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In this paper, we describe a denotational model of Intuitionist Linear Logic which is also a

differential category. Formulas are interpreted as Mackey-complete topological vector space

and linear proofs are interpreted as bounded linear functions. So as to interpret non-linear

proofs of Linear Logic, we use a notion of power series between Mackey-complete spaces,

generalizing entire functions in C. Finally, we get a quantitative model of Intuitionist

Differential Linear Logic, with usual syntactic differentiation and where interpretations of

proofs decompose as a Taylor expansion.

1. Introduction

Many denotational models of linear logic are discrete, based for example on graphs such

as coherent spaces (Girard 1986), on games (Abramsky et al. 2000; Hyland and Ong

2000), on sets and relations, or on vector spaces with bases (Ehrhard 2002, 2005). This

follows the intrinsic discrete nature of proof theory, and of linear logic. The computational

interpretation of linearity in terms of resource consumption is still a discrete notion, proofs

being seen as operators on multisets of formulas.

Besides, Ehrhard and Regnier show in Ehrhard and Regnier (2003b) and Ehrhard

and Regnier (2003a) how it is possible to add a differentiation rule to Linear Logic,

in this way constructing Differential Linear Logic (DiLL). In this work, differentiation

is seen as a way of transforming a non-linear proof f : A ⇒ B into a linear proof

Df : A � (A ⇒ B). In models such as the relational model, differentiation has a

combinatorial interpretation. In Ehrhard (2002) and Ehrhard (2005), non-linear proofs

are interpreted as power series between Köthe spaces and Finiteness spaces respectively,

that are sequence spaces. However, differentiation is historically of a continuous nature.

In continuous models of DiLL, where non-linear proofs are interpreted as differentiable

functions, the syntactic differentiation corresponds to the mathematical one. It is a fairly

natural question to look for a continuous semantics of linear logic in which the differential

rule can be interpreted.

Bornologies. The search for topological models of Linear Logic relies on some fun-

damental mathematical issues. Indeed, having a cartesian closed category of topological

spaces is not straightforward. Several answers exists (see Escardó and Heckmann (2001/02)

for a past account), and amongst them is the definition of convenient spaces and smooth
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M. Kerjean and C. Tasson 2

functions by Frölicher, Kriegl, and Michor in Frölicher and Kriegl (1988) and Kriegl and

Michor (1997). Those are the smooth functions used in Blute et al. (2012) for modelling

DiLL. Moreover, as explained by Girard in the introduction of Girard (1999), if the proofs

are interpreted by continuous functions, then, notably, the interpretations of the proofs

of A,A ⇒ B � B and of A � (A ⇒ B) ⇒ B are also continuous. That is, x, f �→ f(x) and

x �→ (δx : f �→ f(x)) must be continuous. This would be the case if linear function spaces

bore both a uniform convergence and a pointwise convergence topology. We believe that

this is solved by the use of bounded sets, i.e. by using the advantages of the theory

of bornologies (see Hogbe-Nlend (1977) for an overview of this theory). Indeed, the

Banach–Steinhauss theorem says that between Banach spaces, the topology of uniform

convergence on bounded sets and the pointwise convergence topology on a space of linear

functions give rise to the same bounded sets. This theorem is generalized in Kriegl and

Michor (1997), where the authors use Mackey-complete spaces (complete spaces for a

specific version of Cauchy sequences) and bounded linear maps (linear maps preserving

bounded sets). This observation was exploited in Frölicher and Kriegl (1988) and Kriegl

and Michor (1997) where bounded linear functions replace continuous ones.

Quantitative semantics. Introduced by Girard in Girard (1988), quantitative semantics

refine the analogy between linear functions and linear programs (consuming exactly

once their input). Indeed, programs consuming exactly n-times their resources are seen

as monomials of degree n. General programs are described as the disjunction of their

executions consuming n-times their resources. Mathematically, this means that non-linear

programs are interpreted by potentially infinite sums of monomials, that are power series.

This analogy can be found in many denotational models of variant of Linear Logic such as

Fock spaces (Blute et al. 1994), Köthe spaces (Ehrhard 2002), Finiteness spaces (Ehrhard

2005), Probabilistic Coherent spaces (Danos and Ehrhard 2016), or, in a more categorical

setting, in analytic functors (Hasegawa 2002) and generalized species (Fiore et al. 2008).

This line of research has also given rise to models characterizing quantitative properties

of non-deterministic, probabilistic, or resource sensitive PCF extensions. For instance,

in Ehrhard et al. (2014), probabilistic coherent spaces are shown to be fully abstract

for probabilistic PCF. In Laird et al. (2013b), weighted relational models are used to

compare programs with respects to how many different ways or with which probability

they compute a result. In Pagani et al. (2014), the quantitative framework is successfully

used to design a model of higher order quantum computation. In Laird et al. (2013a), the

authors define differential cartesian closed categories based on categories of games.

Mackey-complete spaces and Power series. In this paper, we have brought to light a model

of Intuitionist DiLL, whose objects are locally convex topological vector spaces that are

Mackey-complete (see Definition 2.5). The ingredients of the model have been chosen so

that they correspond cleanly to the constructions of DiLL: For instance, vector spaces are

used to interpret linearity, and topology to interpret differentiation. This is a quantitative

version of the work on Mackey-complete spaces and smooth maps by Blute et al. (2012).

We use the notion of bounded set when we ask linear functions not to be continuous

but bounded , that is to send a bounded set to a bounded set. The two notions are closely
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Mackey-complete spaces and power series 3

related, but distinct. As a consequence, the interpretation of the negation is based on the

bounded dual and not on the usual continuous dual.

The multiplicative conjunction ⊗ of Linear Logic is interpreted by the bounded tensor

product of topological vector spaces which has to be Mackey-completed.

The additive conjunction & and disjunction ⊕ are interpreted respectively by the cartesian

product and the coproduct in the category of Mackey-complete spaces and bounded linear

functions. Finite products and coproducts coincide, so that the category is equipped with

finite biproducts. Notice that if we wanted to ensure that the bounded dual of infinite

products are coproducts (the reverse comes automatically), we would need to work

with spaces whose cardinals are not strongly inaccessible (Jarchow 1981, 13.5.4). This

assumption is not restrictive as it is always possible to construct a model of ZFC with

non-accessible cardinals.

Non-linear proofs of DiLL are interpreted as power series, that are sums of bounded

n-monomials. In order to work with these functions, we must make use of the theory of

holomorphic maps developed in the second chapter of Kriegl and Michor (1997). This is

made possible since the spaces we consider are in particular Mackey-complete. We have

proven that the category of Mackey-complete spaces and power series is cartesian closed,

by generalizing the Fubini theorem over distributions S(E × F,C) 	 S(E, S(F,C)) and by

using interchange of converging summations in C. The exponential modality is interpreted

as a Mackey-complete subspace of the bounded dual of the space of scalar power series.

Indeed, any space can be embedded in its bounded bidual !E ⊂ (!E)×× = (!E � ⊥)×

and using the key decomposition !E � ⊥ 	 E ⇒ ⊥ = S(E,C) of Linear Logic gives

us that !E ⊆ S(E,C)×. Finally, because we are working with topological vector spaces,

the interpretation of the co-dereliction rule of DiLL is the operator taking the directed

derivative at 0 of a function.

Related works. Our model follows a long history of models establishing connections

between analyticity and computability.

Fock spaces (Blute et al. 1994) and Coherent Banach spaces (Girard 1999) were the

first step towards a continuous semantics of Linear Logic. More precisely, Fock spaces are

Banach spaces and Coherent Banach spaces are dual pairs of Banach spaces (see Jarchow

1981, Chap. 8 for an overview of the theory of dual pairs). In Fock spaces, linear

programs are interpreted as contractive bounded linear maps and general programs as

holomorphic or analytic functions. Similarly, in Coherent Banach spaces, linear programs

are interpreted as continuous linear functions and general programs as bounded analytic

functions defined on the open unit ball. Yet, neither Fock spaces nor Coherent Banach

spaces are completely a model of the entire linear logic, but they are a model of a linear

exponential, that is of weakening. However, both works were already using bounded sets

(e.g. bounded linear forms and continuous linear forms correspond on Banach spaces)

and we take advantage of replacing Banach spaces norms with bornologies.

With Köthe spaces (Ehrhard 2002) and then Finiteness spaces (Ehrhard 2005), Ehrhard

designed two continuous semantics of Linear Logic. The objects of the two models are

sequence spaces equipped with a structure of topological vector spaces. Köthe spaces are

locally convex spaces over the usual real or complex fields, whereas Finiteness spaces
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are endowed with a linearized topology over a field (potentially of reals or complexes)

endowed with discrete topology. The linear proofs are interpreted as continuous linear

functions and the non-linear ones as analytic mappings. Notice that the interpretation

of a linear logic formula enjoys an intrinsic characterization, even if these models are

related to the relational semantics. Indeed, a Linear Logic formula is interpreted as a

space of sequences whose indices constitute its relational interpretation. Furthermore, the

interpretation of a proof is a sequence whose support (the indices of non-zero coefficients)

is its relational interpretation. Although interpretations of formulas may differ, proofs are

identically interpreted in Köthe or Finiteness models (and in the model presented in the

present paper). The main difference between our model and these Köthe or Finiteness

spaces models is precisely that Mackey-complete spaces do not have to be sequence spaces.

They digress from the discrete setting of the relational model. Since Köthe spaces and

Mackey-complete spaces are both endowed with locally convex topology, one could think

that the first are a special case of the last. However, the function spaces are endowed with

the compact open topology for Köthe spaces and with the bounded open topology for the

Mackey-complete spaces. In particular, the dual E⊥
X of a Köthe Space EX is isomorphic

to the topological dual of EX , which is in general a strict subset of the bornological dual

(all Köthe spaces are not bornological). It raises an interesting question about whether

a description with bounded subsets would help having an intrinsic description of Köthe

spaces. On the contrary, although Finiteness spaces do not have the same kind of topology,

their use of bounded sets is central and our model borrows a lot of Finiteness spaces

constructions.

The present work is thought as a version of Convenient spaces (Blute et al. 2012),

that is Mackey-complete spaces and smooth maps, without the bornological condition on

the topology. In this model of Intuitionist Linear Logic, which is a differential category,

non-linear proofs are interpreted with some specific smooth maps. No references are made

to a discrete setting. As in Finiteness spaces, the topology and the bornology are dually

related. Although this bornological condition facilitates the proofs, it is not necessary

to interpret Intuitionnist Linear Logic. Thus, in our model, we release the bornological

condition on the topology.

In many Quantitative models of Linear Logic, as in Normal functors (Girard 1988;

Hasegawa 2002), Fock spaces (Blute et al. 1994), or Finiteness spaces (Ehrhard 2005,

2007), non-linear proofs are interpreted as analytic functions. In our model, we refine

smooth maps into analytic ones. On the way, we consider topological vector spaces over

C to be able to handle holomorphic functions. This is another difference with Convenient

Vector spaces as presented in Blute et al. (2012).

Content of the paper. We begin the paper by laying down the bornological setting (Subsec-

tion 2.1) and by defining the central notion of Mackey-complete spaces (Subsection 2.2).

Then, in Section 3, we begin the definition of the model by the linear category of Mackey-

complete spaces and bounded linear maps that is cartesian and symmetric monoidal

closed. This linear part is the base of the present work, but also of the model of Mackey-

complete spaces and smooth functions introduced in Blute et al. (2012). We have given

an overview of this work in a slightly different setting in Section 4 in order to properly
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describe the landscape of our work. Finally, in Section 5, we introduce the power series,

their definition and properties that are useful in demonstrating that Mackey-complete

spaces and power series constitute a quantitative model of Intuitionistic DiLL.

2. Preliminaries

2.1. Topologies and bornologies

Let us first set the topological scene. We will handle complex topological vector spaces.

We denote by C the field of complex numbers and by C∗ = C \ {0}. (When working with

linear maps, one could describe a monoidal structure either with complex or real vector

spaces. However, in Section 5, we study power series and make an extensive use of their

holomorphic properties.)

