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Abstract. The exponential modality of linear logic associates a commutative
comonoid !A to every formula A, in order to duplicate it. Here, we explain how
to compute the free commutative comonoid !A in various models of linear logic,
using a sequential limit of equalizers. The recipe is simple and elegant, and en-
ables to unify for the �rst time the miscellaneous constructions of the exponential
modality appearing in the literature. It also sheds light on the duplication policy
of linear logic. We illustrate its relevance by applying it to two familiar models
of linear logic based on coherence spaces, Conway games and we show its limits
in �niteness spaces.

1 Introduction

Linear logic is based on the principle that every hypothesis Ai should appear exactly
once in a proof of the sequent

A1, . . . , An ` B. (1)

This logical restriction enables to represent the logic in monoidal categories, along
the idea that every formula denotes an object of the category, and every proof of the
sequent (1) denotes a morphism

A1 ⊗ · · · ⊗An −→ B

where the tensor product is thus seen as a linear kind of conjunction. Note that, for
clarity's sake, we use the same notation for a formula A and for its interpretation (or
denotation) in the monoidal category.

This linearity policy on proofs seems far too restrictive in order to integrate tradi-
tional forms of reasoning, where it is accepted to repeat or to discard an hypothesis in
the course of a logical argument. This di�culty is nicely resolved by providing linear
logic with an exponential modality, whose task is to strengthen every formula A into
a formula !A which may be repeated or discarded. From a semantic point of view, the
formula !A is most naturally interpreted as a comonoid of the monoidal category. Recall
that a comonoid (C, d, u) in a monoidal category L is de�ned as an object C equipped
with two morphisms

d : C −→ C ⊗ C u : C −→ 1

where 1 denotes the monoidal unit of the category. The morphism d and u are respec-
tively called the multiplication and the unit of the comonoid. The two morphisms d



and u are supposed to satisfy associativity and unitality properties, neatly formulated
by requiring that the two diagrams

C d

��

d

��
C ⊗ C

C⊗d **

C ⊗ C

d⊗Ctt
C ⊗ C ⊗ C

C
d

��

d

��
id

��

C ⊗ C

u⊗C ,,

C ⊗ C

C⊗urrC

commute. Note that we draw our diagrams as if the category were strictly monoidal,
although the usual models of linear logic are only weakly monoidal.

The comonoidal structure of the formula !A enables to interpret the contraction rule

and the weakening rule of linear logic

π
...

Γ, !A, !A,∆ ` B
Contraction

Γ, !A,∆ ` B

π
...

Γ,∆ ` B
Weakening

Γ, !A,∆ ` B
by pre-composing the interpretation of the proof π with the multiplication d in the case
of contraction

Γ ⊗ !A ⊗ ∆
d−→ Γ ⊗ !A ⊗ !A ⊗ ∆

π−→ B

and with the unit u in the case of weakening

Γ ⊗ !A ⊗ ∆
u−→ Γ ⊗ ∆

π−→ B.

Besides, linear logic is generally interpreted in a symmetric monoidal category, and one
requires that the comonoid !A is commutative, this meaning that the following equality
holds:

A
d // A⊗A

symmetry // A⊗A = A
d // A⊗A

When linear logic was introduced by Jean-Yves Girard, twenty years ago, it was soon
realized by Robert Seely and others that the multiplicative fragment of the logic should
be interpreted in a ∗-autonomous category, or at least, a symmetric monoidal closed
category L ; and that the category should have �nite products in order to interpret the
additive fragment of the logic, see [9]. A more di�cult question was to understand what
categorical properties of the exponential modality “ ! ” were exactly required, in order
to de�ne a model of propositional linear logic � that is, including the multiplicative,
additive and exponential components of the logic. Nonetheless, Yves Lafont found in
his PhD thesis [6] a simple way to de�ne a model of linear logic. Recall that a comonoid
morphism between two comonoids (C1, d1, u1) and (C2, d2, u2) is de�ned as a morphism
f : C1 −→ C2 such that the two diagrams

C1
f //

d1

��

C2

d2

��
C1 ⊗ C1

f⊗f // C2 ⊗ C2

C1
f //

u1 --

C2

u2qq1



commute. The commutative comonoid !A is freely generated by an object A when there
exists a morphism

ε : !A −→ A

such that for every morphism

f : C −→ A

from a commutative comonoid C to the object A, there exists a unique comonoid
morphism

f† : C −→ !A

such that the diagram

!A

ε

��

C

f 00

f† ..

A

(2)

commutes. Lafont noticed that the existence of a free commutative comonoid !A for
every object A of a symmetric monoidal closed category L induces automatically a
model of propositional linear logic. But this is not the only way to construct a model
of linear logic. A folklore example is the coherence space model, which admits two
alternative interpretations of the exponential modality: the original one, formulated by
Girard [3] where the coherence space !A is de�ned as a space of cliques, and the free
construction, where !A is de�ned as a space of multicliques (cliques with multiplicity)
of the original coherence space A.

