let (α1, L1,A1)
x
−→

(α2, L2,A2)
y
−→ (α3, L3,A3) for two ers x, y of mrg.

If the counter in the redex ofy is not in the contractum ofx
andy uses an address inA1 or introduces a new address,
then there is(α3, L3,A3) such that the following diagram

11

commutes:

(α1, L1,A1)
x

//

y

��
�

�

�

(α2, L2,A2)

y

��

(α4, L4,A4)
x

//___ (α3, L3,A3)

Finally, the next fact states that linear reduction trans-
ports initial configurations.

Fact 4. If (InitAw
(αi, li), LA, {A})

lnr∗
−−→ (α′, L′,A′), then

7→α′ is an initial configuration that is there are(α′
i)i≤n such

that 7→α′ = InitAw
(α′

i, li)i≤n, andL
′ = LA, A′ = {A}.

Proposition 8. If (α, L,A) is a merging triple and

(α, L,A)
mrg
−−→ (α′, L′,A′) then (α′, L′,A′) is a merging

triple.

Proof. The proof splits in several cases, depending on the
type of the ers performed in(α, L,A)

mrg
−−→ (α′, L′,A′) (see

Figures9). In all cases we will deduce that(α′, L′,A′)
meets the conditions (i)-(iii) of the definition of merging
triple (Def. 13), assuming that these conditions hold in
(α, L,A). In the sequel, (i)-(iii) refer to the properties (i)-
(iii) of Definition6).

Case i(ax). Assume(α, L,A)
ax
−→ (α′, L′,A′) and lett1,

t2 be the two counters ofα erased by theax-ers andw be
the axiom created inα′.

By definition,L(t1) = L(t2), A = A′ andL, L
′ take

the same values on the same cells. Since(α′, L′,A′) has no
new counter, it clearly meets Cond. (i). Besides, the only
difference between↓α and↓α′ is in the axiomw created in
↓α′: this means that⊑↓α,L and⊑↓α′,L′ are the same order
onA, and so(α′, L′) satisfies Cond. (ii) and (i), (ii). Prov-
ing (iii) is subtler: we have to check that it holds for the new
axiomw. Suppose that one port ofw in ↓α′ is an auxiliary
port of a cellc such thatL′(c) 6= L

′(⊥α), then in

7→

α the
principal port of one the two counterst1, t2, say w.l.o.g. of
t1, is wired to the auxiliary port ofc. By Cond. (i) we have
L(c) = L(t1). This means thatL(t2) = L(t1) 6= L(⊥α),
and so, again by Cond. (i), we deduce that the principal port
of t2 is wired in↓α to a cellc′ andL(c′) = L(t2) = L(c).
We conclude by remarking thatc andc′ are the two cells
wired byw in ↓α′ andL

′(c) = L
′(c′).

Case ii (zero, one, two, contr). Assume(α, L,A)
one
−−→

(α′, L′,A′), let t be the counter involved in theone-ers,
where we adopt the convention of denoting with the same
letter t both the counter in the redex and its residue in the
contractum, and letc′ be the?d-cell created inα′.

By definition,L(t) = L
′(c′) = L

′(t), A = A′ andL, L
′

take the same values on the same cells butt, c′. Cond. (i) is
immediate, since for the counters different fromt nothing

changes, while the principal port oft is wired toc′ in
7→

α′

andL
′(t) = L(c′).

Now we prove that⊑↓α′,L′ is equal to E on A
(Cond. (ii)), supposing that the latter is equal to⊑↓α,L.
Since⊑↓α′,L′ is the transitive closure of⊑◦

↓α′,L′ (Def.6) and
since we are supposing thatE is equal to the transitive clo-
sure of⊑◦

↓α,L, it suffices to prove⊑◦
↓α,L⊆⊑◦

↓α′,L′⊆E onA.
The first inequality is immediate. Let us show⊑◦

↓α′,L′⊆E.
The only pairs in⊑◦

↓α′,L′ which might not be in⊑◦
↓α,L are

of the formL
′(d) ⊑◦

↓α′,L′ L
′(c′) for a cell d ≤↓α′ c′. By

Cond. (i) there is a cellc in ↓α wired to the principal port
of t and such thatL(c) E L(t). In ↓α′ the cellc is wired
to the principal port ofc′, so d ≤↓α′ c′ meansd = c′ or
d ≤↓α c. In the first case obviouslyL′(d) = L

′(c′), oth-
erwise we haveL(d) E L(c) (by the supposed equivalence
E=⊑↓α,L onA), and soL′(d) E L

′(c′) by L
′(d) = L(d)

andL(c) E L(t) = L
′(c′) (recall thatE is transitive). We

conclude that⊑◦
↓α′,L′⊆E and so⊑↓α′,L′=E.

