
The Topology of Asynchronous Byzantine Colorless

Tasks

Hammurabi Mendesa, Christine Tassonb, and Maurice Herlihy∗a

a Computer Science Dept., Brown University, Providence, RI, USA,
{hmendes,mph}@cs.brown.edu

b Univ. Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205, Paris,
France, Christine.Tasson@pps.univ-paris-diderot.fr

Contact: Hammurabi Mendes <hmendes@cs.brown.edu>
Address: Box 1910, Computer Science Department, Brown University

115 Waterman Street
Providence RI 02906, USA

Telephone: +1 (401) 580 3458

Abstract

In this paper, we extend the topological model that characterizes task solvability in crash-
failure systems to colorless tasks in Byzantine asynchronous systems. We give the first theorem
with necessary and sufficient conditions to solve arbitrary colorless tasks in such model, cap-
turing the relation between the total number of processes, the number of faulty processes, and
the topological structure of the task’s simplicial complexes. In the interim, we provide novel
asynchronous protocols for k-set agreement and barycentric agreement with optimal Byzantine
fault tolerance.

Regular submission.

Please consider for student paper award: Hammurabi Mendes is a full-time student.

∗Supported by NSF 000830491.

1 Introduction

A task is a distributed coordination problem in which each process starts with a private input from
a finite set, communicates with other processes, and eventually decides on a private output, also
from a finite set.

One of the central questions in distributed computing is characterizing which tasks can be
solved in which models of computation. Tools adapted from combinatorial topology have been
successful in characterizing task solvability in synchronous and asynchronous crash-failure models
[16], where faulty processes simply halt and fail silently. In this paper, we extend the approach to the
asynchronous Byzantine model, where communication has unbounded delay and faulty processes
can display arbitrary behavior.

We focus on an important class of tasks called colorless tasks [4], which includes well-studied
problems such as consensus [9], k-set agreement [8], and approximate agreement [1]. As explained
more formally below, a colorless task is one that can be defined entirely in terms of sets of input
and output values assigned, without the need to specify which value is assigned to which process,
or how many times an assigned value appears1.

1.1 Our Contributions

Our first contribution is to extend the application of the topological model from [16], formerly
used to characterize solvability in crash-failure systems, to colorless tasks in asynchronous Byzantine
systems. This approach leads to novel conclusions, suggesting that the model is well-suited and
robust among a multitude of communication and failure abstractions. Besides, it opens up new
questions, such as how to further extend the application to colored tasks, as well as other timing
models. Background information on the topological model in distributed computing is presented
in Sec. 2.

Our second contribution is to give new protocols for k-set agreement and barycentric agree-
ment in the Byzantine-failure model. It is well-known that asynchronous Byzantine consensus is
impossible [9], as well as wait-free asynchronous set-agreement [4, 16, 21]. Our protocols limn the
boundary between the possible and impossible in the presence of Byzantine failures. Using powerful
algorithmic tools, presented in Sec. 3, our k-set agreement and barycentric agreement protocols,
which are discussed in Sec. 4, will provide the appropriate support for our main theorem.

Finally, our principal contribution is to give the first theorem with necessary and sufficient
conditions to solve non-trivial colorless tasks in the asynchronous Byzantine model. The task
itself is defined in terms of a pair of combinatorial structures called simplicial complexes [20, 18].
Whether a task is solvable is equivalent to the existence of a certain structure-preserving map
between the task’s simplicial complexes. This equivalence captures the relation between n+1, the
number of processes, t, the number of failures, and the topological structure of the task’s simplicial
complexes2. While an analogous characterization has long been known for crash failures [16], our
solvability theorem, presented in Sec. 5, is the first such characterization for Byzantine failures.

1 The renaming task [2] is an example of a task that is not colorless, as each process chooses a distinct name.
2 Our results extend to the core/survivor-set model [17] (Appendix C).

1

2 Topological Model

We now overview some important notions from combinatorial topology, and describe how they are
applied to model concurrent computation. For details, please refer to Munkres [20] or Kozlov [18].