In this paper, we explain how to construct the free commutative comonoid in the
symmetric monoidal categories L typically encountered in the semantics of linear logic.
Our starting point is the well-known formula de�ning the symmetric algebra

SA =
⊕
n∈N

A⊗n / ∼n (3)

generated by a vector space A. The formula computes indeed the free commutative
monoid associated to the object A in the category of vector spaces over a given �eld k.
Here, the group Σn of permutations on {1, . . . , n} acts on the vector space A⊗n, and
the vector space A⊗n/ ∼n of equivalence classes (or orbits) modulo the group action is
de�ned as the coequalizer of the n! symmetries

A⊗n
symmetry //
···

symmetry
// A⊗n

coequalizer // A⊗n/ ∼n

in the category of vector spaces. Since a comonoid in the category L is the same thing as
a monoid in the opposite category Lop, it is tempting to apply the dual formula to (3)
in order to de�ne the free commutative comonoid !A generated by an object A in the
category L. Although the idea is extremely naive, it is surprisingly close to the truth...



Indeed, one signi�cant aspect of our work is to establish that the equalizer An of the
n! symmetries

An
equalizer // A⊗n

symmetry //
···

symmetry
// A⊗n (4)

exists in many familiar models of linear logic, and provides there the n-th layer of the
free commutative comonoid !A generated by the object A. As we will see in Sections 2
and 3, this principle is nicely illustrated by the equalizer An in the category of coherence
spaces, which contains the multicliques of cardinality n in the coherence space A ; and
by the equalizer An in the category of Conway games, which de�nes the game where
Opponent may open up to n copies of the game A, one after the other, in a sequential
order.

Of course, the construction of the free exponential modality does not stop here: one
still needs to combine the layers An together in order to de�ne !A properly. One obvious
solution is to apply the dual of formula (3) and to de�ne !A as the in�nite cartesian
product

!A =
¯
n∈N

An. (5)

This formula works perfectly well for symmetric monoidal categories L where the tensor
product distributes over the in�nite product, in the sense that the canonical morphism

X ⊗
( ¯

n∈N
An

)
−→

¯
n∈N

( X ⊗ An ) (6)

is an isomorphism. This algebraic miracle is not so uncommon: it often happens in
models of linear logic enriched over commutative monoids � where morphisms (and
thus proofs) may be added. A typical illustration is provided by the relational model of
linear logic, where the free exponential !A is de�ned as the set of �nite multisets of A,
each An describing the set of multisets of cardinality n.

On the other hand, the formula (5) is far too optimistic, and does not work in
the typical models of linear logic, like coherence spaces, or game semantics. It is quite
instructive to apply it to the category of Conway games: the formula de�nes in that case
a game !A where the �rst move by Opponent selects a component An, and thus decides
the number n of copies of the game A played subsequently. This departs from the free
commutative comonoid !A which we shall describe in Section 3, where Opponent is
allowed to open a new copy of the game A at any point of the interaction. So, there
remains to understand how the various layers An should be combined together, in order
to ensure that !A performs this particular copy policy. The temptation is to ask that
every layer An is �glued� inside the next layer An+1 in order to permit the computation
to transit from one layer to the next in the course of interaction.

The most natural way to perform this �glueing� is to introduce the notion of pointed
(or a�ne) object. By pointed object in a monoidal category L, one means a pair (A, u)
consisting of an object A and a morphism u : A −→ 1 to the monoidal unit. So, a pointed
object is the same thing as a comonoid, without a comultiplication. It is folklore that
the category of pointed objects and pointed morphisms (de�ned in the expected way)
is symmetric monoidal, and a�ne in the sense that its monoidal unit 1 is terminal.
Once this notion of pointed object introduced, the construction of the free commutative
comonoid !A is excessively simple and elegant, and proceeds in three elementary steps.



First step. The object A is transported to the free pointed object (A•, u) it generates,
when this object exists in the monoidal category L. Intuitively, the purpose of the
pointed object A• is to describe one copy of the object A, or none... It is usually quite
easy to de�ne: in the case of coherence spaces, the space A• = A & 1 is obtained by
adding a point to the web of A ; in the case of Conway games, the game A• is the game
A itself, at least when the category is restricted to the Opponent-starting games.

Second step. The object A≤n is de�ned as the equalizer (A•)n of the diagram

A≤n
equalizer // A⊗n•

symmetry //
···

symmetry
// A⊗n• (7)

in the category L. The purpose of A≤n is to describe all the layers Ak at the same time,
for k ≤ n. Typically, the object A≤n computed in the category of coherence spaces is
the space of all multicliques in A of cardinality less than n.

Third step. It appears that there exists a canonical morphism

A≤n A≤n+1oo

induced by the unit u of the pointed object A•. The free commutative comonoid !A
generated by A is then de�ned as the sequential limit of the sequence

1 A≤1oo A≤2oo · · ·oo A≤noo A≤n+1oo · · ·oo

The 2-dimensional description of algebraic theories and PROPs recently performed
by Melliès and Tabareau [8] ensures then that this recipe in three steps de�nes the
free commutative comonoid !A generated by the object A... as long as the following
fundamental property is satis�ed by the symmetric monoidal category L: its tensor
product should distribute over

1. the equalizer computing the object A≤n,
2. the sequential limit computing the object !A.