Cond.(iii) follows immediately from⊑↓α′,L′=E=⊑↓α,L

onA and from the fact that the only cell created in↓α′ is an
exponential cell (hence Lab.(ii) holds).

The cases(α, L,A)
x
−→ (α′, L′,A′), for x amongzero,

two, contr, are easy variants. The only notable difference
is in proving Lab. (ii) in thetwo-ers case: in that case the
cell c′ created by the ers is not exponential as it is in the
other cases. However we remark that wheneverL(c′) 6=
L(⊥α′), we haveL(t) 6= L(⊥α) and thus by Cond. (i) on
(α, L,A), the principal port oft is wired to a cellc ∈↓α
such thatL(c) = L(t). This means that the principal port
of c′ is wired toc in ↓α′, which give also (ii).

Case iii (!p). Assume(α, L,A)
!p
−→ (α′, L′,A′), let t be the

counter involved in the!p-ers, where, as in the former case,
t denotes the counter in both the redex and the contractum,
and letc′ be the!d-cell created inα′.
On every cell different fromt and c′ the two labelingsL
andL

′ coincide, while we haveL(t) ⊳ L
′(t) = L

′(c′). Sim-
ilarly to the previous case, one can prove Cond. (i) and that
⊑↓α′,L′ is equal toE on A′ (Cond. (ii)). In particular no-
tice that from the hypothesisL(↓ α) = A, one deduces
L
′(↓α′) = A ∪ {L′(c′)}.

As for Cond. (iii), Lab. (ii)-(iii) are straightforward, the cell
c′ being exponential and the net↓α′ having no new axioms
with respect to↓α. However Lab. (i) is subtle since from
⊑↓α′,L′=E on A′ we cannot deduce that⊑↓α′,L′ is a tree-
order: from the hypothesis⊑↓α,L=E onA we do not know
anything on the relationE w.r.t. the addressL′(c′). How-
ever since the definition of the!p-ers requires thatL′(c′)
is obtained fromL(t) by elements ofX fresh inA, we
can deduce for every addressA ∈ A thatL′(c′) 5 A, and
A E L

′(c′) iff A E L(t). We conclude thatE, hence⊑↓α′,L′ ,
stays antisymmetric and tree-like onA′, which proves (i).

Case iv(?d). Assume(α, L,A)
!p
−→ (α′, L′,A′), and lett

12

be the counter (both inα andα′) involved in the?d-ers.
By definition,A′ = A andL, L′ take the same values on the
same cells but on the countert, where we haveL(t) ⊳ L

′(t)
andL

′(t) ∈ A. Cond. (i) still holds, since the auxiliary
ports oft are wired to?-cells also inα′. Cond. (ii) and (iii)
are immediate, since(↓α, L) and(↓α′, L′) denote the same
labeling.

Proposition 2. The number of ers of any
mrg
−−→-reduction

starting from a merging triple(α, L,A) is polynomially
bounded by the number of ports inα.

Proof. Given a counterc, we set (# is the set cardinality):

width(c) := 1 + (#{p port ; p ∈ α \ c andp >α c})2

depth(c) := #{b !-cell ; b ∈↓α andL(c) 6⊆
⋃

A},

then set|c| := width(c) + depth(c), and|(α, L,A)| as the
sum of the|c| for every counterc ∈ α. One can check that
|(α, L,A)| shrinks under any ers (the square inwidth(c) is

needed for
contr
−−−→, anddepth is needed for

?p
−→).

C Completeness and soundness

C.1 The linear case

We start by studying the properties of the linear reduc-
tion.