More precisely, we will work with locally convex separated topological vector spaces

(see Jarchow (1981, I.2.1)) and refer to them as lctvs. From now on, E and F denote

lctvs. A set C in a C-vector space is said to be absolutely convex when for all x, y ∈ C ,

for all λ, μ ∈ C, if |λ| + |μ| < 1, then λx + μy ∈ C . By definition, the topology of an

lctvs is generated by a basis of neighbourhood of 0 made of absolutely convex subsets.

We will use that if C is an absolutely convex subset of an lctvs, then C̄ ⊂ 3C , and

λC + μC ⊂ (λ+ μ)C for all λ, μ ∈ C.

Bounded sets. We will also work with bornologies, that is collections of bounded sets

with specific closure properties. A subset b of an lctvs is bounded when it is absorbed by

every 0-neighbourhood U, that is there is λ ∈ C such that b ⊆ λU. A disk is a bounded

absolutely convex set. A function is bounded when it sends a bounded set of its domain

to a bounded set of its codomain. Two spaces are bounded equivalent, noted E 	 F , when

there is a bijection φ : E → F such that φ and φ−1 are both linear and bounded.

Let us denote E ′ the space of linear continuous forms on E, E× the space of linear

bounded forms on E, and E� the space of linear forms on E. Remark that any linear

continuous function is bounded and so E ′ ⊂ E× ⊂ E�.

The Mackey–Arens Theorem. It is a fundamental theorem for the theory of bornologies.

It states that bounded subsets can be characterized as the ones that are sent to a bounded

ball by any continuous linear form. We state it for bounded linear forms.

Lemma 2.1. A subset b ⊂ E is bounded if and only if it is scalarly bounded, that is

∀� ∈ E×, ∃λ > 0, |�(b)| < λ.

Proof. By definition of the bounded linear forms, the image of a bounded set is bounded.

For the reverse implication, we use the Mackey–Arens theorem (see e.g. Schaefer (1971,

IV.3.2)). Indeed, since for any � ∈ E ′, � ∈ E×, we have �(b) is bounded, and so b is

bounded.

The Hahn–Banach Theorem. Usually, the Hahn–Banach separation theorem is stated

for continuous linear forms (see Jarchow 1981, Proposition 7.2.2.a). We adapt it to
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bounded linear forms as E ′ ⊆ E×. The principal flaw to the theory of vectorial spaces

and bornologies is that there is no version of the Hahn–Banach extension theorem for

bounded linear maps (Hogbe-Nlend 1970).

Proposition 2.2. Let C be a closed convex subset of E. If x ∈ E \ C , then there is

� ∈ E ′ ⊂ E× such that |�(x)| = 1 and for all y ∈ C , |�(y)| = 0.

As a corollary that we will frequently use, let x ∈ E and b ⊂ E, if for all � ∈ E×,

�(x) ∈ �(b), then x ∈ b.

Bornivorous subsets. We introduced bounded sets as a definition depending on the topology.

It is also possible to define 0-neighbourhood from the notion of bounded set.

Definition 2.3. A bornivorous set is a subset U ⊆ E absorbing any bounded subset up to

dilatation: ∀b ⊂ E bounded, ∃λ ∈ R+, λb ⊆ U. The bornological topology τb of E is the

topology generated by the bornivorous disks of E.

Note that any neighbourhood of 0 in the topology of E is bornivorous, but the converse

is false, i.e. the bornivorous topology τb is finer than the topology of E. The point of the

bornologification of an lctvs is precisely to enrich E with all the bornivourous subsets

as 0-neighbourhood, so that we get better relations between continuity and boundedness

(see Jarchow 1981, 13.1 for details on this notion).

Proposition 2.4.

1. The bounded subsets of E and of τb(E) are the same.

2. A linear function f : E → F is bounded if and only if f : τb(E) → F is continuous.

Proof. The first item stems from definition handling. For the second one, if f : τb(E) →
F is continuous, it is bounded and because E and τb(E) bears the same bounded sets

f : E → F is bounded. Conversely, suppose that f : E → F is bounded. Then, one can

see that when V is a 0-neighbourhood in F , f−1(V ) is a bornivorous subset of E; hence,

a 0-neighbourhood in τb(E). Thus, f : τb(E) → F is continuous.

2.2. Mackey-complete spaces

Mackey-complete spaces are very common spaces in mathematics as Mackey-completeness

is a very weak completeness condition. For example, every complete space, quasi-complete,

or weakly complete space is Mackey-complete. Mackey-complete spaces are called locally

complete spaces in Jarchow (1981), or convenient spaces in Kriegl and Michor (1997).

Although it is not a very restraining notion, Mackey-completeness suffices to speak about

smoothness between lctvs, in the meaning of Kriegl and Michor.

Definition 2.5. Consider E an lctvs. A Mackey-Cauchy net in E is a net (xγ)γ∈Γ such that

there is a net of scalars λγ,γ′ decreasing towards 0 and a bounded set b of E such that

∀γ, γ′ ∈ Γ, xγ − xγ′ ∈ λγ,γ′b.

A space where every Mackey–Cauchy net converges is called Mackey-complete.
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Note that a converging Mackey–Cauchy net does in fact Mackey-converge, i.e. there

is a net of scalars λγ decreasing towards 0 such that xγ − limγ xγ ∈ λγb. Note also that

a Mackey-converging net is always a converging net, by definition of boundedness in an

lctvs.

Notice that the convergence of Mackey–Cauchy nets and the convergence of Mackey–

Cauchy sequences are equivalent (see Kriegl and Michor 1997, I.2.2). Mackey-converging

sequences and bounded functions behave particularly well together. Indeed, a bounded

function is not continuous in general, so it does not preserve converging sequences but it

does preserve Mackey–Cauchy nets.

Proposition 2.6. Bounded linear functions preserve Mackey-convergence and Macke–

Cauchy nets.

There is a nice characterization of Mackey-completeness, through a decomposition into

a collection of Banach spaces.

Definition 2.7. Consider b an absolutely convex and bounded subset of an lctvs E. We

write Eb for the linear span of b in E, and it is a normed space, when endowed with the

Minkowski functional defined as pb(x) = inf{λ ∈ R+ | x ∈ λb}.

As a Mackey–Cauchy net is nothing but a Cauchy net in some specific Eb, we have:

Proposition 2.8 (Kriegl and Michor (1997, I.2.2)). An lctvs E is Mackey-complete if and

only if for every closed bounded and absolutely convex subset b, Eb is a Banach space.

Similarly to what happens in the more classical theory of complete spaces, we have

a Mackey-completion procedure. This one is slightly more intricate than the completion

procedure, as it consists of the right completion of each of the Eb.

Proposition 2.9 (Kriegl and Michor (1997, I.4.29)). For every lctvs E, there is a Mackey-

complete lctvs Ẽ and a bounded embedding ι : E → Ẽ, unique up to bounded

isomorphism, such that for every Mackey-complete lctvs F , for every bounded linear

map f : E → F , there is a unique bounded linear map f̃ : Ẽ → F extending f such that

f = f̃ ◦ ι.

Beware that the Mackey-closure procedure does not behave as simply as the closure

procedure. Indeed, the Mackey-closure of a subset B is the smallest Mackey-closed (i.e.

closed for Mackey-convergence) set containing X. It does not coincide in general with

the Mackey-adherence of X, that is the set of all limits of Mackey-converging sequences

of elements of X, see Kriegl and Michor (1997, I.4.32).

Let us describe finally a few preservation properties of Mackey-complete spaces.

Proposition 2.10 (Kriegl and Michor (1997, I.2.15)). Mackey-completeness is preserved

by limits, direct sums, strict inductive limits of sequences of closed embeddings. It is not

preserved in general by quotient nor general inductive limits.

Spaces of bounded maps. Let us write B(E, F) for the space of bounded maps from

E to F (not necessarily linear), endowed with the topology of uniform convergence

on bounded sets of E. As in the linear case (see below), bounded sets of B(E, F) are
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the equibounded ones, that is the sets B ⊂ B(E, F) such that for any b ⊂ E bounded,

B(b) = {f(x) | f ∈ B, x ∈ b} is bounded in F .

Proposition 2.11 (Kriegl and Michor (1997, I.2.15)). Let E and F be lctvs. If F is Mackey-

complete, then so is B(E, F).

3. A symmetric monoidal closed and cartesian category

Let us write Lin for the category whose objects are Mackey-complete spaces, and whose

morphisms are linear bounded maps. In this setting, the additives are interpreted using

product and coproduct, whilst the multiplicative connectives are interpreted using a tensor

product and its dual. The only tricky point is to find a good tensor product in our category:

This is possible thanks to the Mackey-completion procedure.

3.1. The (co)cartesian structure

Topological products and coproducts.

The cartesian product of a countable family of Mackey-complete spaces is Mackey-

complete when endowed with the product topology (Kriegl and Michor 1997, I.2.15). A

subset of the cartesian product is bounded if and only if it is bounded in each direction.

The terminal object � is the one-point vector set {0} viewed as a Mackey-complete space.

The coproduct of a countable family of Mackey-complete spaces is Mackey-complete

when endowed with the coproduct topology, that is the finest topology on
⊕

i Ei for which

the injections Ei →
⊕

i Ei are continuous. Then, B ⊂
⊕

i Ei is bounded if and only if

{i | ∃x ∈ B ∩ Ei} is finite and if for every i, B ∩ Ei is bounded in Ei. The {0} vector space

is also the unit 0 of the coproduct.

Notice that in the finite case, the product and the coproduct coincide algebraically

and topologically. In the infinite case, the distinction between product and coproduct

corresponds to the distinction between the space of complex sequences CN =
∏

n∈N C
and the space of complex finite sequences C(N) =

⊕
n∈N C. In CN bounded sets are the

ones included in an arbitrary product of disks, whereas in C(N) bounded sets are included

in a finite product of disks.

Duality. The bounded isomorphism (⊕i∈IEi)
× =

∏
i∈I E

×
i always holds. Indeed, the

restriction to each Ei of a morphism f ∈ (⊕i∈IEi)
× gives a family (fi) ∈

∏
i∈I E

×
i .

Conversely, any family (fi) ∈
∏

i∈I E
×
i transforms into a sum

∑
i fi ∈ (⊕i∈IEi)

× which is

pointwise convergent as it is applied to finite sequences of terms. The dual isomorphism

(
∏

i∈I Ei)
× = ⊕i∈IE

×
i holds only in certain cases.

Proposition 3.1. If I is countable, then (
∏

i∈N Ei)
× = ⊕i∈NE

×
i .

Proof. Let us first consider h ∈ ⊕i∈NE
×
i , we can define hi ∈ E×

i the ith components of

h, so that h =
∑

i∈N hi. As a finite sum, h ∈ (
∏

i∈N Ei)
×.

Now, consider f ∈ (
∏

i∈N Ei)
× and let us write fi : Ei → C for f|{0}×...{0}×Ei×{0}×..., that is

the restriction of f to Ei. fi is bounded. Let us show that there is only a finite number of
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Mackey-complete spaces and power series 9

i such that fi is not null. Indeed, if this is not the case, there is a non-decreasing sequence

(ik) ∈ NN and for any k ∈ N , xk ∈ Eik such that f(0, . . . , 0, xk, 0, . . . ) = fik (xk) > k. Remark

that the set {(0, . . . , 0, xk, 0, . . . ) | k ∈ N} is bounded in
∏

i∈N Ei, since f is bounded, we get

a contradiction.

Let h =
∑

i∈N fi. We have just proved that h ∈ ⊕i∈NE
×
i , so that h is bounded as a finite

sum of bounded functions. Notice that h =
∑

i∈N fi ∈ (
∏

i∈N Ei)
×. Let us now show that

g = f − h is null. Remark that for any i ∈ N , the restriction of g to Ei is null. Suppose

that g �= 0. There is x ∈
∏

i∈N Ei such that g(x) = 0. Consider i maximal such that there

is x ∈ {0} × . . . {0} ×
∏

k�i Ek such that g(x) = 0. Then, g(x) = gi(xi) + g|
∏

k>i Ek
((xk)k>i).

As gi(xi) = 0, we have g|
∏

k>i Ek
((xk)k>i) = 0, and thus g(0, . . . , 0, xi+1, xi+2, . . . ) = 0. This

contradicts the maximality of i. Then, g = 0, and f = h ∈ ⊕i∈NE
×
i .