So, one main purpose of the paper is to establish that this pair of distributivity prop-
erties holds for the category of coherence spaces (in Section 2) and for the category of
Conway games (in Section 3). In this way, we demonstrate the extraordinary fact that
despite their di�erence in style, the free exponential modalities of coherence spaces and
Conway games are based on exactly the same limiting process.
In contrast, in the setting of topological vector spaces, both the formula (5) and the free
pointed recipe meet their limits. We take the opportunity (in Section 4) to explain the
reason why these methods fail in the �niteness space model of di�erential linear logic
recently introduced by Thomas Ehrhard [2].

2 Coherence spaces

In this section, we compute the free exponential modality in the category of coherence
spaces de�ned by Jean-Yves Girard [3]. A coherence space E = (|E|, _̂) consists of a



set |E| called its web, and of a binary re�exive and symmetric relation _̂ over E. A
clique of E is a set X of pairwise coherent elements of the web:

∀e1, e2 ∈ X, e1 _̂ e2.

We do not recall here the de�nition of the category Coh of coherence spaces (however,
the reader will �nd a brief description of the category in Appendix 1). Just remember
that a morphism R : E → E′ in Coh is a clique of the coherence space E ( E′, so in
particular, R is a relation on the web |E| × |E′|.

It is easy to see that the tensor product does not distribute over cartesian products:
simply observe that the canonical morphism

A⊗ (1 & 1) −→ (A⊗ 1) & (A⊗ 1)

is not an isomorphism. This explains why formula (5) does not work, and why the
construction of the free exponential modality requires a sequential limit, along the line
described in the introduction.

First step: compute the free a�ne object. Computing the free pointed (or a�ne)
object on a coherence space E is easy, because the category Coh has cartesian products:
it is simply given by formula

E• = E & 1.

It is useful to think of E&1 is the space of multicliques of E with at most one element:
the very �rst layer of the construction of the free exponential modality. Recall that a
multiclique of E is just a multiset on |E| whose underlying set is a clique of E.

Second step: compute the symmetric tensor power E≤n. It is not di�cult to
see that the equalizer E≤n of the symmetries

(E & 1)⊗n
symmetry //
···

symmetry
// (E & 1)⊗n

is given by the set of multicliques of E with at most n elements, two multicliques being
coherent if their union is still a multiclique. As explained in the introduction, one also
needs to check that the tensor product distributes over those equalizers. Consider a
cone

YR

yy

R′

%%
X ⊗ (E & 1)⊗n

X⊗symmetry //
···

X⊗symmetry
// X ⊗ (E & 1)⊗n

(8)

We can choose the identity among the symmetries. This ensures already that R = R′.
Next, we show that the morphism R factors uniquely through the morphism

X ⊗ E≤n
X⊗ equalizer // X ⊗ (E & 1)⊗n

To that purpose, one de�nes the relation

R≤n : Y −−→ X ⊗ E≤n by y R≤n (x, µ) i� y R (x, u)



where µ is a multiset of |E| of cardinal less than n, and u is any word of length n whose
letters with multiplicity in |E & 1| = |E| ] {∗} de�ne the multiset µ. We let the reader
check that the de�nition is correct, that it de�nes a clique R≤n of Y ( (X ⊗ E≤n),
and that it is the unique way to factor R through (8).

Third step: compute the sequential limit

E≤0 = 1 E≤1 = (E & 1)oo E≤2oo E≤3 · · ·oo

whose arrows are (dualized) inclusions from E≤n into E≤n+1. Again, it is a basic fact
that the limit !E of the diagram is given by the set of all �nite multicliques, two
multicliques being coherent if their union is a multiclique. One also needs to check that
the tensor product distributes over the sequential limit. So, consider a cone

YR0

tt
R1vv

R2 ��

R3

&&
X ⊗ 1 X ⊗ (E & 1)oo X ⊗ E≤2oo X ⊗ E≤3 · · ·oo

and de�ne the relation

R∞ : Y −−→ X⊗!E by y R∞ (x, µ) i� ∃n, y Rn (x, u)

where µ is a multiset of elements of |E| and the element u of the web of E≤n is any word
of length n whose letters with multiplicity in |E & 1| = |E| ] {∗} de�ne the multiset µ.
We let the reader check that R∞ is a clique of Y ( (X⊗!E) and de�nes the unique
way to factor the cone. This concludes the proof that the sequential limit !E de�nes the
free commutative comonoid generated by E in the category Coh of coherence spaces.

3 Conway games

In this section, we compute the free exponential modality in the category of Conway
games introduced by André Joyal in [4]. One unifying aspect of our approach is that
the construction works in exactly the same way as for coherence spaces.