Lemma 3 (Linear reduction). Let π be a ll-net, let
b1, . . . , bs be thes ≥ 0 boxes at depth0 in π, and letρr be
the content ofbr, for eachr ≤ s. Let(αi)i≤n be a family of
simple nets with the same interface asπ, let (li)i≤n = A be
a family of pairwise incomparable tokens, and let for each
r ≤ s, (γr,i)i≤n be a family of simple nets with the same
interface ofbr.

The following two conditions are equivalent:

1. for eachi ≤ n, αi = π[γr,i/br]r≤s,

2. there is a reduction:

(Init(αi, li)i≤n, LA, {A})
lnr∗
−−−→

(π[Init(γr,i, li)i≤n/br]r≤s, LA, {A}).

Proof. The proof is by induction on the construction cases
of an ll-netπ, as given in Definition1. Contraction is the
only delicate case, the other being straightforward and left
to the reader. Letπ be the result of contracting two free
portsp′, p′′ of an ll-net π, i.e. π (resp.π′) has interface
(p : ?A, Γ) (resp.(p′ : ?A, p′′ : ?A, Γ)), whereΓ de-
notes the remaining free ports of the interface. Indeedπ

can also be the result of contractingp′ and p′′ in the ll-
net π′′ swapping the portsp′, p′′ of π′, i.e. with interface
(p′′ : ?A, p′ : ?A, Γ). This is the delicate point:π′ and
π′′ are different ll-nets, but contracting the free portsp′, p′′

yields in both cases the same ll-netπ, since contraction is
commutative. Now, let us prove the equivalence between
the conditions 1 and 2 of the Lemma.

Assume 1 and let us deduce 2. By definition of substi-
tution each simple netαi has interface(p : ?A, Γ), and it
can be obtained by contracting two free portsp′ : ?A and
p′′ : ?A of a simple netαi such thatαi = π′[γr,i/br]r≤s or
αi = π′′[γr,i/br]r≤s. The point is that we cannot choose
which one betweenπ′, π′′ yields αi. Let us enumerate
the family {αi}i≤n so that there is aq ≤ n s.t. for every
i ≤ q, αi = π′[γr,i/br]r≤s, and for everyi, q < i ≤ n,
αi = π′′[γr,i/br]r≤s. For everyi, q < i ≤ n, let α◦

i

be the simple net obtained fromαi by swappingp′, p′′,
so thatα◦

i has interface(p′ : ?A, p′′ : ?A, Γ) andα◦
i =

π′[γr,i/br]r≤s. By inductive hypothesis we know that:
(Init(α1, l1, . . . , αq, lq, α

◦
q+1, lq+1, . . . , α

◦
n, ln), LA, {A})

lnr∗
−−−→ (π′[Init(γr,i, li)i≤q/br]r≤s, LA, {A}) Besides we
have (by omitting the counter onΓ for clarity):

Init(αi, li)i≤n =

αq αq+1 αn

?A

α1

?A

l1

· · · · · ·

lq lq+1 ln

?A ?A ?A

contr

��

, LA, {A}

Init(α1, l1, . . . , αq, lq, α
◦
q+1, lq+1, . . . , α

◦
n, ln)i≤n =

αn· · ·
αq+1αqα1

?A ?A ?A

· · ·

l1 lq lq+1 ln l1 lq lq+1 ln

?A

α◦

q+1 α◦

n

?A ?A ?A ?A ?A
, LA, {A}

from which we conclude. Notice that in the above step it is
crucial to be able to swap the free ports ofαq+1, . . . , αn so
to apply the inductive hypothesis. This justifies our defini-
tion of thecontr step.

The proof that 2 implies 1 is symmetric and left to the
reader.

The following is straightforward from Lemma3 (with
s = 0):

Proposition 4 (linear reduction). Let (αi)i≤n be a family
of simple nets with the same interface and without!-cells,

13

let A = (li)i≤n be a family of pairwise incomparable to-
kens. There is a labeling(α, L) and a successful reduction
sequence

(Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ (α, L,A),

iff for everyi ≤ n, αi = α, L = LA andA = {A}.