There is a generalization of this proposition. Thanks to the Mackey–Ulam the-

orem (Robertson 1970; Ulam 1930), when the cardinal I indexing the family is not

strongly inaccessible, then the bounded dual of the product is the coproduct of the

bounded duals.

3.2. The monoidal structure

The bounded tensor product (Kriegl and Michor 1997, I.5.7) E⊗β F is the algebraic tensor

product with the finest locally convex topology such that E×F → E⊗F is bounded. The

complete bounded tensor product E⊗̂F is the Mackey-completion of E ⊗β F . The tensor

product is associative. The bounded sets associated with this topology are generated by

bE ⊗ bF for bE and bF , respectively bounded in E and F . The unit 1 is the base field C
endowed with its usual topology.

The space of linear bounded functions L(E, F) is endowed with the bounded open

topology, generated by W(b, V ) = {f ∈ L(E, F) | f(b) ⊂ V }, where b is bounded in E

and V is open in F . The associated bornology is generated by the equibounded sets, that

is the B ⊂ L(E, F) such that for any bounded b in E, B(b) is bounded in F . Indeed,

consider B ⊂ L(E, F) bounded for the topology of uniform convergence on bounded set.

Consider b ⊂ E a bounded set and V ⊂ F a 0-neighbourhood in F . As B is bounded,

there is λ ∈ C such that B ⊂ λW(b, V ), that is B(b) ⊂ λV . Thus, B(b) is bounded in F .

Conversely, consider B ⊂ L(E, F) an equibounded set, b a bounded in E and V ⊂ F a

0-neighbourhood in F . Then, there is λ ∈ C such that B(b) ⊂ λV , that is B ⊂ λW(b, V ).

Thus, B is bounded in L(E, F).

Proposition 3.2. Let E and F be lctvs. If F is Mackey-complete, then so is L(E, F).

Proof. Thanks to Proposition 2.11, a Mackey–Cauchy net in L(E, F) converges into a

bounded map from E to F . Besides, the limit of a net of linear functions is also linear.

Let E, F, G be locally convex spaces. Endowed with the bounded open topology, the

space of bounded bilinear mappings, denoted as L(E, F;G), is also locally convex.

Proposition 3.3. The bornological tensor product is the solution of the universal problem

of linearizing bounded bilinear mappings. More precisely, for any h ∈ L(E, F;G), there is
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M. Kerjean and C. Tasson 10

a unique hβ ∈ L(E ⊗β F, G) such that

E × F

h

��

�� E ⊗β F

hβ
���

�
�

�
�

G

Proof. Consider E, F, G, and h as in the proposition. Let us define hβ : x⊗ y �→ h(x, y).

We see that hβ is linear and bounded. The uniqueness of hβ follows from the universal

property of E ⊗ F in the category of vector spaces and linear map.

If moreover, G is Mackey-complete, then so is L(E, F;G) (for the same reason as in the

proof of Proposition 3.2). Then, the universal property diagram can be extended through

the Mackey-completion universal property, for any h ∈ L(E, F;G), there is a unique

ĥ ∈ L(E⊗̂F,G) such that

E × F

h

��

�� E ⊗β F

hβ

���
�

�
�

�
�� E⊗̂F

ĥ
��� � � � � � � � � � �

G

Proposition 3.4. E ⊗β − is left adjoint to L(E,−), i.e. for any locally convex spaces E, F ,

and G, there are natural isomorphisms:

Lin(E,L(F,G)) 	 L(E, F;G) 	 Lin(E ⊗β F, G).

This property extends to the complete case by the universal property of the Mackey-

completion. If E, F , and G are Mackey-complete, then

Lin(E,L(F,G)) 	 L(E, F;G) 	 Lin(E⊗̂F,G).

Proof. (See Kriegl and Michor 1997, I.5.7) The bijection Lin(E ⊗β F, G) 	 L(E, F;G)

follows from the universal property of the bornological tensor product. Besides, both the

bijection and its inverse are bounded. The canonical bijections between Lin(E,L(F,G))

and L(E, F;G) are bounded and natural in every elements E, F , and G.

The next theorem follows from the symmetry and the associativity of the tensor product,

and from Propositions 3.2 and 3.4:

Theorem 3.5. The category Lin of Mackey-complete spaces and linear bounded maps

endowed with the complete bounded tensor product ⊗̂ is symmetric monoidal closed.

4. Smooth maps in topological vector spaces

Mackey-complete spaces have already been at the heart of a model of the differential

extension of the Intuitionist Linear Logic (Blute et al. 2012), inspired by the work

presented in Frölicher and Kriegl (1988), Kriegl and Michor (1997). In this model, spaces
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Mackey-complete spaces and power series 11

are interpreted as Mackey-complete bornological spaces, i.e. spaces such that topologies

and bornologies are mutually induced. Non-linear proofs are interpreted as smooth maps.

Actually, the bornological condition of Frölicher and Kriegl (1988), Blute et al. (2012)

can be removed as in Kriegl and Michor (1997). In particular, the characterization of

open sets as bornivorous sets is not necessary. Nevertheless, constructions such as tensor

product or exponential use Mackey-completion that give rise to bornological spaces.

Moreover, as underlined in Kriegl and Michor (1997, II.7.1), any complex locally

convex space can be seen as a real convex space endowed with a linear complex structure

J : E → E defined as J(x) = i x and the complex scalar multiplication is then given by

(λ+ i μ) x = λ x+ μ J(x). The only adaptation consists in replacing absolutely convex sets

by C-absolutely convex ones. Moreover, a C-linear functional l is characterized by its real

part Re ◦ l, since l(x) = (Re ◦ l)(x)+ i(Re ◦ l)(J(x)). Thus, considerations on smooth curves

as well as concepts used in Kriegl and Michor (1997), Blute et al. (2012) still hold in the

complex setting.

We now present an overview of Blute et al. (2012) in the complex setting and where the

bornological condition has been relaxed. This settle the general framework and category

in which our model is built in the next Section.

4.1. Smooth curves and smooth maps

Let E be a Mackey-complete space. As in any topological space and for any curve

c : R → E, the derivative can be defined as usual:

c′(t) = lim
s→0

c(t+ s) − c(t)

s
.

Then, such a curve is smooth whenever it is infinitely derivable. Let us write CE for the

set of smooth curves into E. It is endowed with the topology of uniform convergence on

bounded sets of each derivative separately. A basis of 0-neighbourhood for this topology

is made of Wb,i,U , where b is a bounded set in R, i ∈ N , U is a 0-neighbourhood in E, and

Wb,i,U = {c | ∀t ∈ b, c(i)(t) ∈ U}.

Proposition 4.1 (Kriegl and Michor (1997, I.3.7)). E is Mackey-complete if and only if CE
is Mackey-complete.

Proof. By considering the set of all its derivative, one can see CE as a closed subspace

of
∏

n B(R, E). Conversely, E can be identified as the closed subspace of CE given by the

constant curves.

A set of curves C ⊂ CE is bounded whenever each derivative is uniformly bounded on

bounded subsets of R (see Kriegl and Michor 1997, I.3.9):

∀i, ∀b ⊂ R bounded, ∃bE bounded in E, such that {c(i)(x) | c ∈ C, x ∈ b} ⊂ bE.

Let C∞(E, F) denote the space of smooth maps from E to F , i.e. f : E → F preserving

smooth curves: ∀c ∈ CE, f ◦ c ∈ CF . This definition of smoothness is a generalization of

the usual one for finite dimension topological vector spaces (see Boman 1967).
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M. Kerjean and C. Tasson 12

Proposition 4.2 (Kriegl and Michor (1997, I.3.11)). When F is Mackey-complete, then

C∞(E, F) is also Mackey-complete.

Proof. The space C∞(E, F) can be seen as the closed subspace of
∏

c∈CE CF whose

elements (fc)c are those such that for every g ∈ C∞(R,R), fc◦g = fc ◦ g.

A subset B of C∞(E, F) is bounded whenever, the image c∗(B) = {f ◦ c | c ∈ B} of any

curve c ∈ CE , is bounded in CF .
There is a strong link between boundedness and smoothness. First, smoothness only

depend on the bounded subsets (see Kriegl and Michor 1997, I.1.8). So that, if two

different topologies on E induce the same bounded subsets, then the set of smooth curves

into E are identical. Moreover, the space of bounded linear maps can be embedded in the

space of smooth ones.

Proposition 4.3 (Kriegl and Michor (1997, I.2.11)). The linear bounded maps between E

and F are exactly the smooth linear ones.

It is not the case for continuity and boundedness, since a bounded linear map has not to be

continuous. Indeed, consider an infinite-dimensional Banach space B, and the same space

endowed with its weak topology Bw . By Lemma 2.1, the identity function id : Bw → B is

bounded. But as the weak topology is strictly coarser than the norm topology, id is not

continuous. Though any continuous linear map is bounded and so smooth.

Notice that the bounded open topology of L(E, F) coincides with the topology induced

by C∞(E, F) (see Kriegl and Michor 1997, I.5.3), so that L(E, F) can be seen as a closed

linear subspace of C∞(E, F) (see Kriegl and Michor 1997, I.3.17).

4.2. A model of differential linear logic

One of the great interest of smooth maps as defined above is that they lead to a cartesian

closed category (Kriegl and Michor 1997, I.3.12). Let Smooth denote the cartesian closed

category of Mackey-complete spaces and smooth maps. In Blute et al. (2012), it is shown

that there is a linear–non-linear adjunction between Lin and Smooth, so defining a model

of Intuitionistic Linear Logic.

An adjunction between Lin and Smooth. The exponential in Blute et al. (2012) is generated

by evaluation maps on certain smooth functions, whilst in our case, it is generated by

evaluation maps on certain power series (see Definition 5.31).

Let us introduce the Dirac delta distribution δ. For any Mackey-complete space E and

x ∈ E, δ is the bounded and linear map (see Blute et al. 2012, Lemma 5.1) defined as

δ :

{
E → C∞(E,C)×

x �→ δx : f �→ f(x)

Actually, δ is smooth. In Section 5.2, we will construct a similar function δ from E to the

dual of a space of power series, that is a power series.

The Dirac delta distributions are linearly independent (see Blute et al. 2012, Lemma

5.3). Hence, they form a basis of the linear span of the set δ(E) = {δx | x ∈ E}. The

Mackey-complete space !E is the Mackey-closure of this linear subspace of C∞(E,C)×.
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Mackey-complete spaces and power series 13

Fig. 1. Exponential groups of LL (promotion, weakening, contraction, dereliction) and DiLL

((co-)weakening, (co-)contraction, (co-)dereliction)).

Let f ∈ Lin(E, F) be a smooth map. Its exponential !f ∈ Lin(!E, !F) is defined on the

set δ(E) by !f(δx) = δf(x). It is then extended to the linear span of δ(E) by linearity and

to !E by the universal property of the Mackey-completion.

The exponential functor ! enjoys a structure of comonad, which is defined on the

Dirac delta distributions and then extended: The counit ε is the natural transformation

given by the linear map εE ∈ Lin(!E,E), defined as ε(δx) = x, the comultiplication ρ has

components ρE ∈ Lin(!E, !!E) given as ρE(δx) = δδx .

Theorem 4.4 (Blute et al. (2012)). The cokleisli category of the comonad ! over Lin is

the category Smooth. In particular, for any Mackey-complete spaces E and F ,

Lin(!E, F) 	 Smooth(E, F).

Theorem 5.40 is similar but for the category Series of Mackey-complete spaces and power

series.

A differential category. Working with smooth functions allows the author of Blute et al.

(2012) to handle a notion of differentiation, which coincides with the usual notion. This

makes Lin, endowed with !, a differential category (Blute et al. 2006), and a model

of Intuitionistic Differential Linear Logic (Ehrhard 2016) (DiLL). Indeed, DiLL differs

from Linear Logic by a more symmetric exponential group, where the usual promotion

rule is replaced by three new rules: co-weakening, co-dereliction, and co-contraction (see

Figure 1). Differential categories, and their co-kleisli counterpart, the cartesian differential

categories (Blute et al. 2009), are thought of as axiomatizing the structure necessary to

perform differential calculus. Models of DiLL are basically differential categories whose

exponential is endowed with a bialgebraic structure.