Conway games. A Conway game A is an oriented rooted graph (VA, EA, λA) consisting
of (1) a set VA of vertices called the positions of the game; (2) a set EA ⊂ VA × VA
of edges called the moves of the game; (3) a function λA : EA → {−1,+1} indicating
whether a move is played by Opponent (−1) or by Proponent (+1). We write ?A for
the root of the underlying graph. A Conway game is called negative when all the moves
starting from its root are played by Opponent.
A play s = m1 ·m2 · . . . ·mk−1 ·mk of a Conway game A is a path s : ?A � xk starting
from the root ?A

s : ?A
m1−−→ x1

m2−−→ . . .
mk−1−−−→ xk−1

mk−−→ xk

Two paths are parallel when they have the same initial and �nal positions. A play is
alternating when

∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).



We note PlayA the set of plays of a game A.

Dual. Every Conway game A induces a dual game A∗ obtained simply by reversing the
polarity of moves.

Tensor product. The tensor product A⊗B of two Conway games A and B is essentially
the asynchronous product of the two underlying graphs. More formally, it is de�ned as:

� VA⊗B = VA × VB ,
� its moves are of two kinds :

x⊗ y →
{
z ⊗ y if x→ z in the game A
x⊗ z if y → z in the game B,

� the polarity of moves is inherited from games A and B.

The unique Conway game 1 with a unique position ? and no move is the neutral
element of the tensor product. As usual in game semantics, every play s of the game
A⊗B can be seen as the interleaving of a play s|A of the game A and a play s|B of the
game B.

Strategies. A strategy σ of a Conway game A is de�ned as a non empty set of alternat-
ing plays of even length such that (1) every non empty play starts with an Opponent
move; (2) σ is closed by even length pre�x; (3) σ is deterministic, i.e. for all plays s,
and for all moves m,n, n′,

s ·m · n ∈ σ ∧ s ·m · n′ ∈ σ ⇒ n = n′.

The category of Conway games. The category Conway has Conway games as
objects, and strategies σ of A∗⊗B as morphisms σ : A→ B. The composition is based
on the usual �parallel composition plus hiding� technique and the identity is de�ned
by a copycat strategy. The resulting category Conway is compact-closed in the sense
of [5].

The category Conway does not have �nite or in�nite products. For that reason,
we compute the free exponential modality in the full subcategory Conway of negative
Conway games, which has products. We explain in a later stage how the free construction
on the subcategory Conway induces a free construction on the whole category.

First step: compute the free a�ne object. The monoidal unit 1 is terminal in the
category Conway . In other words, every negative Conway game may be seen as an
a�ne object in a unique way, by equipping it with the empty strategy tA : A → 1. In
particular, the free a�ne object A• is simply A itself.

Second step: compute the symmetric tensor power An as the equalizer of the
n! symmetries

A⊗n
symmetry //
···

symmetry
// A⊗n.

A simple argument shows that the equalizer An = A≤n is the following Conway game:



� the positions of the game An are the �nite words w = x1 · · ·xn of length n, whose
letters are positions xi of the game A, and such that xi+1 = ?A is the root of A
whenever xi = ?A is the root of A, for every 1 ≤ i < n. The intuition is that the
letter xk in the position w = x1 · · ·xn of the game An describes the position of the
k-th copy of A, and that the i + 1-th copy of A cannot be opened by Opponent
unless all the i-th copy of A has been already opened.

� its root is the word ?An = ?A · · · ?A where the n the positions xk are at the root ?A
of the game A,

� a move w → w′ is a move played in one copy:

w1 x w2 → w1 y w2

where x → y is a move of the game A. Note that the condition on the positions
implies that when a new copy of A is opened (that is, when x = ?A) no position in
w1 is at the root, and all the positions in w2 are at the root.

� the polarities of moves are inherited from the game A in the obvious way.

Note that An may be also seen as the subgame of A⊗n where the i+ 1-th copy of A is
always opened after the i-th copy of A.

Third step: compute the sequential limit

A0 = 1 A1 = Aoo A2oo A3oo · · ·oo

whose morphisms are the partial copycat strategies An ← An+1 identifying An as the
subgame of An+1 where only the �rst n copies of A are played. The limit of this diagram
in the category Conway is the game A∞ de�ned in the same way as A≤n except that
its positions w = x1 · x2 · · · are in�nite sequences of positions of A, all of them at the
root except for a �nite pre�x x1 · · ·xk. We establish in Appendix 2 that A∞ is indeed
the limit of this diagram, and that the tensor product distributes with this limit. From
this, we deduce that the sequential limit A∞ describes the free commutative comonoid
in the category Conway .

It is nice to observe that the free construction extends to the whole categoryConway
of Conway games. A careful study shows that every commutative comonoid in the
category of Conway games is in fact a negative game. Moreover, the inclusion functor
from Conway to Conway has a right adjoint, which associates to every Conway game
A, the negative Conway game A obtained by removing all the Proponent moves from
the root ?A. By combining these two observations, we obtain that (A )∞ is the free
commutative comonoid generated by A in the category Conway of Conway games.

4 An interesting counter-example: Finiteness spaces

In Sections 2 and 3 we have seen how formula (5) can be re�ned into formula (??)
which suits the models of Coherent spaces and Conway games. To conclude this paper,
we want to give the limits of this approach with the �niteness spaces counter-example.