C.2 Completeness

Theorem 1 (Completeness). Let π be a ll-net, and let
α1, . . . , αn be simple nets inT (π). For any family
{li}i≤n = A of pairwise distinct tokens, there exist a la-
beling(α, L) and a merging reduction sequence

(Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ (α, L,A),

whereLA is, as usual, the constant function taking valueA.
Moreover, there are boxesbo ∈ box(π) for 0 ≤ r ≤ s such
that

(α, L) ≡ π[!0/br]r≤s.

Proof. The proof is by induction on the exponential depth
of π; we split the induction step in two cases, the one where
π is equal to a box!ρ and the general case. This splitting
recalls the cases of Taylor expansion (Definition5).

Case i (no box). If π has no boxes, thenT (π) = {π}
(see Def.5) and by Lemma3 (cases = 0) we have
(Init(π, . . . , π), LA, {A})

mrg∗
−−−→ (π, LA, {A}), whereLA is

the constant function taking valueA. Clearly(π, LA) ≡ π.

Case ii (one box). If π is a box of contentsρ, then each
αi =

∏ki

j=1 cod(A, γi,j), whereA is the label of the princi-
pal free port ofρ, ki is an integer and∀j ≤ ki, γi,j ∈ T (ρ).
Notice that it might beki = 0, i.e. αi = l(!0) is made of
a coweakening and some weakenings. Without loss of gen-
erality we can enumerate theαi’s so that everyi ≤ q has
ki > 0 and everyi included betweenq+1 andn haski = 0.
We suppose moreoverq > 0, i.e. at leastk1 > 0: the case
q = 0 is straightforward.

We consider an elementy ∈ X fresh inA, and a family
{xj

i}i≤q,j≤ki
of pairwise distinct elements ofX which are

fresh inA, y. By means of them we definemi,j = li ∪ {xj
i}

for everyi ≤ q andj ≤ ki, andmi = li ∪ {y} for every
i, q < i ≤ n. Finally letBw = {mi ; for q < i ≤ n} and
B = Bw ∪ {mi,j ; for i ≤ q, j ≤ ki}, and notice thatA ⊳ B.
By induction hypothesis we have:

(Init(γi,j , mi,j) i≤q
j≤ki

, LB, {B})
mrg∗
−−−→ (β, L′,B), (5)

where(β, L′) ≡ ρ[!0/br]r≤s, for s ≥ 0 boxes inbox(ρ).
Moreover, by simple computations we have

(Init(αi, li)i≤n, LA, {A})
!p
−→

?p∗
−−→

(cod(p, InitBw
(γi,j , mi,j) i≤q

j≤ki

), L′′, {A, B}),

whereL
′′ labels only two cells, the conclusion cell, withA,

and the!d-cell of principal portp, with B.
As we have remarked after the Definition12of merging

reduction, one can always extend the set of addresses and
keepmrg-ers: this means in particular that (5) still holds
when replacing{B} andB with resp.{A, B} and{A} ∪ B.
We conclude by context closure:

(Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ (cod(p, β), L′′′,B),

whereL
′′′
|β = L

′′, so(cod(p, β), L′′′) ≡ π[!0/br]r≤s.

Case iii (otherwise). Assumeπ hass′ ≥ 1 boxes at expo-
nential depth0, i.e.box(π) = {b′r, r ≤ s′}, where we use
the ’ to distinguish these boxes from the ones mentioned in
the statement of the theorem. For eachr ≤ s′ let ρr be the
contents ofb′r. By definition of Taylor expansion (Def.5),
eachαi is equal toπ[γr,i/b′r]r≤s′ , with γr,i ∈ T (br) for
everyr ≤ s′. Fix now the indexr ≤ s′ and let varyi ≤ n:
by the previous case we have

(Init(γr,i, li)i≤n, LA, {A})
mrg∗
−−−→ (βr, Lr,Ar), (6)

whereLA is, as usual, the constant function taking valueA

and we have(βr, Lr) ≡ br[!0/br,i]i≤kr
, for somekr ≥ 0

boxes inbox(br). By the way, remark that we might have
kr = 1 andbr,1 = br, so(βr, Lr) ≡ !0. Notice also that we
can suppose that for differentr ≤ s′ the sets of addresses
Ar share onlyA. By Lemma3 we have:

(Init(π[γr,i/b′r]r≤s′ , li)i≤n, LA, {A})
mrg∗
−−−→ (π[Init(γr,i, li)i≤n/b′r]r≤s′ , LA, {A}).

