
Probabilistic Coherent Spaces - a tutorial

DILL - CIRM, Marseille, May 2024

Christine Tasson

mailto:christine.tasson@isae-supaero.fr


Introduction

Probabilistic Programming



Sum of two Dice

Baudart, muPPL, https://github.com/gbdrt/mu-ppl, a PPL prototype in Python

def dice() → int:
a = sample(RandInt(1, 6), name=”a”)
b = sample(RandInt(1, 6), name=”b”)
return a + b

dice is a Random Variable whose semantics is a distribution over {2, . . . , 12}.
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Sum of two Dice

Baudart, muPPL, https://github.com/gbdrt/mu-ppl, a PPL prototype in Python

def dice() → int:
a = sample(RandInt(1, 6), name=”a”)
b = sample(RandInt(1, 6), name=”b”)
return a + b

with Enumeration():
dist: Categorical[float] = infer(dice)

dice is a Random Variable whose semantics is a distribution over {2, . . . , 12}.

JdiceK : N → R+

k 7→
6∑

a=1

6∑
b=1

1
361{a+b=k}
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Random Walk

def RandomWalk(n:int, p:float) → int:
if n == 0 :

return 0
else:

step = 1 if sample(Bernoulli(p)) else -1
return RandomWalk(n - 1, p) + step

Let RW be the Random Variable associated to RandomWalk(100, 0.3).
Its semantics is a distribution over N, with finite support.

JRWK : |int| → R+

k 7→ P(RW = k)
supp(JRWK) = {k | −100 ≤ k ≤ 100}.
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Monte-Carlo Simulation

The mean and the mass function of the distribution is approximated by 10 000 executions.

def RandomWalk(n:int, p:float) → int:
if n == 0 :

return 0
else:

step = 1 if sample(Bernoulli(p)) else -1
return RandomWalk(n - 1, p) + step

with ImportanceSampling(num_particles=10000):
RW: Categorical[float] = infer(RandomWalk, 100, 0.3)

Galton Board
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Monte-Carlo Simulation

The mean and the mass function of the distribution is approximated by 10 000 executions.

def RandomWalk(n:int, p:float) → int:
if n == 0 :

return 0
else:

step = 1 if sample(Bernoulli(p)) else -1
return RandomWalk(n - 1, p) + step

with ImportanceSampling(num_particles=10000):
RW: Categorical[float] = infer(RandomWalk, 100, 0.3) Approximated Mass Function

What is the exact distribution JRWK ∈ (R+)
N
?
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Stopping Time

def StoppingTime(p:float) → int:
time = 1
while sample(Bernoulli(p)):

time = time +1
return time

with ImportanceSampling(num_particles=10000):
ST: Categorical[float] = infer(StoppingTime, 0.5)

Approximated Mass Function

ST = StoppingTime(0.5) is a Random Variable whose semantics is a distribution over N, with
infinite support.

JSTK : |int| → R+

k 7→ P(ST = k)
supp(JSTK) = N.

What is its exact distribution JSTK ∈ (R+)
N
?
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Bayesian Network

Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference

P(S | C)

P(R | C)

P(W | S,R)∆

T F
[0.5 0.5]

[C\C⊗C T,T T,F F,T F,F

T 1 0 0 0
F 0 0 0 1

]

[C\S T F

T 0.1 0.9
F 0.5 0.5

]

[C\R T F

T 0.8 0.2
F 0.2 0.8

]


S,R\W T F

T,T 0.99 0.01
T,F 0.9 0.1
F,T 0.9 0.1
F,F 0 1


Cloudy

Sprinkler

Rain

Wet

P(C ) : |bool| = {T,F} → R+ P(S | C ) : |bool| × |bool| → R+

P(W ) = P(C ) ; ∆ ; ( P(S | C )⊗ P(R | C ) ) ; P(W | S ,R) 6
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Origins of Probabilistic Coherent Spaces



Origins of Probabilistic Coherent Spaces

Girard, “Normal functors, power series and λ-calculus”define Coherent Spaces, where values of

type A are given by a carrier |X | and a closed program ` t : A as a part JtK ∈ P(|X |).
An environment x : A ` s : 1 interacts deterministically with any closed program ` t : A when:

JsK⊥ JtK ⇐⇒ # JtK ∩ JsK ≤ 1.