2.1 Combinatorial Tools

A simplicial complex is a finite set V along with a collection of subsets K of V closed under
containment. An element of V is a vertex of K. Each set in K is called a simplex, usually denoted
by lower-case Greek letters: σ, τ . A subset of a simplex is called a face. The dimension dim(σ) of
a simplex σ is |σ|− 1. We use “k-simplex” as shorthand for “k-dimensional simplex”, and similarly
for “k-face”. The dimension dim(K) of a complex is the maximal dimension of its simplices. The
set of simplices of K of dimension at most ℓ is a subcomplex of K, which is called ℓ-skeleton of K,
denoted by skelℓ(K).

Let K and L be complexes. A vertex map f carries vertices of K to vertices of L. If f additionally
carries simplices of K to simplices of L, it is called a simplicial map. A carrier map Φ from K to
L takes each simplex σ ∈ K to a subcomplex Φ(σ) ⊆ L, such that for all σ, τ ∈ K, we have that
Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ). A simplicial map ϕ : K → L is carried by the carrier map Φ : K → 2L if,
for every simplex σ ∈ K, we have ϕ(σ) ⊆ Φ(σ).

Although we defined simplices and complexes in a purely combinatorial way, they can also be
interpreted geometrically. An n-simplex can be identified with the convex hull of (n+ 1) affinely-
independent points in the Euclidean space of appropriate dimension. This geometric interpretation
can be extended to complexes. The point-set underlying such geometric complex K is called its
polyhedron, and is denoted |K|.

We can define simplicial and carrier maps in geometrical complexes. Given a simplicial map
ϕ : K → L (resp. carrier map Φ : K → 2L), the polyhedrons of every simplex in K and L
induce a continuous simplicial map ϕc : |K| → |L| (resp. continuous carrier map Φc : |K| → |2L|).
Furthermore, we say that ϕ (resp. ϕc) is carried by Φ if, for every simplex σ ∈ K, we have that
|ϕ(σ)| ⊆ |Φ(σ)| (resp. ϕc(|σ|) ⊆ Φc(|σ|)).

2.1.1 Simplicial Approximations

For any simplex σ, the boundary of σ, denoted ∂ σ, is the simplicial complex of proper faces of σ.
The interior of σ is formally defined as Intσ = |σ| \ | ∂ σ|. The open star of σ ∈ A, denoted Ostσ,
is the union of the interiors of all simplices in A containing σ. See Fig. 1.

A

v

Intσ∂ σ

Thursday, May 9, 13

Figure 1: The interior and boundary of
a 2-simplex σ, and the open star of a
0-simplex {v} ⊆ A.

Intuitively speaking, given a continuous map, a simplicial approximation is a “sufficiently close”
combinatorial counterpart. We define it formally below.

2

Definition 2.1. A simplicial map µ : K → L is a simplicial approximation of Φc : |K| → |L| if

Φc(| Intσ|) ⊆
∩
v∈σ
|Ostµ(v)| = |Ostµ(σ)|, for all σ ∈ K.

We introduce new concepts in order to define the conditions for the existence of a simplicial
approximation. A subdivision of a complex A is a complex B such that: (i) for any τ ∈ B, |τ |
is contained in the polyhedron of some σ ∈ A. (ii) for any σ ∈ A, |σ| is the union of disjoint
polyhedrons of simplices belonging to B. We understand the subdivision as an operator Div over
complexes. A mesh-shrinking subdivision DivA of A is one such the longest polyhedron of an edge
in DivA (i.e., a 1-simplex in skel1(DivA)) is strictly smaller than the corresponding one in A 3.

Theorem 2.2. (Simplicial Approximation Theorem [20]) Given a continuous map Φc : |K| → |L|,
and any mesh-shrinking subdivision operator Div, there is an N > 0 such that Φc has a simplicial
approximation µ : DivN K → L.

2.1.2 Connectivity

We say that a simplicial complex K is x-connected if every continuous map of a x-sphere in |K|
can be extended into the continuous map of a (x+1)-disk in |K|. In analogy, think of a pencil as a
1-disk, and its extremes as a 0-sphere; a coin as a 2-disk, and its border as a 1-sphere; a billiard ball
as a 3-disk, and its outer layer as a 2-sphere. In addition, (−1)-connected is defined as non-empty.