Finally, by context closure and (6), we conclude:

(Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→

(π[βr/b′r]r≤s′ ,∪r≤s′Lr,∪r≤s′Ar),

with (π[βr/b′r]r≤s′ ,∪r≤s′Lr) ≡ π[!0/br,i]r≤s′

i≤kr

, since for

everyr ≤ s′ we have(βr, Lr) ≡ !ρr[!0/br,i]i≤kr
.

C.3 Soundness

We need some other notations: The ers!p and ?p are
calledboxing ers. They are the only ones changing an ad-
dressesA associated with a counter intoA′; we say that the
ersentersinto the new addressA′. Besides, these ers require
that the family{y}∪ {xj

i}i≤q,j≤ni
of elements ofX added

to the new addresses are pairwise distinct. Thus, the new la-
beling meets the conditions of the definition of counter (see
Def. 13).

We first prove the splitting Lemma4. For this, we need
two other lemmas.

14

(Init(αi, li)i≤n, LA, {A}) (cod(A, InitBw
(γi,j , mi,j) i≤q

j≤ki

), L′′, {A, B})

l1 ln l1 lnl1 ln

!!

. . .

. . .

. . .
.

.

!

. . .

.
!

. . .

.

γ1,1 γ1,k1 γn,1 γn,kn

A

!p
−→

?p∗
−−→

!

mn,1 mn,kn
mn,1 mn,kn

mn,1 mn,kn
m1,1 m1,k1

m1,1 m1,k1

. . .
. . .

.

. . .

.

γ1,1 γ1,k1 γn,1 γn,kn

B

A, B
m1,1 m1,k1

Figure 10: case one box

Lemma 5. Let R be a successful reduction sequence from
a merging triple(α, L,A); let β1, . . . , βn be the trees of
the canonical decomposition of the simple net↑ α, as in
Figure 7. Let p, q be two distinct free ports of↑α, let βp

(resp.βq) be theβi tree with rootp (resp.q) and lett (resp.
u) be the counter havingp (resp.q) as auxiliary port. Ifβp

andβq share an axiom then:

(i) t andu are different counters;

(ii) both pairsL(t), L(u) andλt(p), λu(q) are in the same
order with respect toE for the former and⊆ for the
latter;

(iii) if L(t) < L(u), thenR enters theL(u), if L(t) <
L(u) thenR entersL(u).

Proof. We proceed by induction on the length ofR. As-
sume thatR starts with(α, L,A)

mrg
−−→ (α′, L′,A′), then

the suffixR′ of R defines a successful reduction sequence
starting from(α′, L′,A′). The lemma does not follow im-
mediately from the induction hypothesis applied toR′ only
in case one of the two counterst, u is involved in the ers
(α, L,A)

mrg
−−→ (α′, L′,A′). Under this hypothesis the proof

splits in several cases, depending on the type of the ers.
If (α, L,A)

ax
−→ (α′, L′,A′), then the only wires which

were not already in↑α′, are axioms wiringt 6= u. Notice
that the rule

ax
−→ forcesL(t) = L(u) and the labels of any

two wired auxiliary ports to be equal.

If the first reduction step ofR is
!p
−→ or

?p
−→ (see Def.12),

let t be the counter inα involved in the reduction, andt′ be
the counter in the resultα′ of the reduction (see Figure9):
t′ has one portp′ which is a residue ofp and such that its
β′

p′ tree shares an axiom withβ′
q. We haveL(t)⊳L

′(t′) and
λt(p) ⊂ λt′(p

′). By induction hypothesis,t′ 6= u in α′,
hencet 6= u in α. Besides, eitherL′(t′) E L

′(u) = L(u)
and λt′(p

′) ⊆ λu(q) (the labelingLu of u is the same
in α and α′), then L(t) ⊳ L(u) and λt(p) ⊂ λu(q); or
L(u) E L

′(t). In the latter case, we haveλu(q) ⊆ λt′(p
′)

by induction hypothesis; moreover, by the definition of the

ersλt(p) ⊂ λt′(p
′) and the elements inλt′(p

′) \ λt(p) are
fresh inA ∋ L(u), L(t). We concludeλu(q) ⊆ λt(p).