Girard, “Between Logic and Quantic: a Tract” introduces Probabilistic Coherent Spaces, as a

generalization of Coherent Spaces where subsets are replaced by factors: JtK : |X | → R+. An

environment x : A ` s : 1 interacts probabistically with any closed program ` t : A when:

JsK⊥ JtK ⇐⇒
∑
x∈|X |

JtKx · JsKx ≤ 1.

Danos and Ehrhard, “Probabilistic coherence spaces as a model of higher-order probabilistic

computation”gives explicit definition of all Linear Logic connectors and fixpoint of types. It

studies mathematical properties of Probabilistic Coherent Spaces. It gives a model in Probabilistic

Coherent Spaces of pure lambda-calculus and PCF with binary choice and proves adequacy.
7



Probabilistic Coherent Spaces

Linear Category



Linear Category Pcoh (objects)

Orthogonality

Let I be countable and u, u′ ∈ (R+)
I
.

u ⊥ u′ ⇐⇒
∑
a∈I

uau
′
a ≤ 1

Definition

A Probabilistic Coherent Space (PCS) is a pair X = (|X | ,PX ) where |X | is a countable set and

PX ⊆ (R+)
|X |

satisfies

PX⊥⊥ = PX (equivalently, PX⊥⊥ ⊆ PX ) (Biorthogonality),

for each a ∈ |X | there exists u ∈ PX such that ua > 0 (Coverage),

for each a ∈ |X | there exists A > 0 such that ∀u ∈ PX ua ≤ A (Boundedness).
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Examples of Base Type

Product∣∣∣∣∣∏
i∈I

Xi

∣∣∣∣∣ =⋃
i∈I

{i}×|Xi | and P

(∏
i∈I

Xi

)
=
{
u | ∀i ∈ I u(i) ∈ PXi , where ∀a ∈ |Xi | u(i)a = u(i,a)

}
unit is interpreted as distributions over the singleton |1| = {∗} and P(1) = [0, 1] ⊆ R+.

Enumeration∣∣∣∣∣⊕
i∈I

Xi

∣∣∣∣∣ =⋃
i∈I

{i}×|Xi | and P

(⊕
i∈I

Xi

)
=

{
u | ∀i ∈ I u(i) ∈ PXi and

∑
i∈I

‖u(i)‖Xi ≤ 1

}

bool = 1⊕ 1. Booleans are interpreted as sub-probability distributions over booleans

|bool| = {T,F} and P(bool) = {aδT + bδF ∈
(
R+
){T,F} | a+ b ≤ 1}.
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Type Fixpoint

PCSs is a CPO with least element 0 with |0| = ∅ when ordered by

X ⊆ Y iff |X | ⊆ |Y | and PX = {v||X | | v ∈ PY }

int = 1⊕ int. Integers are interpreted as sub-probability distributions over integers

|int| = N and P(int) =

{∑
n∈N

xnδn |
∑
n∈N

xn ≤ 1

}
.
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Properties of PX

PX is unitary ‖u‖X ∈ [0, 1] for all u ∈ PX where the norm is defined as

‖u‖X = sup

∑
a∈|X |

uau
′
a | u′ ∈ PX⊥


PX is a cone

∀u, v ∈ PX ∀α, β ∈ R+ α+ β ≤ 1 ⇒ α u + β v ∈ PX .

PX is an ω-continuous domain where the partial order is defined as

u ≤ v iff ∀a ∈ |X | ua ≤ va ∈ R+.
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Back to the StoppingTime Example

def StoppingTime(p:float) → int:
time = 1
while sample(Bernoulli(p)):

time = time +1
return time

After k iterations,

JSTK1 = (1− p)δ1

JSTKk+1
t = p JSTKkt−1 + (1− p) JSTKkt

JSTK is the lub of the increasing sequence JSTKk in P(int) ⊆ (R+)
N
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Linear Category Pcoh (morphisms)

A morphism of PCSs from X to Y is a matrix t ∈ (R+)|X |×|Y | which maps PX to PY .