There are two layers of �niteness spaces. Relational �niteness spaces constitute a re-
�nement of the relational model, built through bi-orthogonality. Linear �niteness spaces
are linearly topologized spaces [7] built on the relational layer. We explain the failure



at both levels. For an introduction to �niteness spaces, we refer the reader to [2] or to
Appendix 4.

Relational �niteness spaces. Two subsets u, u′ of a countable set E are said orthog-
onal, denoted by u ⊥ u′, whenever their intersection u ∩ u′ is �nite. The orthogonal of
G ⊆ P(E) is then de�ned by G⊥ = {u′ ⊆ E |∀u ∈ G, u ⊥ u′}.

A relational �niteness space E = (|E|,F(E)) is given by its web (the countable
set |E|) and by a set F(E) ⊆ P(|E|) orthogonally closed, i.e. F(E)⊥⊥ = F(E). The
elements of F(E) (resp. F(E)⊥) are said �nitary (resp. anti�nitary). A �nitary relation
R between two �niteness spaces E1 and E2 is a subset of |E1| × |E2| such that

∀u ∈ F(E1), R · u :=
{
b ∈ |E2|

∣∣ ∃a ∈ u, (a, b) ∈ R
}
∈ F(E2),

∀v′ ∈ F(E2)⊥, tR · v′ :=
{
a ∈ |E1|

∣∣ ∃b ∈ v′, (a, b) ∈ R
}
∈ F(E1)⊥.

The category RelFin of relational �niteness spaces and �nitary relations is
∗-autonomous. Thus, it provides a model of linear logic.

The exponential modality of a �niteness space E is the �niteness space !E de�ned
by its web |!E| =Mfin(|E|) made of �nite multisets µ : |E| → N and by its �niteness
structure

F(!E) = {M ∈Mfin(|E|) | πE(M) ∈ F(E)},
where for every M ∈Mfin(|E|), πE(M) := {x ∈ |E| | ∃µ ∈M, µ(x) 6= 0}.

The equalizer En of the n! symmetries

En
equalizer // E⊗n

symmetry //
···

symmetry
// E⊗n

exists in RelFin and provides the n-th layer of !E. Its web |En| =Mn
fin(|E|) is made

of the multisets of cardinality n and its �niteness structure is

F(En) = {Mn ⊆Mn
fin(|E|) |πE(Mn) ∈ F(E)}.

However, the in�nite cartesian product E∞ of the layers En, i.e. E∞ = &n∈NE
n,

does not compute the exponential modality of RelFin. Indeed, although the webs are
both equal to |E∞| =Mfin(|E|), their �niteness structures are di�erent. As shown by
the counter-example in Appendix 3, we have in general F(!E) ( F (E∞) since

F (E∞) =
{
M ∈Mfin(|E|)

∣∣∣ ∀n ∈ N, Mn = M ∩Mn
fin(|E|),

πE(Mn) ∈ F(E).

}
. (9)

Besides, the tensor product does not distribute over in�nite product, i.e.

X ⊗
( ¯

n∈N
En

)
−→

¯
n∈N

( X ⊗ En )

is not an isomorphism since in general the �niteness structures are di�erent in general

F(X ⊗ E∞) = {M ⊆ |X| ×Mfin(|E|) |πX(M) ∈ F(X) ; πE(M) ∈ F(E)} ,

F

(¯
n∈N

(X ⊗ En)

)
=
{
M
∣∣∣ ∀n ∈ N, Mn = M ∩ |X| ×Mn

fin(|E|),
πX(Mn) ∈ F(X), πE(Mn) ∈ F(E).

}
. (10)



Otherwise, in contrast with coherence spaces, the re�ned formula (??) does not pro-
vide more information on !E. Roughly speaking, the tensor product ⊗ commutes with
the �nite cartesian product & in RelFin. Therefore the limit E∞ coincides with the
sequential limit of pointed objects &n∈NE

≤n.
To better understand this result, we move to the linear �niteness spaces layer. In

this setting, the lack of uniformity observed in (9) and (10) can explained in terms of
uniform convergence.

Linear �niteness spaces. In the sequel, k is an in�nite �eld endowed with the discrete
topology i.e. every subset of k is open. Every relational �niteness space E generates a
vector space, the linear �niteness space

k〈E〉 =
{
x ∈ k|E|

∣∣ |x| ∈ F(E)
}
,

where for any sequence x ∈ k
|E|, |x| = {a ∈ |E| | xa 6= 0}. Using the anti�nitary

parts of E, this space is endowed by the topology generated by the fundamental linear

neighborhood of 0

VJ′ =
{
x ∈ k〈E〉

∣∣ |x| ∩ J ′ = ∅}, ∀J ′ ∈ F(E)⊥.