In Smooth, finite products coincide with finite coproducts. This biproduct structure is

transported by the strong monoidal functor ! to a bialgebra structure: Δ :!E →!E⊗̂!E

which is defined on Dirac distributions as Δ(δx) = δx ⊗ δx, e :!E → C is defined as

e(δx) = 1, ∇ :!E⊗̂!E →!E is given as ∇(δx ⊗ δy) = δx+y and m0 : C →!E is defined as

m0(1) = δ0.

Differentiation is constructed from the bialgebra structure and from a more primitive

differentiation operator, denoted as coder ∈ Lin(E, !E). This operator is the interpretation

of the co-dereliction and corresponds to the differentiation at 0 of a smooth map:

coder(v) = lim
t→0

δtv − δ0

t
.
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The differential operator is then interpreted as the usual one in analysis:

d : C∞(E, F) → C∞(E,Lin(E, F)) df(x)(v) = lim
t→0

f(x+ tv) − f(x)

t
.

In Section 5.5, we will use similar morphisms to show that Series, made of Mackey-

complete spaces and power series, is a differential category. Moreover, we will interpret

co-dereliction as the operator extracting the first monomial from a power series.

5. A quantitative model of linear logic

The purpose of this paper is to define a new quantitative model of DiLL, with a strong

analytical flavour. Indeed, one of the characteristic of the quantitative models (Danos and

Ehrhard 2016; Ehrhard 2002, 2005; Girard 1988; Hasegawa 2002) is that the morphisms

in the cokleisli enjoy a Taylor expansion. The authors of Blute et al. (2012) constructed a

smooth interpretation of DiLL, that we would like to refine into a quantitative model. We

could have used a study of holomorphic and real analytic maps by Kriegl and Michor

(1997, Chapter II): The construction of a model of holomorphic or real analytic maps

should be easily done by following the constructions of Blute et al. (2012). However,

these maps corresponds only locally to their Taylor development. As the interpretation

of locality in denotational semantics remains unclear, we want to interpret the non-linear

proofs of DiLL as functions corresponding in every point with their Taylor development

at 0.

We take advantage of the fact that our spaces are Mackey-complete so as to define a

quite general notion of power series which are in particular smooth (see Proposition 5.27).

A power series is a converging sum of monomials. Indeed, a power series in C is

represented by a sum
∑

n anx
n converging pointwise on some disk. We are going to use

power series between topological vector spaces; thus, the description has to be a little

bit more involved and a power series will be a sum
∑

n fn, where fn is n-homogeneous

and
∑

n fn(x) converges for every x ∈ E. Moreover, we need a stronger notion than

pointwise convergence, so as to compose power series and to get a cartesian closed

category. This is the uniform convergence on bounded sets of the partial sums
∑N

n=0 fn,

which will allow us to deeply relate weak, strong, and pointwise convergence of power

series (see Proposition 5.21). As the space of power series between Mackey-complete

spaces is Mackey-complete (see Proposition 5.28), we obtain a cartesian closed category

of Mackey-complete spaces and power series between them.

To get to this point, we use a description of power series as functions sending

holomorphic maps to holomorphic maps, and for this, proofs of Kriegl and Michor (1997)

are adapted. This study gives us a Cauchy inequality on power series, and equivalences

between weak convergence and strong convergence of power series, inspired from Bochnak

and Siciak (1971). Finally, using weak convergence, we obtain the cartesian closedeness

of the category.

The part on holomorphic maps between lctvs is not needed at first reading, as it is only

used in the proof of Proposition 5.19. The reader may then skip Section 5.2.
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5.1. Monomials and power series

Definition 5.1 (Kriegl and Michor (1997, I.5.15)). A function fn : E → F is an n-monomial

when there is f̃n an n-linear bounded function from En to F such that

∀x ∈ E, fn(x) = f̃n (x, . . . , x)︸ ︷︷ ︸
n times

.

We write Ln(E, F) for the space of n-monomials from E to F , and L(E⊗n

, F) for the

space of bounded n-linear maps from E to F . We endow L(E⊗n

, F) with the locally

convex topology of uniform convergence on bounded sets of E. As in the linear case (see

Section 3.2), bounded sets of Ln(E, F) are the equibounded ones.

The following polarization formula relates the values of a monomial with the values of

the unique multilinear map it comes from.

Lemma 5.2. Consider fn ∈ Ln(E, F), and consider f̃n an n-linear map such that

f̃n(x, . . . , x) = fn(x). Then, for every x1, . . . , xn ∈ E:

f̃n(x1, . . . , xn) = 1
n!

1∑
ε1 ,...,εn=0

(−1)n−
∑ n

j=1 εj fn

⎛
⎝ n∑

j=1

εjxj

⎞
⎠ .

Proof. The proof relies on the expansion of the right-hand side by multilinearity and

symmetry of f̃n (see Kriegl and Michor 1997, II.7.13).

As in the case of bounded linear functions (see Proposition 2.6), monomials behave

particularly well with respect to Mackey-convergence.

Lemma 5.3. Consider (xγ)γ∈Γ a Mackey-converging net in E and fk : E → F a k-

monomial. Then, fk(xγ) is a Mackey-converging net; thus, a converging net.

Proof. Let f̃k be the symmetric bounded k-linear map corresponding to fk . Let b ⊂ E

be a bounded set, x ∈ E and (λγ∈Γ) ∈ CN be a sequence decreasing towards 0 such that

∀γ, xγ − x ∈ λγb.

Let us write b′ = f̃k(b× · · · × b). Then, for every γ ∈ Γ, we can factorize fk(xγ) − fk(x)

following the classical equality xk − yk = (x− y)(xk−1 + xk−2y + · · · + yk−1). Indeed,

fk(xγ) − fk(x) = f̃k(xγ − x, xγ, . . . , xγ) + f̃k(xγ − x, . . . , xγ, . . . , xγ, x) + f̃k(xγ − x, x, . . . , x).

As f̃k is bounded, and as for every γ ∈ Γ, xγ belongs to the bounded set Mb+ {x} for

some M, there is a bounded b′ in F such that

∀γ, fk(xγ) − fk(x) ∈ λγb
′.

An n-homogeneous function is a map f such that f(λx) = λnf(x) for any scalar λ.

Lemma 5.4 (Kriegl and Michor (1997, I.5.16.1)). A function f from E to F is an n-

monomial if and only if it is a smooth n-homogeneous map.
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Proof. As bounded n-linear functions are smooth by Proposition 4.3, n-monomials are

smooth n-homogeneous functions. Conversely, by deriving at 0 an n-homogeneous smooth

function along the curve t �→ tx, we can show that it is equal to its nth-derivative which

is n-linear.

Proposition 5.5. If F is Mackey-complete, then so is Ln(E, F).

Proof. There is a bounded isomorphism between the space Ln(E, F) and the space of

all n-linear symmetrical morphisms from E to F , when the last one is endowed with the

topology of uniform convergence on bounded sets of E × · · · × E. Indeed, one associate

an n-monomial to an n-linear symmectric morphism by applying it n-times to the same

argument. Thanks to the Polarization Formula (see Lemma 5.2), we can obtain an n-linear

symmetric morphism f̃n from an n-monomial fn.

The mappings (fn �→ f̃n) and (f̃n �→ fn) preserves uniformly bounded sets; thus, Ln(E, F)

and the space of all n-linear symmetrical morphisms from E to F are isomorphic. By

definition of the symmetric nth-tensor product E⊗n
s , the space Ln(E, F) is also isomorphic

to L(E⊗n
s , F). This space is Mackey-complete as F is (see Proposition 3.2), and thus

Ln(E, F) is also Mackey-complete.

Definition 5.6. A function f from E to F is a power series when f is pointwise equal to a

converging sum of k-monomials:

∀x, f(x) =

∞∑
k=0

fk(x),

and when this sum converges uniformly on bounded sets of E.

We write S(E, F) for the space of power series between E and F and endow it with the

topology of uniform convergence on bounded subsets of E.

Proposition 5.7. A power series is bounded.

Proof. Consider f =
∑

k fk ∈ S(E, F), b a bounded set in E, and U an absolutely convex

0-neighbourhood in F . We know that
∑

k fk converges uniformly on b. Hence, there is

an integer N such that (f −
∑N

k=1 fk)(b) ⊂ U. Besides, each fk sends b to a bounded set,

thus (
∑N

k=1 fk)(b) is bounded as a finite sum of bounded sets. So there is λ ∈ C such that

(
∑N

k=1 fk)(b) ⊂ λU. Finally, f(b) ⊂ (λ+ 1)U.

5.2. Power series and holomorphy

We are going to show that if f =
∑

n fn : E → F is a power series converging uniformly

on bounded sets, it is holomorphic, according to the specific definition of Kriegl and

Michor (1997, II.7.19). This definition is a generalization of the well-known definition

of holomorphy for complex functions of a complex variable, and leads to a Cauchy

inequality for f (see Proposition 5.19). This Cauchy inequality will turnout to be essential

in showing cartesian closedeness and the composition results in Section 5.3.
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This formula will result in the Mackey-convergence of power series (see Proposi-

tion 5.20), and will allow us to compose bounded linear forms with power series (see

Proposition 5.25).

From now on, we are going to work with linear continuous forms � ∈ E ′ in order to be

able to write � ◦ (
∑

n fn) =
∑

n � ◦ fn.

Holomorphic curves. This part on holomorphic curves in an lctvs is inspired by the

first theorem of Grothendieck (1953) and by Part 7 of Kriegl and Michor (1997) on

Mackey-complete spaces and holomorphic functions.

Remember that a holomorphic curve in C, c : C → C is a complex everywhere derivable

function. It is infinitely many times differentiable, and verifies the Cauchy formula and

the Cauchy inequality. For any z′ ∈ C and any sufficiently small r,

c(n)(z′)

n!
=

1

2πi

∫
|z−z′ |=r

c(z)

(z − z′)n+1
dz and

∣∣∣∣c(n)(z′)

n!

∣∣∣∣ �

∣∣∣∣ sup{c(z) | |z − z′| = r}
rn

∣∣∣∣ .
Moreover, it can be uniquely decomposed as a power series:

∀a ∈ C, ∀z ∈ C, c(z + a) =
∑
n

c(n)(a)

n!
zn.

We now give two approaches to holomorphic curves, that we then show equivalent.

Definition 5.8. A strong holomorphic curve c : C → E is an everywhere complex derivable

function. A weak holomorphic curve c : C → E is a function such that for every � ∈ E ′,

� ◦ c is holomorphic.

Lemma 5.9. Let c : C → E be a curve.

1. If c is strong holomorphic, then

∀� ∈ E ′, � ◦ c is complex derivable and ∀z ∈ C, (� ◦ c)′(z) = �(c′(z)).

2. If c is weak holomorphic, then c is bounded.

3. If c is weak holomorphic, then for all z ∈ C, the difference quotient ( c(z+h)−c(z)
h

)h∈D is

a Mackey–Cauchy net.

Proof. Let c be a strong holomorphic curve.

1. Let � ∈ E ′. Since � is linear and continuous, we have

lim
h→0

l ◦ c(z + h) − � ◦ c(z)
h

= �(c′(z)).

Then, � ◦ c is complex derivable and ∀z ∈ C, (� ◦ c)′(z) = �(c′(z)).

Now, let c be a weak holomorphic curve.

2. Let b be a bounded set in C and b̄ its closed absolutely convex closure. For every

� ∈ E ′, (� ◦ c)(b̄) is compact as the image in C of a compact set by a continuous function

(� ◦ c is complex holomorphic and thus continuous). Then, c(b) is weakly bounded and

so bounded by Proposition 2.1.
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M. Kerjean and C. Tasson 18

3. This proof is adapted from Kriegl and Michor (1997, I.2.1). By translating c, we

may assume that z = 0. For any � ∈ E ′, � ◦ c is holomorphic in C; hence, infinitely

complex-derivable and � ◦ c is Lipschitz continuous. Then, we have

1

z1 − z2

(
l ◦ c(z1) − � ◦ c(0)

z1
− l ◦ c(z2) − � ◦ c(0)

z2

)
=

∫ 1

0

(l ◦ c)′(rz1) − (l ◦ c)′(rz2)

z1 − z2
dr

=

∫ 1

0

(l ◦ c)′(rz1) − (l ◦ c)′(rz2)

rz1 − rz2
rdr

Moreover, the curve r �→ (�◦c)′(rz1)−(�◦c)′(rz2)
rz1−rz2 is locally bounded as (l◦c) is holomorphic. The

set
{

1
z1−z2

(
c(z1)−c(0)

z1
− c(z2)−c(0)

z2
)
)

| z1, z2 ∈ D
}

is then scalarly bounded and thus bounded

by Proposition 2.1. This is equivalent to show that the difference quotient is Mackey–

Cauchy (see Definition 2.5).

