Linearity, from Mathematics to Computer Science

Christine TASSON

tasson@pps.jussieu.fr

Laboratoire Preuves Programmes Systémes
Université Paris Diderot
France

Kurims’'s Computer Science Seminar
25 July 2008

1987 :
1988 :
2001 :

2005 :

Introduction

Girard introduces Linear Logic.

Girard links denotational semantics to power series.

Ehrhard and Regnier introduce differential
lambda-calculus.

Ehrhard and Regnier present differential nets.

31

Summary

@ Linearity : an analogy
Linearity in Computer Science
The Analogy
Mathematical Tools

@® Differential Lambda Calculus
Syntax
Reduction
Taylor expansion

© Differential Proofs Nets
Definition
Taylor expansion
O Semantics
The seminal semantics : Finiteness Spaces
A generalization : Lefschetz Spaces

31

The Question

How many times a program uses its argument ?

Let's look at an example :

Power - let rec power x n =
match n with
{ R x N - R 0 ->1
X, on = x" | n -> x * (power x (n-1))

Power uses its first argument several times and its second one only
once.

31

Semantics
Model

A program is interpreted using mathematical objects.

[Progl : A= B

Linear Logic

Every program can be decomposed into an exponential part (!
which means the ressource is infinite) and a linear part (—o which
means the program consults its ressource only once).

[Prog] : '1A— B

For instance, Power :
R

N
(x , n) — x"

An Analogy

Mathematical Linearity
A linear function is a first degree polynomial function.

Every regular function can be approximated by a linear function :

f(x) £(0)+ f'(0) x

x—0
Computer Science Linearity

A linear program is a program which uses its argument at most
once, that is a lambda term Ax - t where the variable x appears
only once in x.

D(Ax - t)(s) = t[X\s]Iinear

31

Differential analysis

Taylor expansion

An analytic function can be decomposed into a sum of degree n
polynomial functions :

Computer Science version

How can we decompose a program into n-linear ones (which
respectively uses its argument exactly n times) ?

31

@® Differential Lambda Calculus
Syntax
Reduction
Taylor expansion

Summary

/31

An extension of A-Calculus

Syntax

s,t = x|Ax.s|(s)t|Ds.t|0]as + bt
a,b € R where R is a ring.

New ingredients

e 0 means a deadlock has been reached.

o Differentiation operator Ds.t means the linear application of s
to t.

e Sums similar to non determinism.

31

Linear Analogy and Sums

Ax.(s+t) = Ax.s+Ax.t (1)
(s+tlu = (s)u+(t)u (2)
() u+v) # (slut(s)v (3)

Mathematics linearity

Linearity means commutation with sums. The point (3) has to be
related with analytic functions semantics.

10/31

Linear Analogy and Sums

Ax.(s+t) — Ax.s+Ax.t (1)
(s+tlu — (s)u+(t)u (2)
(S)u+v) # (slu+(s)v (3)

Non-deterministic quasi-reduction

Intuitively, s 4+ s’ reduces on both s and s’. The point (3) comes
from s can need its argument several times.
For instance :

(Ax.(x)x)(Ax.x +Ax.y) — Ax.x+Ax.y + 2y

Notice that y appears two times in the result.

10/31

Substitutions and Differentiation

Differential reduction

D(Ax.t).u — Ax. (%u) (4)

Linear substitution :

The term %.u means one occurence of x has been substituted by
uin t. It is a non deterministic operation since there are several
occurencies that can be substituted.

11/31

Substitutions and Differentiation

Differential reduction

D(Ax.t).u — Ax. (%u) (4)

Linear substitution :

The term %.u means one occurence of x has been substituted by
uin t. It is a non deterministic operation since there are several
occurencies that can be substituted.

oy
—.u

Y = dxyu

11/31

Substitutions and Differentiation

Differential reduction

D(Ax.t).u — Ax. (%u) (4)

Linear substitution :

The term %.u means one occurence of x has been substituted by

uin t. It is a non deterministic operation since there are several
occurencies that can be substituted.

o(s)t B 0s ot
X u = (ax.u>t+Ds.<aX.u>

11/31

Substitutions and Differentiation

Differential reduction

D(Ax.t).u — Ax. (%u) (4)

Linear substitution :

The term %.u means one occurence of x has been substituted by

uin t. It is a non deterministic operation since there are several
occurencies that can be substituted.

o(s)t B 0s ot
X o= (a.u)t—l— Ds. <&u>

11/31

Substitutions and Differentiation

Differential reduction

D(Ax.t).u — Ax. (%u) (4)

Linear substitution :

The term %.u means one occurence of x has been substituted by

uin t. It is a non deterministic operation since there are several
occurencies that can be substituted.

M.u = E.u [x1, X0 — x] + E.u [x1, X0 «— x])
0x aX2

aX1

11/31

Substitutions and Differentiation

Differential reduction

D(Ax.t).u — Ax. (%u) (4)

Linear substitution :
The term %.u means one occurence of x has been substituted by

uin t. It is a non deterministic operation since there are several
occurencies that can be substituted.