More precisely, a subset U of k〈E〉 is open if and only if for each x ∈ U there is
J ′x ∈ F(E)⊥ such that x + VJ′x ⊆ U . Endowed with this topology, k〈E〉 is a linearly
topologized space [7].
The category LinFin, with linear �niteness spaces as objects and linear continuous
functions as morphisms, is ∗-autonomous and provides a model of linear logic.
Though a linear �niteness space k〈E〉 is entirely determined by its underlying relational
space E, the constructions of linear logic can be described from an algebraic and topo-
logical viewpoint independent from E. Thus, forgetting the underlying relational layer,
linear �niteness spaces will be denoted by X, Y,. . .

We will now build X∞ using its dual since its functional de�nition is more intu-
itive. In LinFin, the dual space X⊥ = (X ( k) is the linearly topologized space of
continuous linear forms. This space is endowed with the topology of uniform conver-
gence on linearly compact subspaces, i.e. subspaces K ⊆ X that are closed and have a
�nitary support |K| := ∪x∈K |x|. This linearly compact open topology is generated by
W(K) = {f |f(K) = 0} where K ranges over linearly compact subspaces1.
Similarly, X⊗n ( k is the space of n-linear forms φ : X×n → k which are hypocon-

tinuous2, i.e. ∀K ⊆ X linearly compact, ∃V open s.t. ∀1 ≤ i ≤ n, φ(K×(i−1) × V ×
K×(n−i)) = 0. This space is endowed with the linearly compact open topology gener-
ated by W(K) = {φ |φ(K×n) = 0} where K ranges over linearly compact subspaces.
The dual Xn( k of the equalizer Xn of the n! symmetries is then the space of symmet-
ric n-linear forms which are hypocontinuous. It is endowed with the linearly compact
open topology. It can also be described as the space of homogeneous polynomials P of
degree n over X, i.e. P : X → k is associated to an hypocontinuous symmetric n-linear
form φ : X×n → k such that P (x) = φ(x, . . . , x).

1 Linear compactness can be de�ned adapting the intersection property to the linearly topol-
ogized setting [7]. We prefer their �nitary characterisation which is here more useful.

2 Hypocontinuity is a notion of continuity in between continuity and separated continuity



Finally, we combine the di�erent layers by taking the in�nite cartesian product. The
dual (&n∈NX

n) ( k is the space of polynomials (�nite linear combinations of ho-
mogeneous polynomials). In this linear �niteness space, a vector subspace V is open
if and only if for every n ∈ N, there is Kn ⊆ X linearly compact such that
{P ∈ Xn( k |P (Kn) = 0} ⊆ V .

However, as shown in [1], the dual !X ( k, is the completion of the space of
polynomials endowed with the linearly compact open topology. In this topology, a vector
subspace V is open if and only if there is a linearly compact subspace K ⊆ X such that
∀n, {P ∈ Xn( k |P (K) = 0} ⊆ V . In other words, the topology is uniform over the
di�erent layers. Thanks to the Taylor formula shown in [2], the functions in !X ( k

are analytic, i.e. they coincide with the sums of converging series whose n-th term is an
homogeneous polynomial of degree n.

Finally, using either combinatorial computations or topological viewpoint, we have
seen that !E is di�erent from &nE

n. Indeed, this latter is related to the local information
at each level n though the exponential modality is related to a global information. The
second formula (??) proposed in this article was a step towards understanding how the
di�erent layers combine to construct the exponential modality. Although it is su�cient
in coherence spaces and Conway games, it does not in the �niteness spaces where
in�nitely many layers are needed.
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Appendix 1: Coherence spaces

The coherence relation induces an incoherence relation ˚ de�ned by

e1 ˚ e2 ⇐⇒ ¬(e1 _̂ e2) or e1 = e2.

Finite product. The product E1 & E2 of two coherence spaces E1 and E2 is de�ned
by |E1 & E2| = |E1| ] |E2| and two elements (e, i) and (e′, j) of the web are coherent
when i 6= j or when i = j and e _̂ e′.

Tensor product. The tensor product E1 ⊗ E2 of two coherence spaces E1 and E2 is
de�ned by |E1 ⊗ E2| = |E1| × |E2| and two elements (e1, e2) and (e′1, e

′
2) are coherent

when
e1 _̂ e′1 and e2 _̂ e′2.

Linear implication. The linear implication E1 ( E2 of two coherence spaces E1 and
E2 is de�ned by |E1 ( E2| = |E1| × |E2| and two elements (e1, e2) and (e′1, e

′
2) of the

web are incoherent when
e1 _̂ e′1 and e2 ˚ e′2.

The category of coherence spaces. The category Coh of coherence spaces has co-
herence spaces as objects and cliques of E1 ( E2 as morphisms from E1 to E2. As the
web of E1 ( E2 is |E1| × |E2|, a morphism can be seen as a relation between |E1| and
|E2|, satisfying additional consistency properties. In particular, identity and composi-
tion are de�ned in the same way as identity and composition in the category of sets
and relations. This category is ∗-autonomous and provides a model the multiplicative
fragment of linear logic.

Appendix 2: Conway games

Proposition 1. The game A∞ is the free exponential of the negative Conway game A.