Proposition 5.10. The strong holomorphic curves into a Mackey-complete space are

exactly the weak holomorphic curves.

Proof. A strong holomorphic curve is weak holomorphic by Property 1 of Lemma 5.9.

Now, let c : C → E be a weak holomorphic curve into a Mackey-complete space E.

Then, by the third property of the preceding lemma, for all z ∈ C, the difference quotient

( c(z+h)−c(z)
h

)h∈D is Mackey–Cauchy and thus converges in E, since it is Mackey-complete.

Hence, c is complex derivable and its derivative c′(z) is the limit of the difference quotient.

From now on, a holomorphic curve is either a weak or strong holomorphic curve.

Lemma 5.11. Let b be an absolutely convex and closed subset of E, γ be a path in C and

f : C → E be continuous. If for any z ∈ γ([0; 1]), f(z) ∈ b, then the integral of f on the

path γ is in b.

Proof. As
∫
γ
f =

∫ 1

0 f(γ(t))dt, this integral can be computed as the limit of the Riemann

sums over [0; 1] of f ◦ γ. As b is absolutely convex, each of these sums is in b. As it is

closed, we have also
∫
γ
f ∈ b.

Proposition 5.12. Let c : C → E be a holomorphic curve. There is an absolutely convex,

closed bounded subset b of E such that, if D denotes the closed unit ball in C:

c(D) ⊂ b and ∀n ∈ N , c(n)(D) ⊂ n!b.

Proof. Thanks to Property 1 of Lemma 5.9, c is bounded. This justifies the existence

of b such that c(D) ⊂ b. Moreover, for every � ∈ E ′, the curve � ◦ c is holomorphic in C
according to Proposition 5.10. Thus, for every z ∈ C,

(� ◦ c)(n)(z)
n!

=
�(c(n)(z))

n!
=

1

2πi

∫
|h|=1

�(c(hz))

hn+1
dh.

Thus, � ◦ c(n)(D) ⊂ �(n!b) (see Lemma 5.11). By the Hahn–Banach separation theorem

(see Proposition 2.2) applied to n! b and to {c(n)(z)} for any z ∈ D, we get that

c(n)(D) ⊂ n!b.
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Mackey-complete spaces and power series 19

Proposition 5.13. Let c : C → E be a holomorphic curve. For any z ∈ C, c(n)(z) ∈ E and

c can be uniquely written as a series uniformly converging on bounded disks of C:

c : z �→
∑
n

1

n!
c(n)(0)zn.

Moreover, this series is Mackey-converging at each point of C.

Proof. For every � ∈ E ′, � ◦ c is a holomorphic function from C to C. It does thus

correspond in every point to its Taylor series in 0, and as c(n)(z) ∈ E for every z, we have

� ◦ c(z) =
∑
n

1

n!
(� ◦ c)(n)(0)zn =

∑
n

1

n!
�(c(n)(0))zn = �(

∑
n

1

n!
c(n)(0)zn).

As E ′ is point separating, we have for every z ∈ C:

c(z) =
∑
n

1

n!
c(n)(0)zn.

For any r > 0, the closed and absolutely convex closure br of { 1
n!
c(n)(0)rn | n ∈ N}

is bounded. It is indeed weakly bounded as the power series
∑

n
1
n!
�(c(n)(0))zn converges

uniformly on the open disk of centre 0 and radius r. Thus, for every |z| < r, we have

∑
n�N

1

n!
c(n)(0)zn ∈

∑
n�N

(
|z|
r

)
br ⊂

(
|z|
r

)N
1

1 − |z|
r

br

and the series
∑

n
1
n!
c(n)(0)zn does Mackey-converge towards c(z).

Power series and holomorphy. The goal of this paragraph is to prove that power series, as

presented in Definition 5.6, preserve holomorphic curves (see Theorem 5.16). This will show

that they follow the same pattern as smooth functions that preserve smooth curves. As

mentioned in Kriegl and Michor (1997, II.7.19.6), functions preserving holomorphic curves

on D are locally power series, but we do not know if the preservation of holomorphic

curves characterizes our power series.

The following property is adapted from Kriegl and Michor (1997, II.7.6).

Lemma 5.14. A holomorphic curve into E locally factors through a Banach space Eb
generated by a bounded set b ⊂ E (see Definition 2.7).

Proof. Consider c a holomorphic curve, z ∈ C and w a compact neighbourhood of z.

Let us denote b the absolutely convex closed closure of c(w). For any � ∈ E ′, the Cauchy

inequality (5.2) gives us for r small enough

rk

k!
(� ◦ c)(k)(z) ∈ �(b).

Thus, for z′ close enough to z in C,

(� ◦ c)(z′) =
∑
k�0

(
z − z′

r

)k
rk

k!
(� ◦ c)(k)(z) ∈

∑
k�0

(
z − z′

r

)k
�(b).
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M. Kerjean and C. Tasson 20

Then, as E’ is point separating, we get that

c(z′) ∈
∑
k�0

(
z − z′

r

)k
b.

And for z′ close enough to z, c(z′) ∈ Eb.

Now, we want to show that for every holomorphic curve c, if f : E → F is a power

series, then f ◦ c is also a holomorphic curve (see Theorem 5.16). This is a generalization

of Kriegl and Michor (1997, II.7.17). Briefly, this is shown by working with Eb, so as to

use Banach space properties. Remember that a space E is Mackey-complete if and only

if each Eb is a Banach space (see Proposition 2.8).

Lemma 5.15. Let f =
∑

k fk be a power series from E to F . For any bounded set b of E,

the set {fk(x) | x ∈ b} is bounded in F .

Proof. Let us write Sn =
∑

k�n fk , and fix b any bounded set of E. Then, by definition of

power series, Sn converges uniformly on bounded sets, hence for every U neighbourhood

of 0 in E, there is p such that if n, m � p we have (Sn − Sm)(b) ⊂ U. In particular,

for k � p + 1, fk(b) ⊂ U. Because fj is bounded for j � p, there is λj ∈ C such that

fj(b) ∈ λjU. Finally, we get {fk | k ∈ N}(b) ⊂ max{1, λ0, . . . , λp}U.

Theorem 5.16. Power series send holomorphic curves to holomorphic curves.

Proof. Let f =
∑

k fk : E → F be a power series, and c : C → E be a holomorphic

curve. Let f̃ k be the k-linear bounded map associated to the k-monomial fk .

Let us show that the curve f ◦ c : C → F is holomorphic. Thanks to Proposition 5.10,

it is enough to show that for every � ∈ F ′, � ◦ f ◦ c : C → C is holomorphic. Let us fix

z0 ∈ C and show that locally around z0, � ◦ f ◦ c is complex derivable. By translating c,

we can assume w.l.o.g. that c(z0) = 0, and z0 = 0. Besides, by Proposition 5.14, we can

assume w.l.o.g. that E is a Banach space.

Thanks to Propostion 5.13, we can write locally c as a Mackey-converging power series

in E. For every z ∈ C, we have

c(z) =
∑
n

anz
n.

Moreover, this series converges uniformly on D.

Because � is linear and continuous, we have � ◦ f =
∑

k � ◦ fk . Besides, for any k ∈ N ,

� ◦ f̃k is k-linear and bounded. Thanks to Lemma 5.3,
∑
n1

· · ·
∑
nk

� ◦ f̃k(an1
, . . . , ank )z

n1+···+nk

converges to � ◦ fk(c(z)) = � ◦ f̃k(c(z), . . . , c(z)). We thus have

� ◦ f(c(z)) =
∑
k

∑
n1

· · ·
∑
nk

� ◦ f̃k(an1
, . . . , ank )z

n1+···+nk .

Let us now apply Lemma 5.15 to the unit disk U, which is bounded, in the Banach space

E. We get that {�◦ f̃k(x1, . . . , xk) | k ∈ N , xj ∈ U} is bounded. Since
∑

n anz
n converges, for

any |z| < 1 and n big enough, anz
n ∈ U. Thus, for r < 1, we have for all n � N anr

n ∈ U,
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Mackey-complete spaces and power series 21

thus the following set is bounded:

b =
{
� ◦ f̃k(an1

rn1 , . . . , ank r
nk )|ni � N

}
.

Following Kriegl and Michor (1997, II.7.17), consider z and r such that |z| < 1
2

and

2|z| < r < 1, then∑
k

∑
n1

· · ·
∑
nk

� ◦ f̃k(an1
, . . . , ank )z

n1+···+nk

=
∑
k

∑
n1

· · ·
∑
nk

� ◦ f̃k(an1
rn1 , . . . , ank r

nk )
zn1+···+nk

rn1+···+nk
,

=
∑
n

∑
k

∑
n1+···+nk=n

� ◦ f̃k(an1
rn1 , . . . , ank r

nk )
zn1+···+nk

rn1+···+nk
.

(1)

Now, we look at the last sum and get∑
n

∑
k

∑
n1+···+nk=n

� ◦ f̃k(an1
rn1 , . . . , ank r

nk )
zn1+···+nk

rn1+···+nk
∈
∑
n

(2n − 1)
(z
r

)n
b.

This is an absolutely converging sum, and the permutation of the sums in Equation (1) is

justified by Fubini’s theorem. Finally, � ◦ f ◦ c is holomorphic in C, as it is the sum of an

absolutely converging power series.

Another proof of this theorem uses Hartog’s theorem (Kriegl and Michor 1997, II.7.9),

and the fact that a bounded k-monomial sends a holomorphic curve to a holomorphic

curve.

Lemma 5.17. Let f =
∑

k fk be a power series between E and F . Then, for every x ∈ E

and n ∈ N , c : z �→ f(zx) is a holomorphic curve into F whose n-th derivative in 0 is

n!fn(x).

Proof. The curve c : z �→ f(zx) is holomorphic thanks to Theorem 5.16. Since the scalar

multiplication on E is continuous, the set {zx | |z| < 1} is bounded. By Definition 5.6

of power series,
∑

k fk(zx) =
∑

k fk(x) z
k converges uniformly on the unit disk D of C.

Thanks to the uniqueness of the decomposition (see Lemma 5.13), its nth derivative is

n!fn(x).

Corollary 5.18. The k-monomials in the development of a power series are unique.

Proposition 5.19. Every power series f ∈ S(E, F) verifies a Cauchy inequality: if b is an

absolutely convex set in E and if b′ is an absolutely convex and closed set in E such that

f(b) ⊂ b′, then for all n ∈ N we have also

fn(b) ⊂ b′.

Proof. For every x ∈ E, c : z �→ f(zx) is a holomorphic curve into F whose nth-

derivative is n!fn(x) by Lemma 5.17. For every � ∈ F ′, � ◦ c is holomorphic and satisfies
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M. Kerjean and C. Tasson 22

a Cauchy Formula:

1
n!

(� ◦ c)(n)(0) = �(
c(n)(0)

n!
) = �(fn(x)) =

1

2iπ

∫
|h|=1

�(f(hx))

hn+1
dh.

As b is absolutely convex, we conclude thanks to the Hahn–Banach separation theorem

(see Proposition 2.2) that for every x ∈ b, for every n ∈ N , fn(x) ∈ b′ (see Lemma 5.11).

5.3. Convergence of power series

Thanks to the Cauchy inequality, we will show the Mackey-convergence of the partial

sums of a power series. This property is fundamental in the construction of the cartesian

closed category of Mackey-complete spaces and power series. It will allow for example

to ensure that when composing a bounded function with a power series, the bounded

function distributes over the sum of monomials (see Proposition 5.25).