0s[x1, X0 ¢ X] 0s ds
— —u = —.u [X]_,XQFX]“” ~.u [X].)X2<_X])
ox 0x1 0x2

— (fg) =f.g+fg

11/31

Reduction

Definition
The smallest reduction closed by context and by sums that
contains both :

B-reduction (Ax.s)Ju — s[x/u]
Differential reduction D(Ax.t).u — ?\x.(%.u)

Theorem (Ehrhard, Régnier 2001)

This reduction is confluent and if the ring is N, simply typed terms
are strongly normalizing.

12/31

Taylor expansion

Definition
Usual application can be encoded using differential application :
— = 1 Drl n
(s)u—Zm(s.u")0 (5)

Theorem (Ehrhard, Régnier 2006)

Purely A-calculus can be encoded through Taylor Expansion in the
purely differential A-calculus.

13 /31

Summary

© Differential Proofs Nets
Definition
Taylor expansion

14 /31

Linear Logic Nets

A programming language :

?y

o]
o]
>

?B1Y Y 7B,Y

?Blv ...y ?Bkv

m@m

15/31

Differential Nets

A Linearized programming language :

?y

AY B
@ A N
A% B
” ? -1 7By
A
"B, 7By

m@m

16/31

Differential Nets

A Linearized programming language :

N N

AY B
@ A
AN B A
7A A
AY B
W IAY 1A
A® B

16/31

Taylor and Computer Science

The principle :
To every linear net N and for every n, corresponds a differential net
that appears in the taylor expansion.

| |
L]
7B,Y Bo] |) =
n:O n' ﬁvﬁ
?Blv 732"
! ? ?
!A* ?Bﬁ ?82*

17/31

where N in Taylor expansion of N.

Differential Nets vs. Differential A-Calculus

Theorem (Ehrhard, Régnier 2006)

Differential A-calculus can be encoded in Differential nets in such a
manner that the first reduction is simulated by the second.

Advantages of Differential nets

e An extension conservative of differential A-calculus.

e Symmetry between ?- and !-cells that is the monad and the
comonad.

e Links with concurrence : 7t-calculus can be encoded in
differential nets.

18/31

Summary

O Semantics
The seminal semantics : Finiteness Spaces
A generalization : Lefschetz Spaces

19/31

Linear Logic
1

D, &
X
o

!

Models

AJ_
A® B
AR B
A—oB
1A

History of linear models

Al
Al
|Al + |B|
|Al x |B|
Al x | B
M (A

[A] = kAl
L([A], k)
[Al @ [B]
[Al ® [B]
L([A],[B])
2?

e The simplest is the model of sets and relations.

e Taking sets as bases and relations as matrices support, we get
the model of linear spaces.

e Because of exponential, infinite dimension is needed.

20/31

Bibliography

Infinite dimension problems

e Which basis notion ?

e How to ensure reflexivity ?

In order to solve them, we need some topology.

8 [Blute] Linear Lauchli semantics, Annals of Pure and Applied
Logic, 1996

[Girard] Coherent Banach spaces, Theoretical Computer
Science, 1999

[

@ [Ehrhard] On Kéthe sequence spaces and linear logic,
Mathematical Structures in Computer Science, 2002

[

[Ehrhard] Finiteness spaces, Mathematical Structures in
Computer Science, 2005

21/31

Finiteness Spaces

The relational model view point.

Definition

Let | X| be countable, for each F C P(|X|), let us denote
Flt={u' C|X||VueF, unufinite}.

A finiteness space is a pair X = (|X|, F(X)) such that

F(X)*H = F(X).

Example : Integers.

22/31

Finiteness Spaces

The linear spaces view point.

For every x € kX, the support of x is |x| ={a € |X||x, # 0}.

Definition
The linear space associated to X = (| X|, F(X)) is :

k(X) ={x € kXl||x| € F(X)).

endowed by the topology generated by the basis at zero :
(Vy|J € F+} where

V) ={x € k(X)||x| N J = 0).

Example : Integers.

23/31

Finiteness Spaces
A Linear Logic Model

X+ > k<X>/
0 ~ {0}
X&Y
X@y} - K(X) @ k(Y)
1 ~ k
X —oY ~ [,C(X,Y)
XY ~ k(X)) @ k(Y)
X ~ k(IX)
NX| = Mga(|X])
where £(1X) = {AC Mg (IX]) | |JIml € FX)

meA

24 /31

Finiteness Spaces
A Linear Logic Model

X+ ~ k(XY = Reflexivity
0 ~ {0}
X&Y
Xy } ~ k(X) @ k(Y)
1 ~ k
X—oY ~ LJAX,Y)
XY ~ k(X) @ k(Y)
X ~ k(IX) = Infinite dimension
X[= Miin(|X])

where £(1X) = {AC Mg (IX])| |JIm| € FX)

meA

24 /31

Finiteness Spaces

Theorem
Finiteness spaces are a model of differential nets.