Proof. Instead of showing in two steps that A∞ is the limit of the diagram A and that
the tensor product distributes with this limit, we will directly show that X ⊗A∞ is the
limit of the diagram

X ⊗A : X X ⊗A
tA

oo X ⊗A⊗2

X⊗tA⊗A
oo

X⊗A⊗tAoo

X⊗symmetry

��
X ⊗A⊗3 · · ·

X⊗tA⊗A⊗2
oo ···
X⊗A⊗2⊗tAoo

X⊗symmetry

��

Let us de�ne a cone on the diagram X ⊗ A whose origin is X ⊗ A∞. We proceed by
de�ning a interleaving function from plays of A∞ to plays of An, and then by de�ning
a copycat strategy. Given a play s ·m of A∞, we de�ne

〈s ·m〉 = 〈s〉 ·m



wherem is the underlying move ofm in A. We then de�ne the strategy εn : A∞ → A⊗n

by its set of plays

εn
def= {s ∈ Playeven

A1
∞(A⊗n

2
| ∀t ≺even s , t|A1

∞ = 〈t|A⊗n
2
〉}.

The cone of X ⊗ A∞ on X ⊗ A is then given by the strategies X ⊗ εn. Note that
the scheduling of the opening of moves is enforced by the presence of symmetry in
the diagram. This explains why A∞ is not just the in�nite tensor product of A. Let
(B,α : B → A) be a cone on X ⊗A. We have to de�ne a strategy from B to X ⊗A∞.
Let us introduced the strategy in : X ⊗A⊗n → X ⊗A∞ which mimics Opponent on X
and on the n �rst copies of A, and which does not answer when Opponent opens the
n+1th copy of A∞. The strategy α†(n) is de�ned for all n by the commutative diagram

B
αn //

α†(n)

��

A⊗n

inzzuuuuuuuuu

A∞

Consider now the diagram

B αn+1
//

αn

''

α†(n+1)

��

A⊗n+1

in+1

��

A⊗n⊗tA
// A⊗n

in

��
A∞ A∞ A∞

It commutes on all faces except for the right down one which satis�es in ◦ (An ⊗ tB) ⊆
in+1. The clockwise external path is equal α†(n), so we deduce that

α†(n) ⊆ α†(n+1).

The comonoidal lifting α† is then de�ned by the monotone limit of the α†(n)'s:

α†
def=

⋃
n

α†(n)

This strategy is a cone morphism because εn ◦ in = An, which implies

εn ◦ α†(n) = εn ◦ in ◦ αn = αn.

It remains to show that this strategy is unique as a cone morphism. Let β be another
cone morphism from B to A∞. Let us de�ne

β(n) = in ◦ εn ◦ β

and remark the two following things

β(n) = α†(n) and β =
⋃
n

β(n).

We deduce that α† = τ , which concludes the proof.
We clearly have the symmetric property for the diagram A⊗X. By using this fact

for X = 1, we obtain that A∞ is the limit of the diagram A.



Appendix 3: Finiteness spaces

Constructions of linear logic in RelFin.

Orthogonal: Multiplicatives:

|E⊥| = |E| F(E⊥) = F(E)⊥
|1| = |⊥| = {∗} F(1) = F(⊥) = {∅, {∗}}

|E1 ` E2| = |E1 ⊗ E2| = |E1| × |E2|

Products and coproducts:

|0| = |>| = ∅ F(0) = F(>) = {∅}

|&iEi| = |⊕iEi| =
F

i|Ei|

F(⊕iEi) =


]j∈Juj s.t. J �nite
∀j ∈ J, uj ∈ F(Ej)

ff

F(&iEi) =


]iui s.t.
∀i ∈ I, ui ∈ F(Ei)

ff

F(E1 ` E2) =

8<:
R ⊆ |E1| × |E2| s.t.
∀u ∈ F(E1)

⊥, R · u ∈ F(E2)

∀v ∈ F(E2)
⊥, tR · v ∈ F(E1)

9=;
F(E1 ⊗ E2) =


w ⊆ |E1| × |E2| s.t. π1(w) ∈ F(E1)

π2(w) ∈ F(E2)

ff
where π1(w) := {x1 ∈ |E1| |∃x2 ∈ |E2|, (x1, x2) ∈ w}

π2(w) := {x2 ∈ |E2| |∃x1 ∈ |E1|, (x1, x2) ∈ w}

Exponentials:

|!E| = |?E| =Mfin(|E|) = {µ : |E| → N |µ(a) > 0 for �nitely many a ∈ |E|}
F(!E) = {M ⊆Mfin(|E|) | ∪{|µ|, µ ∈M} ∈ F(E)}

F(?E) =
n
M ⊆Mfin(|E|) |∀u ∈ F(E)⊥,Mfin(u) ∩M �nite

o
Example 1. Let Nat be the relational �niteness space whose web is the set of inte-
gers N and whose �niteness structure F(Nat) is the �nite powerset P�n(N). It is the
interpretation of (!1)⊥ in RelFin.