The other cases are easier and left to the reader.

Lemma 6. Let R be a successful reduction sequence from
a merging triple(α, L,A), and such that no ers ofR enters
an address labeling a counter ofα; if p, q are free ports of
the same connected component of↑α, then:

L(t) = L(u) and λt(p) = λu(q). (7)

Proof. Let β1, . . . , βn be the trees of the canonical decom-
position of the simple net↑α, as in Figure7. The two free
portsp and q belong to a same connected component iff
there areβi1 , . . . , βik

trees such thatp (resp.q) is the root
of βi1 (resp.βik

) and for everyj < k, βij
andβij+1

shares
at least one axiom. We prove Equation (7) by induction on
the numberk.

If k = 1, then the two auxiliary port are equal, and the
lemma is satisfied. Else, let us denotep′ the root ofβi2 , and
t′ the counter with auxiliary portp′. Sinceβi1 andβi2 share
an axiom, we apply Lemma5 to p andp′: sinceR does not
enter the addressesL(t) andL(t′), thenL(t) = L(t′) and
λt(p) = λt′(p

′). Finally, we apply the induction hypothesis
to p′, q and getL(t′) = L(u) andλt′ (p

′) = λu(q).

Lemma 4 (Splitting). Let R be a successful reduction se-
quence from a merging triple(α, L,A), and such that no
ers ofR enters an address labeling a counter ofα; thenα
can be split: there are suitable sequences(αr

i)r≤s, i≤nr
, of

simple nets,(lr
i)r≤s, i≤nr

of lists, and(Ar
w)r≤s of addresses

such that

α =

↓α
· · ·

· · · InitAn
w
(αs

i , l
s
i)i≤ns

InitA1w(α1
i , l

1
i)i≤n1

· · · · · ·

.

15

Proof. SinceR is successful, two counters of the same con-
nected component of↑α have the same label (Lem.5- 6).
With each labelA, we associate the subnetβ made of cells
connected to a counter labelled byA. We are left to de-
compose the subnet↑β which has only one type of counter.
Again, thanks to Lem.6, two auxiliary ports of counters
which are connected have the same label. Hence, for every
l ∈ A, for any counter ofβ and above each auxiliary port
labelled byl, there is a subnet of↑β whose conclusions are
auxiliary ports labelled byl. With l, we associate the net
made of the subnets above each auxiliary port labelled byl.
So we have split↑β in disconnected components and got an
initial state whose label isA.

Theorem 2 (Soundness). Let π be a ll-net, let(αi)i≤n

be a family of simple nets with the same interface and let
(li)i≤n = A be a family of pairwise incomparable tokens.
If there is a labeling(α, L) ≪ π, a set of addressesA and
a merging reduction sequence

R = (Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ (α, L,A), (8)

then for everyi ≤ n, αi ∈ T (π).

Proof. Sinceπ0 ≪ π implies thatT (π) ⊆ T (π)′, we only
need to prove the theorem when(α, π) ≡ π.

The proof is by induction on the exponential depth ofπ;
we split the induction step in two cases, the one whereπ is
equal to one box and the general case. Notice this splitting
recalls the cases of Taylor expansion (Def.5) and the cases
of the proof of Theorem1. In general notice that(α, L) ≡ π
entailsα = l(π) (Def. 7).

Case i(no box). If π has no boxes, thenl(π) = π, hence
α = π, andT (π) = {α}. In particularα has no!-cell.

Since (Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ (α, L,A), we de-

duce that everyαi has no!-cell, and we conclude by Propo-
sition4.