∀u ∈ PX t u ∈ PY ⇐⇒ ∀v ′ ∈ PY⊥ ,
∑

(a,b)∈|X |×|Y |

ta,buav
′
b ≤ 1 .

Identity

The diagonal matrix id ∈ (R+)|X |×|X |, given by ida,b = 1 if a = b and ida,b = 0 otherwise

Composition

Matrix multiplication, let s ∈ Pcoh(X ,Y ) and t ∈ Pcoh(Y ,Z )

(t s)a,c =
∑
b∈|Y |

sa,btb,c
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Back to a Bayesian Network example

P(S | C)

P(R | C)

P(W | S,R)∆

T F
[0.5 0.5]

[C\C⊗C T,T T,F F,T F,F

T 1 0 0 0
F 0 0 0 1

]

[C\S T F

T 0.1 0.9
F 0.5 0.5

]

[C\R T F

T 0.8 0.2
F 0.2 0.8

]


S,R\W T F

T,T 0.99 0.01
T,F 0.9 0.1
F,T 0.9 0.1
F,F 0 1


Cloudy

Sprinkler

Rain

Wet

P(C ) ∈ P(bool) ⊆ (R+)
|bool| P(S | C ) ∈ Pcoh(JboolK , JboolK) : (R+)

|bool|×|bool|

P(W ) = P(C ) ; ∆ ; ( P(S | C )⊗ P(R | C ) ) ; P(W | S ,R)
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Probabilistic Coherent Spaces

Pcoh is Symmetric Monoidal, Closed



Pcoh is Symmetric Monoidal Closed

Joint Distributions

if U is a random variable of distribution u ∈ (R+)
|X |

and V is a random variable of distribution

v ∈ (R+)
|Y |

, then the joint distribution u ⊗ v ∈ (R+)
|X |×|Y |

is given by:

(u ⊗ v)(a,b) = P(U ⊗ V = (a, b)) = P(U = a ∧ V = b) = ua vb

Tensor Product

|X ⊗ Y | = |X | × |Y | and P(X ⊗ Y ) = {u ⊗ v | u ∈ PX and v ∈ PY }⊥⊥

Associativity, Symmetry, unitor are morphisms of PCSs

Closed Structure

|X ( Y | = |X |×|Y | and P(X ( Y ) = Pcoh(X ,Y ) =
{
t ∈

(
R+
)|X |×|Y | | ∀u ∈ PX t u ∈ PY

}
Evaluation and Curryfication are morphisms of PCSs
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Fair Coin Example

def FairCoin(p:float) → bool:
a = sample(Bernoulli(p))
b = sample(Bernoulli(p))
if (a and not b):

return True
elif (b and not a):

return False
else:

return FairCoin(p)

with ImportanceSampling(num_particles=1000):
FC: Categorical[bool] = infer(FairCoin, 0.3)

FC is a fair coin !

Recursive equation (if p /∈ {0, 1}):

F (t) = p(1− p)(δT + δF)

+ (1− 2(p(1− p))) t

JFCK = 1
2 (δT + δF)

Pcoh is CPO enriched indeed, P(X ,Y ) = P(X ( Y ) is a CPO with 0 as least element.

16



Fair Coin Example

def FairCoin(p:float) → bool:
a = sample(Bernoulli(p))
b = sample(Bernoulli(p))
if (a and not b):

return True
elif (b and not a):

return False
else:

return FairCoin(p)

with ImportanceSampling(num_particles=1000):
FC: Categorical[bool] = infer(FairCoin, 0.3)

FC is a fair coin !

Recursive equation (if p /∈ {0, 1}):

F (t) = p(1− p)(δT + δF)

+ (1− 2(p(1− p))) t

JFCK = 1
2 (δT + δF)

Pcoh is CPO enriched indeed, P(X ,Y ) = P(X ( Y ) is a CPO with 0 as least element.
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Probabilistic Coherent Spaces

Exponential



The exponential comonad

Finite Multiset. If u ∈ (R+)
|X |

is a distribution, then u! ∈ (R+)
Mfin|X |

is defined by if

µ = [a1, . . . , ak ] and U1,. . . , Uk are i.i.d. of law u,

u!µ = P(U1 = a1 ∧ · · · ∧ Uk = ak) =
∏
a∈|X |

uµ(a)a

Definition

|!X | = Mfin|X | and P(!X ) =
{
u! | u ∈ PX

}⊥⊥

For t ∈ P(X ,Y ), the promotion t ! ∈ P(!X , !Y ) is defined such that

t !u! = (t u)!