Proposition 5.20. If f =
∑

n fn is a power series, then its partial sums Mackey-converge

towards f in B(E, F).

Proof. Let b be an absolutely convex and bounded subset of E and b′ be the absolutely

convex and closed closure of f(b). By Proposition 5.19, for all n ∈ N , fn(b) ⊂ b′. As fn is

n-homogeneous, we also have fn(
1
2
b) ⊂ 1

2n
b′.

If B denotes the equibounded set {f ∈ B(E, F) | f( 1
2
b) ⊂ b′}, then f ∈ B as 1

2
b ⊂ b,

f0 ∈ B and for every n, fn ∈ 1
2n
B. Thus, partial sums do Mackey-converge towards f, as

∀N ∈ N , f −
N∑
n=0

fn ∈
∑
n>N

1
2n
B.

Our definition of power series allows us to make nice connection between their

weak, strong, and simple convergence. This will allow us to prove the cartesian

closedeness of the category of Mackey-complete spaces and power series between

them.

Proposition 5.21. Let {fk | k ∈ N} be a family of k-monomials from E to F . If for every

� ∈ F× (resp. � ∈ F ′) and x ∈ E,
∑

k �◦fk(x) converges in C, then for any x ∈ E,
∑

k fk(x)

converges in F .

Proof. Let us fix x ∈ E. By assumption, for any � ∈ F ′,
∑

k � ◦ fk(2x) converges in C,

so {� ◦ fk(2x) | k ∈ N} is bounded in C. By Proposition 2.1 (resp. by the Mackey–Ahrens

Theorem), {fk(2x) | k ∈ N} is bounded in F , its closure denoted b′ is also bounded. We

get that, for all N ∈ N , ∑
k�N

fk(x) ⊂
∑
k�N

1
2k
b′.

Hence,
∑

k fk(x) is Mackey–Cauchy and so converges in F .
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Proposition 5.22. Let f : E → F be a bounded function and let fk be k-monomials such

that for every � ∈ F ′,
∑

k � ◦ fk converges towards � ◦ f uniformly on bounded sets of E.

Then, f =
∑

k fk is also a power series.

Proof. Let b be a bounded set and b′ be the absolutely convex and closed closure of

f(2b). For any � ∈ F ′, since � ◦ f is a power series, it satisfies a Cauchy Inequality thanks

to Proposition 5.19 (notice that �(b′) is absolutely convex and that (� ◦ f)(2b) ⊂ �(b′)).

Therefore, for any k ∈ N , (� ◦ fk)(2b) ⊂ �(b′). By the Hahn–Banach separation theorem

(see Proposition 2.2) and since fk is k-linear, we get that fk(b) ⊂ 1
2k
b′. Thus,

∑
k fk

Mackey-converges uniformly to f on bounded sets of E. Since Mackey-convergence

entails convergence, we get that f =
∑

k fk is a power series.

The two last propositions helped us to infer strong convergence from weak con-

vergence, the following will allow us to deduce uniform convergence from pointwise

convergence.

Proposition 5.23. Let
∑

k fk : E → F be a series of k-monomials. If the sum converges

pointwise towards a bounded function f : E → F , then f is a power series.

Lemma 5.24. Consider E a Fréchet space and for every k ∈ N fk ∈ Lk(E,C). Then,
∑
fk

converges pointwise on E if and only if it converges uniformly on every bounded set

of E.

Proof. (see Kriegl and Michor (1997, II.7.14) for details) The reverse implication is

straightforward. Let us sketch the proof of the direct implication, and suppose
∑
fk

converges pointwise. We want to show that {f̃k(x1, . . . , xk) | k ∈ N , xi ∈ U} is bounded

on a certain 0-neighbourhood U. If this is true, then
∑
fk converges uniformly on λU

for λ < 1, and thus on every bounded set of E. To do so, we consider the closed sets

AK,r = {x ∈ E | ∀k ∈ N , |fk(xk)| � Krk}. By Baire’s theorem, there is such an AK,r whose

interior is non-empty. The polarization formula then helps to conclude.

Proof of Proposition 5.23 Let us fix � ∈ F ′. For every x ∈ E,
∑

k � ◦ fk(x) converges

towards � ◦ f(x) in C, and � ◦ f is bounded. Let b be a bounded set. Then, according

to Lemma 5.24 which relates pointwise convergence and uniform convergence of power

series on Banach spaces, the power series
∑

k � ◦ fk(x) converges uniformly on Eb (as it is

a Banach space, see Proposition 2.8), hence on b. We have proved that
∑

k fk converges

weakly uniformly on bounded sets. By Proposition 5.22, we know that it converges

(strongly) uniformly on bounded subsets.

Proposition 5.25. Let � be a linear bounded function from F to G and f =
∑

k fk be a

power series from E to F . Then, � ◦ f is a power series and � ◦ f =
∑

n � ◦ fn.

Proof. According to Proposition 5.20, there is a sequence of scalars (λn) decreasing

towards 0 and a bounded set B ⊂ S(E, F) such that, for all n,

f −
n∑
k=0

fk ∈ λnB.
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M. Kerjean and C. Tasson 24

Thus, for every n, � ◦ f −
∑n

k=0 � ◦ fk ∈ λn�(B). Thus, applying this equation to every

x ∈ E, we get that the partial sums of
∑

k � ◦ fk(x) Mackey-converge towards � ◦ f(x). As

�◦f is a bounded function, we have that �◦f is a power series thanks to Proposition 5.23.

5.4. A cartesian closed category

Definition 5.26. Let us denote as S(E, F) the space of all power series between E and F .

We endow it with the topology of uniform convergence on bounded subsets of E. The

bounded sets resulting from this topology are the equibounded sets of functions.

We write Series the category of Mackey-complete spaces and power series. Holomorphic

maps, as defined in Kriegl and Michor (1997) are in particular smooth (Kriegl and

Michor 1997, II.7.19.8). Thus, according to Proposition 5.16, power series as defined here

are smooth.

Proposition 5.27. We have a bounded inclusion of S(E, F) into C∞(E, F).

Proof. Let B be a bounded set in S(E, F). Let us prove that B is bounded in C∞(E, F),

i.e. for every smooth curve c ∈ CE , every bounded set b ⊂ R and every j ∈ N , the following

set is bounded in F:

{(f ◦ c)(j)(x) | f ∈ B, x ∈ b}.

Let us fix c ∈ CE and j ∈ N .

Let Cj be the set made of c and its derivatives of order at most j. Since c and its up to

jth derivatives are smooth, they are bounded and send b to a common absolutely convex

bounded set b′ of E, i.e. Cj(b) ⊂ b′.

As a power series f =
∑

n fn converges uniformly on bounded sets of E, we can derivate

under the sum. Thus, (f ◦ c)(j)(x) =
∑

n(fn ◦ c)(j)(x). It is possible to show by induction

on j that (fn ◦ c)(j)(x) =
(
f̃n(c(·), . . . , c(·))

)(j)
(x) =

∑jn

l=1 α
l
j f̃n(c

�
1(x), . . . , c

�
n(x)) with c�k ∈ Cj

and α�j � nj an integer, where f̃n is the symmetric n-linear map from which fn results.

Therefore, we have

(fn ◦ c)(j)(b) ⊂ njjnf̃n(b
′).

Now, let bE = 8j b′. According to Proposition 5.19, as f(bE) ⊂ B(bE), we get

fn(b
′) ⊂ 1

(8j)n
B(bE).

Thanks to the polarization formula (see Lemma 5.2), for any x1, . . . , xn ∈ b′,

f̃n(x1, . . . , xn) = 1
n!

1∑
ε1 ,...,εn=0

(−1)n−
∑ n

j=1 εj fn

⎛
⎝ n∑

j=1

εjxj

⎞
⎠ .
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Then, for any � ∈ F×, we get

∣∣� ◦ f̃n(x1, . . . , xn)
∣∣ �

1

n!

1∑
ε1 ,...,εn=0

∣∣∣∣∣∣� ◦ fn

⎛
⎝ n∑

j=1

εjxj

⎞
⎠
∣∣∣∣∣∣

=
1

n!

1∑
ε1 ,...,εn=0

(
∑n

i=1 εi)
n
∣∣∣� ◦ fn

(∑ n
j=1 εjxj∑ n
j=1 εj

)∣∣∣
Note that in the last sum,

∑
j εj can be supposed to be strictly positive, as when

all εj equals 0 then
∣∣∣� ◦ fn

(∑n
j=1 εjxj

)∣∣∣ = 0. Now, there is exactly
(
n
j

)
ways of having∑n

i=1 εi = j:

∣∣� ◦ f̃n(x1, . . . , xn)
∣∣ �

1

n!

n∑
j=0

(
n

j

)
jn

∣∣∣∣∣� ◦ fn

(∑n
j=1 εjxj∑n
j=1 εj

)∣∣∣∣∣
Consider the binomial formula (1+x)n =

∑n
j=0

(
n
j

)
xj . If we differentiate this expression

and we multiply the result by x, we get

nx(1 + x)n−1 =

n∑
j=0

j

(
n

j

)
xj.

By repeating this operation (n− 1) times, we get

n∑
k=1

n . . . (n− k + 1)

(
n

k

)
(1 + x)n−kxk =

n∑
j=0

jn
(
n

j

)
xj.

Taking x = 1 thus implies
∑n

k=1
n!

(n−k)!
(
n
k

)
2n−k =

∑n
j=0

(
n
j

)
jn. We have then

1

n!

n∑
j=0

(
n

j

)
jn =

n−1∑
k=0

1

(k)!

(
n

k

)
2k � 2n

n−1∑
k=0

1

(k)!

(
n

k

)
� 2n

n−1∑
k=0

(
n

k

)
� 22n.

Therefore,

∣∣� ◦ f̃n(x1, . . . , xn)
∣∣ � 4n

∣∣∣∣∣� ◦ fn

(∑n
j=1 εjxj∑n
j=1 εj

)∣∣∣∣∣
� 4n

1

(8j)n
|� ◦ B(bE)|

�
1

(2j)n
|� ◦ B(bE)|

Thanks to Lemma 2.1, bF = (2j)n
{
f̃n(x1, . . . , xn) | ∀f ∈ B, ∀x1, . . . , xn ∈ b′} is bounded.

To conclude, for every f ∈ B,

(fn ◦ c)(j)(b) ⊂ nj jnf̃n(b
′) ⊂ nj jn

(2j)n
bF ⊂ nj

2n
bF ,
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so that,

(f ◦ c)(j)(b) ⊂
∑
n

(fn ◦ c)(j)(b) ⊂
∑
n

nj

2n
bF .

Let us note that any subset of S(E, F) which is the restriction to S(E, F) of a bounded

set of C∞(E, F) is uniformly bounded. Indeed, according to Kriegl and Michor (1997,

4.4.7), the bornology on C∞(E, F) is the coarsest one making all pointwise evaluation

evx : C∞(E, F) → F bounded. But when we artificially consider on C∞(E, F) the bornology

of all uniformly bounded set, all pointwise evaluation are bounded. So this bornology

is finer than the one resulting from the topology of C∞(E, F), that is bounded sets of

C∞(E, F) are uniformly bounded.

Proposition 5.28. When F is Mackey-complete so is S(E, F).

Proof. Consider (fγ)γ∈Γ a Mackey–Cauchy net in S(E, F). There is a positive real net

(λγ,γ′)γ,γ′∈Γ converging towards 0 and an equibounded set B in S(E, F) such that

fγ − fγ′ ∈ λγ,γ′B. (2)

We can suppose w.l.o.g. that B = {f | ∀b bounded in E, f(b) ⊂ B(b)} and that B is

absolutely convex and closed.

For all x ∈ E, B({x}) is bounded in F , and (fγ(x))γ∈Γ is a Mackey–Cauchy net in F .

Since F is Mackey-complete, for each x ∈ E, fγ(x) converges towards f(x) in F.

Let us show that f : E → F is a power series. Since fγ ∈ S(E, F), we can write

fγ =
∑

n fγ,n. Now, we fix n ∈ N and prove that

fγ,n − fγ′ ,n ∈ λγ,γ′B.