Case ii (one box). Assume thatπ is reduced to only one
box b whose content isρ. Let p be the principal port ofρ
in l(π) = π[cod(p, ρ)/b]. Sinceπ ≡ (α, L) is a labeling,
α = cod(p, l(ρ)), that isl(ρ) = cont(α, L, L(b)) = {c ∈
α |L(b) ⊑α,L L(c)}\{b} andρ ≡ (l(ρ), L|l(ρ)) whereL(b)
is the labeling of the!-cell associated withb in α. In the
sequel, we will denoteB = L(b) andB = L(l(ρ)) ∪ {B}.
Since the only cell ofα labelled byA is ⊥, R does not use
it. Moreover,B is a lower bound ofB, hence we can ap-
ply Fact3 and decomposeR into two reductions: one,RB ,
made only of ers producingB and the otherR′ which does
not produce anyB

(Init(αi, li)i≤n, LA, {A})
!p?p∗
−−−→

RB

(α′, L′, {A, B})

mrg∗
−−−→

R′

(α, L,A), (9)

Notice thatRB begins with!p (see Fig.9) B. This means
that there are numbers such that there are0 ≤ q ≤ n and
(ki)i≤q such thatB = {mj

i = li ∪ {xj
i} ; i ≤ q, j ≤

ki} ∪ {mi = li ∪ {y} ; q < i ≤ n}, wherey is an element
of X fresh inA, and{xj

i}i≤q,j≤ki
is a family of pairwise

distinct elements ofX fresh inA ∪ {y}.
Because↓ Init(αi, li)i≤n has no cell (except⊥) and due
to the shape ofRB, the simple net↓ α′ is made of only
one !d-cell labelled byB, and the counters of7→α′ are also
labelled byB. So we haveα′ = cod(p, 7→α′) on the one
side ofR′ andα = cod(p, l(ρ)) on the other side (where
we abusively identify the auxiliary port of the redex and
the reduct). MoreoverA = B ∪ {A}, L

′(α′) ⊆ {B} and

L(l(ρ)) ⊆ B, hence Fact1 implies that(7→α′, L′, {B})
mrg∗
−−−→

R′′

(l(ρ), L′
|l(ρ),B). Notice that both sides are merging triples

thanks to the restriction of the set of addresses to the
codomain of the labeling.
Since R′′ is successful and does not produceB, we
can apply the splitting lemma (Lemma4) and de-
compose ↑ α′ into a family (γi,j)i≤q, j≤ki

of sim-
ple nets such that 7→α′ = InitBw

(γi,j , mi,j)i≤q, j≤ki
.

We are now ready to apply the induction hypoth-
esis to (InitBw

(γi,j , mi,j)i≤q, j≤ki
, LB, {B})

mrg∗
−−−→

(l(ρ), L′|l(ρ),B) and get∀i ≤ n, j ≤ ki, γi,j ∈ T (ρ).
Becauseα′ = cod(p, InitBw

(γi,j , mi,j)i≤q, j≤ki
) and due to

the shape ofRB, we have∀i ≤ n, αi =
∏ki

j=1 cod(p, γi,j).
Applying the definition of Taylor expansion, we can con-
cludeαi ∈ T (π).

Case iii (Otherwise). Assume that, at exponential depth0,
π hass ≥ 1 boxes(br)r≤s whose respective contents are
(ρr)r≤s. For eachr ≤ s, let pr be the principal port ofρr

in α = l(π) = π[cod(pr, l(ρr))/br]r≤s. Sinceπ ≡ (α, L)
is a labeling, for everyr ≤ s, l(ρr) = cont(α, L, L(br)) =
{c ∈ α |L(br) ⊑α,L L(c)}\{br} andρr ≡ (l(ρr), L|l(ρr))
whereL(br) is the labeling of the!-cell associated withbr

in α. In the sequel, we will denoteBr = L(br) andBr =
L(l(ρr))∪{Br} for eachr ≤ s. Notice thatA = ⊎r≤sBr ∪
{A}. Moreover, the boxes are disjoint, henceBr andBr′

are also disjoint.
Now, let us consider the reductionR defined by (8): remark
that along the reduction, the set of addresses is increasing,
henceA is in the set of addresses of every merging triple oc-
curring inR. We can apply Fact3 several times and antic-
ipate the ers usingA before all other ers, thus transforming
R into