The �niteness spaces !Nat and Nat∞ have the same webMfin(N) but their �nitiness
structures are di�erent:

F(!Nat) =
{
M ⊆Mfin(N)

∣∣ πNat(M) �nite
}

=
{
M ⊆Mfin(N)

∣∣ ∃N ∈ N;M ⊆Mfin(0, . . . , N)
}
,

F(Nat∞) =
{
M ⊆Mfin(N)

∣∣ ∀n ∈ N, πNat(M ∩Mn
fin(N)) �nite

}
For instance, let us denote µn the multiset made of n copies of n andM = {µn |n ∈ N}.
We have M ∈ F(Nat∞) but M /∈ F(!Nat).

Similarly, Nat⊗Nat∞ and &n∈N(Nat⊗Natn) have the same web N×Mfin(N) but
di�erent �niteness structures:

F(Nat⊗ Nat∞) = {M ⊆ N×Mfin(N) |∃N ;M ⊆ {0, . . . , N} ×Mfin(0, . . . , N)} ,

F

(¯
n∈N

(Nat⊗ Natn)

)
=
{
M
∣∣∣ ∀n ∈ N, ∃Nn

Mn = M ∩ (N×Mn
fin(N)),

Mn ⊆ {0, . . . , Nn} ×Mfin(0, . . . , Nn).

}
.

For instance, let us denote M ′ = {(n, µn) |n ∈ N}. We have M ′ ∈ F(Nat⊗ Nat∞) but
M ′ /∈ F(&n∈N(Nat⊗ Natn).



Constructions of linear logic in LinFin.

Product and Coproduct. The coproduct X ⊕ Y of of linear �niteness spaces X and
Y is made of linear combinations of elements of X and Y and is endowed with the
product topology. Finite product coincide with �nite coproduct. However, the in�nite
coproduct ⊕iXi of the collection of �niteness space Xi is a strict subspace of the in�nite
product &iXi.

Linear implication. The linear implication X ( Y of two linear �niteness spaces X
and Y is the linearly topologized space of continuous linear functions endowed with the
topology of uniform convergence on closed spaces with �nitary support. This linearly

compact open topology is generated by

W(K,V ) = {f |f(K) ⊆ V }

where K ranges over linearly compact subspaces of k〈X〉, i.e. K is closed and |K| =
∪x∈K |x| is �nitary, and V ranges over fundamental neighbourhoods of 0.

Let ⊥ = k. The topological dual X⊥ = X ( ⊥ of X is endowed with the compact
open topology generated by W(K) = {x′ ∈ X⊥ | ∀x ∈ K, 〈x′, x〉 = 0} where K ranges
over linearly compact subspaces of X.

Inductive tensor product. An n-linear form φ : (Xi)i → k over linear �niteness
spaces (Xi)i≤n is hypocontinuous if for any (Ki) collection of linearly compact subspaces
of Xis (respectively), for any i0 there exists a fundamental linear neighborhood Ui0 such
that φ(×Xi) = 0 where Xi = Ki if i 6= i0 and Xi0 = Ui0 . The inductive tensor product

3

X ` Y of two linear �niteness spaces X and Y is the space of hypocontinuous bilinear
forms over X⊥ × Y ⊥, endowed with the linearly compact open topology generated by
W(K ′X ,K

′
Y ) = {φ |φ(K ′X ,K

′
Y ) = 0} where K ′X (resp. K ′Y ) range over linearly compact

subspaces of X ′ (resp. Y ′).

Tensor product. The tensor product k〈X〉 ⊗̃k〈Y 〉 of two linear �niteness spaces X
and Y is the dual of X⊥ ` Y ⊥. It is the topological completion of the algebraic tensor
product k〈X〉 ⊗ k〈Y 〉 endowed with the topology induced by (X⊥ ` Y ⊥)⊥.

Exponential modality. The linear �niteness space k〈!E⊥〉 coincides with the comple-
tion of the space of polynomial functions over k〈E〉 endowed with the linearly compact
open topology.

Example 2. The linear �niteness space associated with Nat is the space of �nite se-
quences, denoted k〈Nat〉 = k

(ω). Its topology is discrete since N ∈ F(Nat)⊥. We can
infer that the linearly compact subspaces are the �nite dimensional subspaces k(ω).
Hence, k〈Natn ( k〉 is the space of every symmetric n-linear forms or equivalently of
any homogeneous polynomial P : k(ω) → k of degree n.
The space k〈Nat∞( k〉 is made of every polynomials over k(ω). Its topology is gener-
ated by the fundamental system made of subspaces V such that ∀n ∈ Nat, there exists
a �nite dimensional Kn ⊆ k

(ω) such that Wn(Kn) =
{
P ∈ k〈Natn〉′

∣∣ P (Kn)
}
⊆ V .

3 X ` Y is an adaptation of the inductive tensor product ⊗ε to linearly topologized space.



The space k〈!Nat( k〉 is made of every formal sums of homogeneous polynomial (pos-
sibly in�nite). Its topology is generated by W(K) =

{
P ∈ k〈!E〉′

∣∣ P (K)
}
where K

ranges over �niteness subspaces.
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