From Equation (2), we have that, for any b absolutely convex and bounded in E,

(
∑

n fγ,n − fγ′ ,n)(b) ∈ λγ,γ′B(b). Thus, by Proposition 5.19, for all n ∈ N , (fγ,n − fγ′ ,n)(b) ∈
λγ,γ′B(b). We conclude by our assumption on the shape of B.

Then, (fγ,n)γ∈Γ is a Mackey–Cauchy net in Ln(E, F), which is Mackey-complete according

to Proposition 5.5. Thus, (fγ,n)γ∈Γ converges in Ln(E, F) and we denote as fn its limit.

Let us show that
∑

n fn converges pointwise towards f. Let us fix x ∈ E and V an

absolutely convex neighbourhood of 0 in F . We denote as Dx the set {zx | z ∈ C, |z| < 1}.
We will show that each part of the following expression is small enough:

f(x) −
∑
n<N

fn(x) =

(
lim
γ′→∞

fγ′ (x) − fγ(x)

)
+

(
fγ(x) −

∑
n<N

fγ,n(x)

)
+
∑
n<N

(
fγ,n(x) − fn(x)

)
.

Since 2Dx is bounded, then so is B(2Dx) and there is μ > 0 such that B(2Dx) ⊂ μV . Let

γ0 ∈ Γ be such that when γ, γ′ � γ0, we have |λγ,γ′μ| < 1, and so B(Dx) ⊂ λγ,γ′B(2Dx) ⊂ V .

Then,

∀γ′, γ � γ0, fγ′ (x) − fγ(x) ∈ λγ,γ′B(Dx) and lim
γ′→∞

fγ′ (x) − fγ(x) ∈ V .

By convergence, for N ∈ N big enough,

fγ(x) −
∑
n<N

fγ,n(x) ∈ V .
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Moreover, for every n, we have fγ,n(2x) − fγ′ ,n(2x) ∈ λγ,γ′B(2Dx), and since they are

n-monomials, fγ,n(2x)−fγ′ ,n(2x) = 2n(fγ,n(x)−fγ′ ,n(x)). Finally, by taking the limit γ′ → ∞,

we get

fγ,n(x) − fn(x) ∈ 1

2n
V .

To sum up,
∑

n fn converges pointwise towards f, for N big enough,

f(x) −
∑
n<N

fn(x) ∈ V + V +

(∑
n<N

1

2n

)
V ⊂ 5V .

Now, we apply Proposition 5.23, to show that
∑
fk does converge uniformly on bounded

sets of E towards f and therefore f ∈ S(E, F). It is sufficient to show that f is bounded

since we have already shown the simple convergence. Let b be an absolutely convex and

bounded set b of E. Consider γ ∈ Γ. Then, we get

f(x) = fγ(x) + (f(x) − fγ(x)) = fγ(x) + lim
γ′→∞

∑
n

(fγ′ ,n(x) − fγ,n(x)).

If M is an upper bound of the net (λγ,γ′), we get that f(b) ⊂ fγ(b) +MB(b).

In order to prove that the composite of two power series is also a power series, we

need to use Fubini’s theorem and permute sums. We will have to embed our series in C
and to use Propositions 5.21 and 5.23 that relates weak, strong, pointwise, and uniform

convergences.

Theorem 5.29. The composition of two power series is a power series.

Proof. Consider f =
∑

n fn : E → F and g =
∑

k gk : G → E two power series. Let

us show that f ◦ g : G → F is a sum
∑

m hm of m-monomials converging uniformly

on bounded sets of G. Let us use f̃n (resp. g̃k) for the n-linear (resp. k-linear) function

corresponding to fn (resp. gk).

Because the series
∑

k gk Mackey-converges (see Proposition 5.20), and because, for

each n ∈ N , fn is an n-monomial, we have

∀x ∈ G, f̃n(g(x)) =
∑

k1 ,...kn�0

fn(gk1
(x), . . . , gkn (x)).

Notice that f̃n(gk1
(x), . . . , gkn (x)) is a (k1 + · · · + kn)-monomial in x.

Let us write

hm : x �→
∑
n�0

∑
k1+···+kn=m

ki�0

f̃n(gk1
(x), . . . , gkn (x)) (3)

and show that hm is a well defined bounded m-monomial such that f ◦ g =
∑

m hm.

Let us consider x ∈ G and fix � ∈ F ′. The power series

� ◦ f ◦ g =
∑

k1 ,...,kn�0

�(f̃n(gk1
(x), . . . , gkn (x))) (4)
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is convergent on 3Dx, hence absolutely convergent on 2Dx, where D stands for the unit

ball in C. Thus, we can permute coefficients in the converging sum above. Therefore, the

general term � ◦ hm(x) of the series
∑

m�0 � ◦ hm(x), which is obtained from Equation (4)

by permuting indices of the sum, is also the sum of an absolutely converging series. By

Proposition 5.21, since for any � ∈ F ′ and any x ∈ G, � ◦ hm(x) is the limit of a converging

sum in C, thus for any x ∈ E, hm(x) is well-defined in F . Moreover, for any � ∈ F ′, we

have proved that � ◦ f ◦ g(x) =
∑

m�0 � ◦ hm(x) = � ◦
∑

m�0 hm(x), so by the Hahn–Banach

separation theorem (see Proposition 2.2):

∀x ∈ G, f ◦ g(x) =
∑
m

hm(x).

Let b be a bounded set in G. Since g is bounded, g(2b) is a bounded set in E, and

we set b′ to be its absolutely convex and closed closure which is also bounded. Let

b′′ be the absolutely and closed closure of the bounded set f(2g(2b)) of F . Now, by

Proposition 5.19, if x ∈ b, then gk(2x) ∈ b′ and f̃n(2gk1
(2x), . . . , 2gkn (2x)) ∈ b′′. Since gki

and fn are monomials, for x ∈ b, we get gki (x) ∈ 1
2ki
b′ and f̃n(gk1

(x), . . . , gkn (x)) ∈ 1
2n

1
2
∑

ki
b′′.

Since there is exactly
(
m+n−1
m

)
ways of choosing n natural numbers whose sum is m, we

get from Formula (3):

hm(x) ∈ 1

2m

∑
n

(
m+ n− 1

m

)
1

2n
b′.

Moreover, we have

lim
n→∞

m!
nm

(
m+ n− 1

m

)
= 1.

Thus,
∑

n

(
m+n−1
m

)
1
2n

is absolutely converging. We have

hm(b) ⊂
∑
n

(
m+ n− 1

m

)
1

2n
b′

so hm is bounded. As it is a converging sum of m-monomials, hm is also an m-monomial.

We conclude that f ◦ g is a power series by Proposition 5.23, as
∑

m hm is a series of

bounded m-monomials pointwise converging to f ◦ g which is also bounded.

We can finally address the problem of cartesian closedeness, which is solved by getting

back to the scalar case and by using Fubini’s theorem.

Theorem 5.30. If E, F , and G are Mackey-complete spaces, then there are natural

isomorphisms:

S(E, S(F,G)) 	 S(E × F,G).

Proof. Let us first notice that if the stated isomorphisms is true as an equality between

sets, then the topologies on these spaces are the same. Indeed, sending B1 × B2 on a

weak 0-neighbourhood U is equivalent to sending B1 to a function which will send B2 to

U. This will give us a homeomorphism, thus a bounded isomorphism, between the two

spaces.
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Let us define the two maps inverse of one another, as shown by direct computation:

φ :

⎧⎪⎪⎨
⎪⎪⎩
S(E × F,G) → S(E, S(F,G))∑

k

fk �→

⎛
⎝x �→

⎛
⎝y �→

∑
n

∑
m

(
n+ m

n

)
f̃n+m((x, 0), . . . , (x, 0)︸ ︷︷ ︸

n times

,

m times︷ ︸︸ ︷
(0, y), . . . , (0, y))

⎞
⎠
⎞
⎠ ,

and

ψ :

⎧⎪⎪⎨
⎪⎪⎩

S(E, S(F,G)) → S(E × F,G)∑
n

(fn : x �→
∑
m

fxn,m) �→
(

(x, y) �→
∑
k

∑
n+m=k

fxn,m(y)

)
.

We need to show that they are well defined, linear, bounded, and natural in E, F , and G.

The difficulty is in showing that their image is indeed made of power series. We will do it

on ψ, the proof for φ using similar tools and being easier.

Consider a function f ∈ S(E, S(F,G)). It can be written as
∑

n(fn : x �→
∑

m f
x
n,m),

each fn being a bounded n-monomial from E to S(F,G), and each fxn,m being a bounded

m-monomial from F to G. The function (x, y) �→
∑

n+m=k f
x
n,m(y) is a bounded k-monomial.

Let us fix � ∈ G×, y ∈ F and define χy : S(F,G) → C, g �→ � ◦ g(y). If B is bounded

in S(F,G), then B(y) is bounded in G and χy(g) is bounded in C, hence χy ∈ S(F,G)×.

Moreover, because f is a power series, we know from Proposition 5.20 that its partial sums

are Mackey-convergent and from Proposition 2.6 that χy preserves Mackey-convergence.

Thus, for any x ∈ E, we have that

∑
n

χy

(∑
m

fxn,m

)
=
∑
n

∑
m

l ◦ fxn,m(y).

In particular, let us fix x and y, then
∑

n

∑
m �◦f2x

n,m(2y) Mackey-converges in C. Therefore,

� ◦ f2x
n,m(2y) = 2n2ml ◦ fxn,m(y) is the general term of a bounded double sequence and the

radius of convergence of the C-power series
∑

n

∑
m � ◦ fxn,m(y)zn+m is at least 2. Finally,∑

n

∑
m � ◦ fxn,m(y) converges absolutely in C. Thanks to Fubini’s theorem, we know that

we can permute absolutely converging double series in C. Then,
∑

k

∑
n+m=k � ◦ fxn,m(y)

converges and is equal to
∑

n

∑
m � ◦ fxn,m(y). Thanks to Proposition 5.21, for any x ∈ E

and y ∈ F , ψ(f)(x, y) ∈ G, that is ψ(f) is pointwise convergent.

We now prove that ψ(f) converges uniformly on bounded subsets of E. First, notice

that ψ(f) is bounded. Indeed, f is bounded thanks to Proposition 5.7, and ψ(f) sends

B1 × B2 to f(B1)(B2). Proposition 5.23 states that a pointwise converging power series

which converges towards a bounded function converges uniformly on bounded subsets of

its codomain. We conclude that ψ(f) ∈ S(E × F,G).

The naturality of ψ in E and F resumes to precomposition. The naturality of ψ in G

is proved by considering the fact that we postcompose ψ by a bounded linear function,

which commutes to the sum of the power series which Mackey-converge.
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5.5. From Lin to Series

So far, we have proven that the category Lin of Mackey-complete spaces and bounded

linear maps is symmetric monoidal closed and cartesian (see Section 3). We have also

proven that the category Series of Mackey-complete spaces and power series is cartesian

closed (see Section 5.4). We will now prove that there is a linear–non-linear adjunction

between Lin and Series that comes from an exponential modality constructed exactly as

presented in Section 4.2 for convenient spaces (see Blute et al. (2012) and Frölicher and

Kriegl (1988, 5.1.1)).

Definition 5.31. Let E be a Mackey-complete space. For any x ∈ E, the Dirac delta

distribution δ can be seen as a function on power series:

δ :

{
E → S(E,C)×

x �→ δx : f �→ f(x)

δ is linear and bounded as it acts on bounded functions (see Proposition 5.7).

Exponential modality. For any Mackey-complete space E, we construct a Mackey-

complete space !E from δ(E) by applying the Mackey-completion procedure described in

Proposition 2.9.

Definition 5.32. Let us use !E for the Mackey-completion of the linear span of δ(E)

in S(E,C)× endowed with the topology of uniform convergence on bounded subsets of

S(E,C).

Thanks to Mackey-completion, in order to define a linear function on !E, it is sufficient

to define it on δx for any x ∈ E. Let f ∈ L(E, F) be a bounded linear map. We define

!f :!E →!F as the linear extension of

!f :

{
δ(E) →!F

δx �→ δf(x)

This function is linear by construction. Let us check that it is bounded. If B is an

equibounded set in S(E,C)×, then {δf(x) | δx ∈ B} is equibounded. Indeed, if B is bounded

in S(E,C), then

{δf(x)(B) | δx ∈ B} = {B({f(x)}) | δx ∈ B} = {δx(B ◦ f)} | δx ∈ B}

is bounded, as f bounded makes B ◦ f = {g ◦ f | g ∈ B} bounded. Hence, !f is well

defined, and is a bounded linear function. So we have indeed !f ∈ L(!E, !F).