Fact 2.3. [20] For any k-simplex σ, the boundary of σ is homeomorphic to a (k− 1)-sphere, and σ
is homeomorphic to a k-disk.

2.2 Model for Concurrent Computation

We now present a simplified version of the general combinatorial model of [10, 11, 13, 14, 16] that
is specially suitable for colorless tasks. We initially describe our operational context.

We have n+1 sequential processes4, P0, . . . , Pn, that communicate via message-passing through
a fully-connected, asynchronous network of reliable FIFO channels. Every message sent is eventually
delivered after a finite, but unbounded delay, with the message’s sender reliably identified. Processes
are asynchronous as well, having no bound on their relative speed. Up to t processes might be
faulty, displaying arbitrary, “Byzantine” behavior. We abstract the asynchronous communication
in discrete rounds of related messages, in a full-information protocol.

2.2.1 Colorless Tasks

An initial configuration is an assignment of input values to processes, and a final configuration is
the analogous for output values. A task specification consists of a set of legal initial configurations,
and, for each of them, its corresponding set of legal final configurations.

A colorless task [14, 5] is a triple (I,O,∆), where I is the input complex, O is the output
complex, and ∆ : I → 2O is a carrier map. Each vertex in I is an input value, and each simplex
is an initial configuration with possible initial configurations closed under inclusion. The output

3 Intuitively, we are effectively shrinking the borders of the simplexes.
4 Choosing n+1 processes rather than n simplifies the topological notation but slightly complicates the computing

notation. Choosing n processes makes the opposite trade-off. We choose n+ 1 for compatibility with prior work.

3

complex is analogous in regard to final configurations. Given an initial configuration, the carrier
map ∆ specifies which final configurations are legal.

With colorless tasks, input and output simplexes represent sets of input and output values, held
by the processes in the appropriate initial/final configuration. Such sets are closed under inclusion,
that is, if σ represents a valid initial or final configuration, so is any face τ ⊆ σ. The admissible
sets of output values depend solely on the starting set of input values picked by processes.

Indeed, in k-set agreement [8], which is colorless, a process can adopt the input of any other
process, or two processes can exchange their inputs, and the initial configuration remains valid,
and similarly for outputs. Conversely, in renaming [2], which is colored, the specific input/output
assignments cannot be manipulated in such ways5.

To illustrate the relation between the carrier map and the task specification, in binary consensus
the input complex I has two vertices, labeled 0 and 1, joined by an edge, and the output complex
O has two isolated vertices, labeled 0 and 1. The carrier map ∆ sends each vertex of I to the
output vertex with the same label, and the edge of I to both vertices of O.

2.2.2 Byzantine Colorless Tasks

In our model for Byzantine colorless tasks, we require that outputs of non-faulty processes depend
solely on inputs of non-faulty processes. We formalize the concept below.

For any non-faulty process Pi, its input is denoted Ii and its output is denoted Oi. The set
of non-faulty inputs is defined as σI = {Ii : Pi is non-faulty}, and the set of non-faulty outputs is
defined as σO = {Oi : Pi is non-faulty}. A Byzantine colorless task requires that

σO ∈ ∆(σI). (1)

In other words, the admissible non-faulty output sets depend solely on the starting non-faulty input
set held by non-faulty processes. So, we only care about inputs and outputs of non-Byzantine
processes, and Byzantine inputs do not “influence” outputs of non-Byzantine processes.

We model such requirement by making our task specification (I,O,∆) constrain the behavior
of non-faulty processes only. Now, initial and final configurations refer to non-faulty processes,
and inputs and output simplexes represent non-faulty input and output sets, as defined before.
Conceptually, non-faulty processes start on vertices of a simplex σ in I, and halt on vertices of a
simplex τ ∈ ∆(σ). Multiple non-faulty processes may start on the same input vertex and halt on
the same output vertex.

Therefore, the same task definition triple (I,O,∆) is used both for crash and Byzantine failure
models, with the nature of the failures affecting only protocols (algorithms), but not specifications
(models) – failures only alter the specification scope, but not its definition. Perhaps contrary to
intuition, we extend the model to Byzantine tasks by constraining the specification semantics to
non-faulty processes only.