Comonad: ! with counit derX ∈ P(!X ( X ) and comultiplication digX ∈ P(!X (!!X ).

Strong symmetric monoidal structure given by isomorphisms from (Pcoh,&) to (Pcoh,⊗),

m0 ∈ Pcoh(!>, 1) and m2 ∈ Pcoh(!(X&Y ), !X⊗!Y )
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Duplication and Eilenberg Moore Category

!X is the free Commutative Comonoid over X .

contr!X ∈ P(!X (!X⊗!X ) and weak!X ∈ P(!X ( 1)

Crubillé et al., “The Free Exponential Modality of Probabilistic Coherence Spaces”

A Coalgebra is a PCS P with h ∈ P(P (!P) compatible with the !-comonad structure.

Every coalgebra P comes with marginalization, duplication and erasure

πP ∈ P(P ⊗ Q ( P) and ∆P ∈ P(P ( P ⊗ P) and εP ∈ P(P ( 1)

Value types are interpreted as coalgebras

ϕ,ψ := unit |!σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Rec ζϕ
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Back to a Bayesian Network example

P(S | C)

P(R | C)

P(W | S,R)∆

T F
[0.5 0.5]

[C\C⊗C T,T T,F F,T F,F

T 1 0 0 0
F 0 0 0 1

]

[C\S T F

T 0.1 0.9
F 0.5 0.5

]

[C\R T F

T 0.8 0.2
F 0.2 0.8

]


S,R\W T F

T,T 0.99 0.01
T,F 0.9 0.1
F,T 0.9 0.1
F,F 0 1


Cloudy

Sprinkler

Rain

Wet

P(C ) ∈ P(bool) ⊆ (R+)
|bool| P(S | C ) ∈ Pcoh(JboolK , JboolK) : (R+)

|bool|×|bool|

P(W ) = P(C ) ; ∆ ; ( P(S | C )⊗ P(R | C ) ) ; P(W | S ,R)
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Probabilistic Coherent Spaces

Semantics of Probabilistic Programming



Pcoh models probabilistic programming

Syntaxes

Probabilistic Call-By-Push-Value.

General types σ, τ := ϕ | ϕ( σ

Value types ϕ,ψ := unit |!σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Rec ζϕ
Programs are typed in value contexts x1 : ϕ1, . . . , xk : ϕk ` M : σ

JtK ∈ P(P1 ⊗ · · · ⊗ Pk ( X ) where JϕiK = Pi are coalgebras and JσK = X

Probabilistic Call-By-Value. A → B encoded by !(A ( B).

Probabilistic Call-By-Name. A ⇒ B encoded by (!A) ( B.

Probabilistic PCF. Fixpoint operator: Y ∈ Pcoh!(X ⇒ X ,X )

Probabilistic Untyped Calculus. The reflexive object satisfies D =
(
!DN)⊥ .

Soundness

JMK =
∑
M′

P(M → M ′) JM ′K

20



Observational equivalence and Adequacy

Observational Distance For every ` M : σ and ` N : σ,

dobs(M,N) = sup {|P(CM ↓)− P(CN ↓)| | ` C :!σ ( unit}

Semantics Distance

dX(x , y) = ‖x − (x ∧ y)‖+ ‖(y − (x ∧ y))‖

Adequacy

If JMK = JNK, that is dJσK(JMK , JNK) = 0 then dobs(M,N) = 0

The converse is also true !

dJσK(JMK , JNK) = 0 iff dobs(M,N) = 0

Ehrhard, Pagani, and Tasson,“Full Abstraction for Probabilistic PCF”
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Metric Adequacy

Ehrhard, “Differentials and Distances in Probabilistic Coherence Spaces”