Definition 5.33. We write ! : Lin → Lin for the functor sending a Mackey-complete space

E to !E, and a bounded linear map f ∈ L(E, F) to !f ∈ L(!E, !F).

Proposition 5.34. The functor ! is an exponential modality:

1. (!, ρ, ε) is a comonad, with

εE :

{
!E → E

δx �→ x
ρE :

{
!E →!!E

δx �→ δδx
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129516000281
Downloaded from https://www.cambridge.org/core. HKUST Library, on 15 Jan 2018 at 09:41:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129516000281
https://www.cambridge.org/core


Mackey-complete spaces and power series 31

2. ! : (Lin,×,�) → (Lin, ⊗̂, 1) is a strong and symmetric monoidal functor, with

m0 :

{
1 →!� =!{0}
1 �→ δ0

m2
E,F :

{
!E⊗̂!F →!(E × F)

δx ⊗ δy �→ δ(x,y)

.

3. The following diagram commute:

!E⊗̂!F
m2
E,F ��

ρE⊗̂ρF
��

!(E × F)
ρE×F �� !!(E × F)

!〈!π1 ,!π2〉
��

!!E⊗̂!!F
m2

!E,!F

�� !(!E×!F)

Proof. Notice that the natural transformations ε, ρ, and m2 are defined by linearity

and Mackey-complete extension. Then, it is enough to check the diagrams for comonad

and symmetric monoidality on Dirac delta distributions. The morphisms m0 and m2
E,F are

natural isomorphisms with inverse

(m0)−1 :

{
!� =!{0} → 1

δ0 �→ 1
(m2

E,F )
−1 :

{
!(E × F) →!E⊗̂!F

δz �→ δπ1z ⊗ δπ2z

.

Distributions. The distribution space S(E,C)× is equipped with a convolution product

defined as follows. Notice that when restricted to !E, the convolution product can be

obtained from the cartesian structure of Lin and from m2.

Proposition 5.35. For any D1 and D2 in S(E,C)×, the convolution D1 ∗ D2 is in S(E,C)×

and acts on f ∈ S(E,C) as

(D1 ∗ D2)f = D1(x �→ (D2(y �→ f(x+ y)))).

Moreover, if D1 and D2 are in !E, then D1 ∗ D2 is in !E.

Proof. Let f ∈ S(E,C) and x ∈ E. Since (x, y) �→ x + y is linear and bounded (and

so a power series), the function (x, y) �→ f(x + y) is a power series. Then, by cartesian

closedness (Theorem 5.30), x �→ (y �→ f(x+ y)) ∈ S(E, S(E,C)). Since D2 is bounded and

linear, we get by post-composition that x �→ D2(y �→ f(x + y)) ∈ S(E,C); thus, we can

apply D1 to compute (D1 ∗ D2)f. Notice that D1 ∗ D2 is linear and bounded since all the

involved operations are both bounded and linear.

Let D1 and D2 be in !E. Then, the convolution operator ∗ is the morphism:

!E⊗̂!E
m2
E,E �� !(E × E)

!((x,y)�→x+y) �� !E

δx ⊗ δy
� �� δ(x,y)

� �� δx+y

Indeed, it is sufficient to prove it on Dirac delta distributions as they generate the

Mackey-complete space !E.
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In general, δ reflects the shape of the functions of its codomain (see Blute et al. (2012)

where δ is smooth). In Proposition 5.39, we show that δ is a power series by following

the scheme introduced in Ehrhard (2005). First, we focus on the maps θn : E → S(E,C)×

that will be the components of the power series δ.

Definition 5.36. Let θn : E → S(E,C)× be defined by induction on n by

θ0(x) = δ0, θ1(x) = lim
t→0

δtx − δ0

t
, ∀n ∈ N , θn+1(x) = θ1(x) ∗ θn(x).

Proposition 5.37. For any n ∈ N , θn is a bounded n-monomial from E to !E. Besides, for

any x ∈ E and f =
∑

n fn ∈ S(E,C), we have θn(x)f = n! fn(x).

Proof. We prove this proposition by induction on n ∈ N . Let x ∈ E and f =
∑

n fn ∈
S(E,C).

First, θ0 is constant, θ0(x) = δ0 in !E and θ0(x)f = f(0) = f0(x).

Then, θ1(x)(f) = limt→0
f(tx)−f(0)

t
= f1(x). Indeed, by Lemma 5.17, the derivative of

c : z ∈ C �→ f(zx) at 0 is f1(x). Besides, θ1 is linear as for h ∈ C, θ1(x + hy)f =

f1(x + hy) = f1(x) + hf1(y) by linearity of f1. Finally, notice that t �→ δtx is locally

Lipschitzian as for any a > 0 and B ⊂ S(E,C) equibounded, the set { f(tx)−f(0)
t

| 0 < t <

a, f ∈ B} ⊂ 2B({tx | 0 < t < a}) is bounded. Thus, as proved in Kriegl and Michor (1997,

Proposition I.1.7), the net
(
δtx−δ0

t

)
t∈R is Mackey-convergent and its limit θ1(x) is in the

Mackey-complete space !E.

Assume that θn(x) is in !E and for any g =
∑

n gn, θn(x)g = n! gn(x). Then, thanks to

Proposition 5.35, θn+1(x) = θ1(x) ∗ θn(x) is in !E and

θn+1(x)(f) = θ1(x)(y �→ θn(x)(z �→ f(y + z))).

By the induction hypothesis,

θn(x)(z �→ f(y + z)) = n!
∑
m�n

(
m

n

)
f̃m(y, . . . , y︸ ︷︷ ︸

m−n

, x, . . . , x︸ ︷︷ ︸
n

),

where we denote by f̃m the symmetric m-linear bounded map from which the m monomial

fm is constructed. So that,

θn+1(x)(f) = n!

(
n+ 1

n

)
f̃n+1(x, x, . . . , x︸ ︷︷ ︸

n

) = (n+ 1)! fn+1(x).

As in Blute et al. (2012), the differential structure comes from the codereliction. Besides

in this setting, this operator extracts the first coefficient of the power series.

Proposition 5.38. The category Lin is equipped with a codereliction:

coderE = θ1 :

⎧⎨
⎩
E →!E

y �→ lim
t→0

δ(ty) − δ(0)

t
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Proof. The strength and comonad diagrams of Fiore (2007):

E⊗̂!F
coderE⊗̂1 ��

1⊗̂εE �������������� !E⊗̂!F
φ �� !(E⊗̂F)

E⊗̂F
coderE⊗̂F

���������������

!E

ε

���
��

��
�

E

coderE

		������

1
�� E

E

	
��

coderE �� !E
ρ �� !!E

E⊗̂I
coderE⊗̂ν

�� !E⊗̂!E
coder⊗̂ρ

�� !!E⊗̂!!E

∇





are shown exactly as in Blute et al. (2012) since the actions of the involved natural

transformations are defined similarly on the Dirac delta distributions.

Proposition 5.39. The map δ is a power series in S(E, S(E,C)×):

δ =

∞∑
n=0

θn

n!
.

Proof. In order to show that δ is a power series, we apply Proposition 5.23.

First, notice that δ is bounded from E to S(E,C)×. Indeed, let b be bounded in E, then

δ(b) is equibounded in S(E,C)×, since if B is equibounded in S(E,C), δ(b)(B) = B(b) is

bounded.

Now, let us prove that
∑∞

n=0
θn
n!

converges pointwise to δ. Let x ∈ E, we need to

prove that
∑∞

n=0
θn(x)
n!

converges to δx uniformly on bounded sets of S(E,C). We apply

the Cauchy Inequality of Proposition 5.19. Let b be absolutely convex such that 2x ∈ b

and B ∈ S(E,C) be equibounded, then B(b) is bounded in C, i.e. there is M such that

|f(y)| � M for every f ∈ B and y ∈ b. Thus, for any f ∈ B, | θn(x)
n!

(f)| = 1
2n

|fn(2x)| � M
2n

and the series
∑

n
θn(x)
n!

converges uniformly on B. Its limit is δx as for every f ∈ S(E,C)

and x ∈ E, we have δx(f) = f(x) =
∞∑
n=0

fn(x) =
∑∞

n=0
θn(x)
n!

(f). From this, we conclude that

pointwise, we have δ =
∑∞

n=0 θn.

As δ is bounded, Proposition 5.23 implies that the sum uniformly converges on bounded

subsets of E. Thus, δ is a power series.

We just proved that we have a model of Intuitionist Linear Logic and thus, that the

cokleisli category Lin! is cartesian closed. We want now to show that the category Series

of Mackey-complete spaces and power series is isomorphic to Lin!, that is:

Theorem 5.40. For every Mackey-complete space E and F , we have the following bounded

isomorphism which is natural in E and F:

S(E, F) 	 L(!E, F).
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Proof. Consider f ∈ S(E, F). Let f̂|δ(E) : δ(E) → F be defined as the linear extension

of f̂(δx) = f(x). Since f̂ is bounded: f̂
−1

|δ(E)(U) = U{f},U ∩ δ(E), we can extend it to !E by

Mackey-completion, so that f̂ :!E → F is bounded and linear.

Now consider g ∈ L(!E, F) and define ǧ : E → F by ǧ(x) = g(δx) = g ◦ δ. As g is

bounded, we have by Proposition 5.25 that ǧ =
∑

k
1
k!
g(θk).

We check that ˆ̌g = g,
ˇ̂
f = f, that g �→ ǧ and f �→ f̂ are both linear and bounded as δ

is, and this induces a bounded isomorphism which is natural in E and F .

This concludes our construction of our denotational model of Linear Logic.

Theorem 5.41. The category Lin, equipped with the comonad !, is a quantitative model

of intuitionist Linear Logic whose cokleisli category is Series, and a differential category.

6. Series is not ∗-autonomous

One of the limits of the approach with bornologies is the extension to ∗-autonomous

categories (Barr 1979). Indeed, one could transform this model into a model of (classical)

DiLL by considering pairs (E,E×) of Mackey-complete spaces, where E× denotes the

spaces of all bounded linear forms on E. This would be a construction alike the Chu

construction.

It is however difficult to have a more intrinsic approach. One could define a notion

of b-reflexive space, as a space which equals its bounded bidual E××. However, there is

no handy Hahn–Banach theorem for bounded linear maps (see Hogbe-Nlend 1970), and

one cannot prove that the symmetric monoidal category of b-reflexive Mackey-complete

spaces and bounded maps is closed. Let us point out that this problem is not simpler with

usual reflexive spaces, as the category of reflexive topological spaces and linear continuous

maps is notoriously not closed. For example, if we consider the bidimensional reflexive

Hilbert space l2, the space B(l2) of bounded (equivalently continuous) endomorphisms is

not reflexive (nor b-reflexive).

7. Conclusion

This paper may be seen as a quantitative adaptation of Blute et al. (2012). It also brings a

smooth and general point of view on quantitative semantics. One can try to understand the

computing meaning of this structure of power series, as some refinement to quantitative

semantics. Indeed, many constructions of the present work relies on the Cauchy formula

that power series satisfy. The same phenomenon happens in Girard’s Coherent Banach

spaces (Girard 1999).

In our model, Lin is a concrete example of a differential category (Blute et al. 2006),

whilst Series should be a concrete example of a cartesian differential category (Blute et al.

2009) and of a cartesian closed differential category (Manzonetto 2012) and so a model

of the Differential and the Resource λ-calculi. By displaying the relation between Lin

and Series, we should have a concrete example of the structure exhibited in cartesian

differential storage categories (Blute et al. 2015).
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The next step now in understanding smooth models of DiLL would be to go towards

differentiation in manifolds, which categorical setting has already been studied in Cockett

and Cruttwell (2014). One could begin by working on the logic underneath the theory of

diffeology (Iglesias-Zemmour 2013).

The authors thank Rick Blute and Thomas Ehrhard for the inspiring lively

conversations.
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