2.2.3 Protocols and Complexes

Informally, we abstract protocols as continuous exchanges of internal states, in a full-information
fashion [15]. Given a model for communication and failures, we can define a protocol complex P(I)
for any task (I,O,∆). A vertex in v ∈ P(I) is a tuple with a non-faulty process identifier and

5 If one process adopts the output of another process, the output configuration becomes forbidden.

4

its final state. A simplex σ = {(Q1, s1), . . . , (Qx, sx)} in P(I) indicates that, in some execution,
non-faulty processes Q1, . . . , Qx finish with states s1, . . . , sx, respectively. The formal definition of
protocol is identical to [14], here presented for completeness:

Definition 2.4. A protocol for (I,O,∆) is a carrier map P taking σ ∈ I to a protocol complex
denoted P(σ) ⊆ P(I). For any σ, τ ∈ I, we have that P(σ ∩ τ) = P(σ) ∩ P(τ).
Definition 2.5. A protocol P solves (I,O,∆) if there exists a simplicial map δ : P(I)→ O carried
by ∆.

3 Basic Algorithmic Tools

In this work, we use two well-known constructions from prior work: reliable broadcast [6, 22, 3, 7]
and stable vectors [2]. In the following sections, we overview these primitives, and define our concept
of quorum that underlies our algorithms for Byzantine colorless tasks.

3.1 Reliable Broadcast

The reliable broadcast technique forces Byzantine processes to communicate consistently with other
processes. Communication is organized in asynchronous rounds, where a round may involve several
message exchanges. Messages have the form (P, r, c), where P is the sending process, r is the
current round, and c is the actual content. Messages not conforming to this structure can safely
be discarded. The technique, which works as long as n > 3t, guarantees the following [6, 22, 3, 7]:

Non-Faulty Integrity: If a non-faulty P never reliably broadcasts (P, r, c), no non-faulty process
ever reliable receives (P, r, c).

Non-Faulty Liveness: If a non-faulty P does reliably broadcast (P, r, c), all non-faulty processes
will reliably receive (P, r, c) eventually.

Global Uniqueness: If two non-faulty processes Q and R reliably receive, respectively, (P, r, c)
and (P, r, c′), then the messages are equal (c = c′), even if the sender P is Byzantine.

Global Liveness: For two non-faulty processes Q and R, if Q reliably receives (P, r, c), then R
will reliably receive (P, r, c) eventually, even if the sender P is Byzantine.

For completeness, we provide the algorithms in Appendix A. Here, P.RBSend(M) denotes the
reliable broadcast of message M by process P , and P.RBRecv(M) the reliable receipt of M by P .

3.2 Quorums

LetMr be the set of all messages reliably broadcast by all processes during a discrete round r, and
let M r

i ⊆Mr be the subset reliably received by a non-faulty process Pi. By the global uniqueness
of the reliable broadcast, if (P, r, c) and (P ′, r′, c′) are distinct messages in M r

i then the senders are
distinct: P ̸= P ′. Furthermore, by definition of M r

i , we have that r = r′. Let Good(Mr) denote
the set of distinct message contents inMr that were reliably broadcast by the non-faulty processes.

Definition 3.1. We say that a content c has a quorum in M r
i , written c ∈ Quorum(M r

i), if c was
reliably received in M r

i from t+ 1 or more different processes.

5

For any M ⊆Mr, we know that Quorum(M) ⊆ Good(Mr): if Pi obtained a quorum for c, Pi

becomes aware that c was sent by a non-faulty process. Conversely, any content received from less
than t+1 processes cannot be “trusted” – recall that non-faulty process outputs must depend only
on non-faulty process inputs.

Algorithm 1 shows the procedure by which non-faulty processes get a set of messages containing
a quorum in a communication round r. It works as long as n + 1 > t ·max {3, |Good(Mr)|+ 1}.
We denote by M r

i the set M received by process Pi at round r.