Amplification of Probability Take C = fix(λf . λx . if(Bernoulli(r),T, (f )x))

∀ε ∈ [0, 1] dobs(Bernoulli(0),Bernoulli(ε)) = 1

p-tamed observational distance C 〈p〉 = fix(λx . (C )if(Bernoulli(p), x ,Ω))

d
〈p〉
obs(M,N) = sup

{∣∣∣P(C 〈p〉M ↓)− P(C 〈p〉N ↓)
∣∣∣ | ` C :!σ ( unit

}
Metric Adequacy d

〈p〉
obs(M,N) ≤ p

1−p dJσK(JMK , JNK)

Thus

d
〈p〉
obs(Bernoulli(0),Bernoulli(ε)) ≤ pε

1− p
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Probabilistic Coherent Spaces

Non-Linear Category



Non-Linear Category

Kleisli Category Pcoh! with PCSs as objects and morphisms Pcoh!(X ,Y ) = Pcoh(!X ,Y ).

Taylor Expansion. t ∈ Pcoh!(X ,Y ) iff t ∈ (R+)
Mfin(X )×Y

and

∀u ∈ P(X ) t(u) = t u! =

 ∑
µ∈Mfin(X )

tµ,b
∏
a∈|X |

uµ(a)a


b∈|Y |

∈ P(Y )

Non Definable morphisms

Pcoh(!bool, 1) =
{
Q ∈

(
R+
)MfinT,F | QTn,Fm ≤ (n +m)n+m

nnmm

}
and max. coeff.

(n +m)!

n!m!

Fully Abstract.

Pcoh(!1, 1) =
{
q ∈

(
R+
)N | ∀x ∈ [0, 1]

∑
qnx

n ∈ [0, 1]
}

if JMK 6= JNK, build testing terms such that Jλx .C (x)M :!1 ( 1K and Jλx .C (x)N :!1 ( 1K are

power series of with different coefficients, then there is p ∈ [0, 1] on which they differ.
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Yet, Pcoh is not a model of DILL

Cocontraction is not a PCSs morphism If f ∈ Pcoh!(X ,Y ), and u, v ∈ P(X ), we cannot

ensure that f (u + v) ∈ P(Y )

No global derivative: Pcoh!(1, 1) are entire series defined on [0, 1] and not necessarily

derivable at 1.

Example: Mr = fix(λf . λx . if(Bernoulli(r), (f )x ; (f )x , x ; x)).

ϕ(r)(u) = JMr K (u) =
∑
n

an(r)u
n

ϕ(r)(1) = P(M ⇓) is the termination probability by adequacy.

The termination time conditioned to convergence can be computed by ϕ′(r)(1)
ϕ(r)(1)

But if r = 0.5, then ϕ(r) is not derivable at u = 1, as

∀u ∈ [0, 1]ϕ(0.5)(u) = 1−
√

1− u2
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Fortunately, a notion of Derivative

Local PCSs let x ∈ PX , the local PCS Xx is given by

|Xx | = {a ∈ |X | | ∃ε > 0x + εδa ∈ PX} and P(Xx) = {u ∈ PX | x + u ∈ PX}

Local Derivative if x + u ∈ PX and t ∈ Pcoh!(X ,Y ) then t(x + u) ∈ PY

t(x + u) =
∑
µ

tµ∈Mfin|X |(x + u)µ ∈ PY = t(x) +
∑
a∈|X |

ua
∑

ν∈Mfin|X |

(ν(a) + 1)tν+[a],bx
ν + . . .

Local Derivative define t ′ ∈ Pcoh!(Xx ,Yt(x))

t ′(x)a,b =
∑

ν∈Mfin|X |

(ν(a) + 1)tν+[a],bx
ν

Chain Rule (t ◦ s)′(x)(u) = t ′(s(x)) s ′(x)u

Ehrhard, “Differentials and Distances in Probabilistic Coherence Spaces”
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Take Home

A model of higher order probabilistic programming with discrete probabilities.

A fully abstract model of Linear Logic with Taylor expansion, but not of DILL.

A model of local differentiation

At the origin of Coherent Differentiation

More on this subject is coming this week.
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