(Init(αi, li)i≤n, LA, {A})
lnr∗
−−−→

R′

(α′, LA, {A})

mrg∗
−−−→
R′′

(α, L,A).

where R′ is made of the linear ers ofR using the ad-
dressA, while R′′ is made of the ers ofR using or in-

16

troducing some address in
⊎s

r=1 Br. SinceR′′ has no ers
using A, then ↓ α′ is the subnet ofα made of the cells
of α with label A, i.e. α′ = π[γr/br]r≤s, for some sim-
ple netsγr whose conclusions are auxiliary ports of the
counters. MoreoverR′ is linear, thanks to Fact4, each
γr = Init(γi,r, li)i≤n for some simple netsγi,r. Finally,
by Lemma3, ∀i ≤ n, αi = π[γi,r/br]r≤s.
Let r ≤ s. We focus on showingγi,r ∈ T (!ρr) for every
i ≤ s. Notice that every ers ofR′′ using an addressB in
Br can be anticipated before any ers using or introducing
an addressB′ in Br′, for r′ 6= r, since neither the latter can
introduceB (otherwiseB = B′ ∈ Br′), nor its contractum
can have the redex of the former (otherwiseB′ E B, which
would imply B ∈ Br′). So we can apply Fact3 and trans-
form R′′ into R′′

r which usesBr andR′′′ does not use any
address inBr

(π[Init(γi,r, li)i≤n/br]r≤s, LA, {A})
mrg∗
−−−→

R′′

r

(αr , Lr, {A} ⊎ Br)
mrg∗
−−−→
R′′′

(α, L,A)

with αr = π[l(!ρr)/br][Init(γi,r′ , li)i≤n/br′]r′≤s, r′ 6=r.
Due to Def. 12, R′′

r is the reduction

(Init(γi,r , li)i≤n, LB, {Br})
mrg∗
−−−→ (l(!ρr), Lr,Br) in

a context. We are now ready to apply (case ii) toπ = !ρr:
∀i ≤ n, γi,r ∈ T (!ρr).
We have shown that for anyr ≤ s, for everyi ≤ n, γi,r ∈
T (!ρ). Recall that for everyi ≤ n, αi = π[γi,r/br]r≤s.
Finally, by definition of Taylor expansion (see Def.5), ∀i ≤
n, αi ∈ T (π).

D Hypercoherence

Consider the following three simple nets, with sequent
conclusion!1, !1, !1, ?⊥, ?⊥, ?⊥.

1

!

!

!

1

!

1

!

1

!

1

!

1

! ?

⊥

?

?

⊥

??

⊥

?

? ? ?!α1 :=

α2 :=

α3 :=

b1 b2 b3 w1 w2 w3

Each of them has three!-cells, named resp.b1, b2, b3,
and three?-cells, named resp.w1, w2, w3. We merge
(co)weakening, (co)contraction and (co)dereliction in a
unique cell? (resp.!).

Now, every pair of simple nets betweenα1, α2, α3 is co-
herent, in the sense that there is a Taylor expansion of a
ll-net which contains both elements of the pair:

α1, α2 is contained in the Taylor expansion of the ll-net:

w1 auxiliary port of b2

w2 auxiliary port of b1

w3 weakening

α2, α3 is contained in the Taylor expansion of the ll-net:

w1 weakening

w2 auxiliary port of b3

w3 auxiliary port of b2

α1, α3 is contained in the Taylor expansion of the ll-net:

w1 auxiliary port of b3

w2 weakening

w3 auxiliary port of b1

However there is no ll-net whose Taylor expansion con-
tains all threeα1, α2, α3. Suppose such a ll-netπ does ex-
ist. Then byα1, α2 ∈ T (π) we have thatb1 hasw2 as an
auxiliary port; but then byα3 ∈ T (π) we should havew2
a dereliction inα3 and not a weakening, as it is. We thus
conclude such a ll-netπ cannot exist.

17

	Taylor expansion: from ll-nets to polynets.
	Reversing Taylor expansion:
	An example.
	Labeling
	Reduction
	Completeness and soundness

	Perspectives
	Labeling
	Reduction
	Completeness and soundness
	The linear case
	Completeness
	Soundness

	Hypercoherence