Algorithm 1 P.RecvQuorum(r)

Require: n+ 1 > t ·max {3, |Good(Mr)|+ 1}
1: M ← ∅
2: while |M | < (n+ 1)− t or Quorum(M) = ∅ do
3: upon RBRecv((Q, r, c)) do
4: M ←M ∪ {(Q, r, c)}
5: return M

Informally, the procedure eventually finishes since all (n+1)− t non-faulty processes eventually
show up, and, since (n+ 1)− t > t · |Good(Mr)|, some value will appear t+ 1 or more times. The
following properties, formally proved in in Appendix B, present the guarantees of the algorithm.

Property 3.2. If n+ 1 > t ·max {3, |Good(Mr)|+ 1}, then RecvQuorum(r) eventually returns, and,
for any non-faulty process Pi,

|M r
i | ≥ (n+ 1)− t and Quorum(M r

i) ̸= ∅.

Property 3.3. After RecvQuorum(r), any two non-faulty processes Pi and Pj have |M r
i \M r

j | ≤ t.

3.3 Stable Vectors

Algorithm 1 ensures that any two non-faulty processes Pi and Pj collect at least n+1−2t messages
in common. Indeed, |M r

i | ≥ (n+1)−t by Property 3.2 and |M r
i \M r

j | ≤ t by Property 3.3, therefore
|M r

i ∩M r
j | ≥ (n+ 1)− 2t.

In Algorithm 2, we adapt the stable vectors technique presented in [2] to ensure that the two
non-faulty processes Pi and Pj have (n+1)−t messages in common in M r

i and M r
j , with a common

value in Quorum(M r
i ∩M r

j) and with sets of messages totally ordered by containment. Since we
use the RecvQuorum() procedure, it requires that n+ 1 > t ·max {3, |Good(Mr)|+ 1},

The technique works as follows. (1) P uses RecvQuorum() to obtain a set of messages M with
Quorum(M) ̸= ∅. (2) P reliably transmits its report, containing those messages. (3) Any further
message reliably received in M causes P to reliably broadcast an updated report of M . (4) P keeps
reliably receiving reports, stored in a vector R, until it identifies (n+ 1)− t buddies in B, where a
buddy is a process Pj whose last report Rj is M . (5) P decides, but keeps updating M and sending
updated reports in the background (Algorithm 3).

The following lemmas (proved in Appendix B) show that the procedure terminates, and give
the stable vector properties. Intuitively, any two non-faulty processes identify a common non-faulty
buddy, which reliably broadcasts monotonically increasing reports, guaranteeing the properties.

Lemma 3.4. For any non-faulty process Pi, the sequence of transmitted reports is monotonically
increasing. All other non-faulty processes receive those reports in such order.

6

Algorithm 2 P.RecvStable(r)

Require: n+ 1 > t ·max {3, |Good(Mr)|+ 1}
1: M,B ← ∅
2: R[x]← ∅ for all 0 ≤ x ≤ n
3: M ← RecvQuorum(r)
4: RBSend((P, r{report},M))
5: while |B| < (n+ 1)− t do
6: upon RBRecv((Pj , r, c)) do
7: M ←M ∪ {(Pj , r, c)}
8: RBSend((P, r{report},M))

9: upon RBRecv((Pj , r{report}, Rj)) do
10: R[j]← Rj

11: B ← {Px : R[x] = M, 0 ≤ x ≤ n}
12: return M ▷ while activating RSEcho(M, r)

Algorithm 3 P.RSEcho(M, r)

1: upon RBRecv((Q, r, c)) do
2: M ←M ∪ {(Q, r, c)}
3: RBSend((P, r{report},M))

Lemma 3.5. RecvStable(r) eventually returns.

Lemma 3.6. After RecvStable(r), any two non-faulty processes Pi and Pj satisfy the following: (i)
|M r

i ∩M r
j | ≥ (n+ 1)− t; (ii) Quorum(M r

i ∩M r
j) ̸= ∅; and (iii) M r

i ⊆M r
j or M r

j ⊆M r
i .

4 k-Set Agreement and Barycentric Agreement

Our solvability theorem for colorless tasks builds on two novel asynchronous Byzantine protocols:
k-set agreement [8], and barycentric agreement [16], which depend, in turn, on our previous com-
munication primitives. We describe the protocols in the following sections.