Taylor expansion
A program of type : A= B is interpreted by an analytic function.

25/31

Finiteness Spaces

Theorem
Finiteness spaces are a model of differential nets.

Differential nets have been designed to correspond to this
semantics.

Taylor expansion

A program of type : A= B is interpreted by an analytic function.

This analytic function embodies the analogy between mathematics
linearity and computer science linearity.

25/31

Lefschetz and al

Linearized topological vector spaces have been introduced by
S. Lefschetz in 1942.

They appear in

[@ [Barr] x-autonomous Categories, Lecture Notes in
Mathematics, 1979

[§ [Blute] Linear Lauchli semantics, Annals of Pure and Applied
Logici, 1996

[§ [Ehrhard] Finiteness spaces, Mathematical Structures in
Computer Science, 2005

26 /31

Lefschetz spaces

Definition
Let E,7 be topological k-vector space.
E is said to be a Lefschetz space if :
e k is discrete.
e There is a filter basis at zero V which generates 7 and which
is made of linear subspaces.

e NV ={0} = Hausdorff topology.

Example : Finiteness spaces with the basis topology.
Finite sequences k(®) with finite codimension topology.

27 /31

Lefschetz spaces

Definition
Let E,7 be topological k-vector space.
E is said to be a Lefschetz space if :

e k is discrete.

e There is a filter basis at zero V which generates 7 and which
is made of linear subspaces.

e NV={0 = Hausdorff topology.
Example : Finiteness spaces with the basis topology.
Finite sequences k(®) with finite codimension topology.
This topology is counter intuitive

e A finite dimension Lefschetz space is discrete.

e Open bowls are affine subspaces.

e Open linear subspaces are closed.

27 /31

Function spaces and Orthogonal

Definition (Linear compactness)

A subspace K of a Lefschetz Space is said /inearly compact when
for every closed affine filter 7 = {F,} satisfying the intersection
property (VFy, Fo N K # (),

(NF)NK #0.

Definition (Compact open topology)
This is the topology of uniform convergence on linearly compact
subspaces.
Bases at zero
e Functionals L.(E,F) : W(K,V)={f|f(K) C V} with K
linear compact and V open subspace.
e Dual space E/ : K- ={x'|Vx € K, x'(x) =0} with K linearly
compact subspace.

28 /31

Function spaces and Orthogonal

Definition (Linear compactness)

A subspace K of a Lefschetz Space is said /inearly compact when
for every closed affine filter 7 = {F,} satisfying the intersection
property (VFy, Fo N K # (),

(NF)NK #0.

Definition (Compact open topology)
This is the topology of uniform convergence on linearly compact
subspaces.
Bases at zero
e Functionals L.(E,F): W(K,V) ={f|f(K) C V] with K
linear compact and V open subspace.
e Dual space E/ : K- ={x'|Vx € K, x'(x) =0} with K linearly
compact subspace.

28 /31

Function spaces and Orthogonal

Definition (Linear compactness)

A subspace K of a Lefschetz Space is said /inearly compact when
for every closed affine filter 7 = {F,} satisfying the intersection
property (VFy, Fo N K # (),

(NF)NK #0.

Definition (Compact open topology)
This is the topology of uniform convergence on linearly compact
subspaces.
Bases at zero
e Functionals L.(E,F) : W(K,V)={f|f(K) C V} with K
linear compact and V open subspace.
e Dual space E/ : K- = [x/|Vx € K, x'(x) = 0} with K linearly
compact subspace.

28 /31

Reflexivity problems

Linear Logic model ?
Reflexivity is not ensured in general.

It is preserved by quotient, product.

This model generalizes Finiteness spaces. But we need more
constraints to ensure reflexivity.

29 /31

Conclusion

e From semantics to programming languages and vice versa.
o Application of differential nets (concurrency, ...).

e Work in progress : Interpretation of Polymorphic
Lambda-Calculus using Lefschetz Linear Spaces.

30/31

=D =) =) [

Bibliography

[Girard] Linear Logic, Theoretical Computer Science, 1987

[Ehrhard and Regnier] The differential A-calculus, Theoretical
Computer Science, 2003

[Ehrhard and Regnier] Differential Interaction Nets, Electronic
Notes in Theoretical Computer Science, 2005

[Ehrhard] Finiteness spaces, Mathematical Structures in
Computer Science, 2005

31/31

	Linearity: an analogy
	Linearity in Computer Science
	The Analogy
	Mathematical Tools

	Differential Lambda Calculus
	Syntax
	Reduction
	Taylor expansion

	Differential Proofs Nets
	Definition
	Taylor expansion

	Semantics
	The seminal semantics: Finiteness Spaces
	A generalization: Lefschetz Spaces