4.1 k-Set Agreement

In the k-set agreement task [8], processes decide up to k values originally input. In our model,
non-faulty processes start on vertices of a simplex σ and halt on vertices of a simplex of skelk−1(σ).
Informally, they decide on up to k values originally input by non-faulty processes.

Algorithm 4 P.KSetAgree(v)

Require: k > t and n+ 1 > t(d+ 2), with dim(I) = d > 0.
1: RBSend((P, 1, v))
2: M ← RecvQuorum(1)
3: return least-ranked element in Quorum(M)

Algorithm 4 shows a k-set agreement protocol assuming that k > t and n+ 1 > t(d+ 2), with

7

dim(I) = d > 0. Since at most d+1 distinct values are reliably broadcast by non-faulty processes,
|Good(M1)| ≤ d+ 1, and Algorithm 1 becomes applicable as n+ 1 > t ·max {3, |Good(M1)|+ 1}.
Lemma 4.1. Algorithm 4 solves the k-set agreement problem for Byzantine colorless tasks.

Proof. Non-faulty processes decide values in Quorum(M) ⊆ Quorum(M1) ⊆ Good(M1). For any
non-faulty process Pi, |M | ≥ (n+ 1)− t and Quorum(M) ̸= ∅ (Property 3.2), so

|M1 \M | ≤ t⇒ |Quorum(M1) \Quorum(M)| ≤ t.

Therefore, Pi misses up to t decidable values in Quorum(M1), so Pi’s decision is among the (t+1)
least-ranked elements. Since Pi was taken arbitrarily, all non-faulty processes decide similarly, and
the claim follows because k ≥ t+ 1.

4.2 Barycentric Agreement

The barycentric subdivision of simplex σ is constructed, informally speaking, by subdividing σ
along the barycenters of its faces, as shown in Figure 2. Formally, the barycentric subdivision of
σ is a simplicial complex Bary σ whose vertices are faces of σ, and whose simplices are chains of
distinct faces totally ordered by containment. Every m-simplex τ ∈ Bary σ might be written as
{σ0, . . . , σm}, where σ0 ⊂ · · · ⊂ σm ⊆ σ.

Figure 2: Barycentric subdivision of σ = {v0, v1, v2},
and one of its simplices {{v0}, {v0, v1}, {v0, v1, v2}}.

In the barycentric agreement task, non-faulty processes start on vertices of a simplex σ and halt
on vertices of a simplex in Bary σ. Formally, for each σ ∈ I, we have ∆(σ) = Bary σ.

Algorithm 5 shows a barycentric agreement protocol assuming that n + 1 > t(d + 2), with
dim(I) = d > 0. Since at most d+1 distinct values are reliably broadcast by non-faulty processes,
|Good(M1)| ≤ d+ 1, and Algorithm 2 becomes applicable as n+ 1 > t ·max {3, |Good(M1)|+ 1}.

Algorithm 5 P.BaryAgree(v)

Require: n+ 1 > t(d+ 2), with dim(I) = d > 0.
1: RBSend((P, 1, {v}))
2: M ← RecvStable(1)
3: return Quorum(M)

Lemma 4.2. Algorithm 5 solves the barycentric agreement problem for Byzantine colorless tasks.

Proof. By Lemma 3.6, for any two non-faulty processes Pi and Pj , we have that Mi ⊆ Mj or
Mj ⊆ Mi, and also that Quorum(Mi ∩Mj) ̸= ∅. Therefore, Quorum(Mi) ⊆ Quorum(Mj) or
Quorum(Mj) ⊆ Quorum(Mi), implicating that the decided values, which are faces of σ, are totally
ordered by containment.

8

5 The Solvability Theorem

In this section we present our main theorem. We first clarify which tasks are deemed trivial, and
later characterize the solvability of non-trivial Byzantine colorless tasks.

Informally, a task is trivial if all non-faulty processes can choose an output directly from their
own inputs, without communicating with any other processes. Formally, (I,O,∆) is trivial if there
is a simplicial map δ : I → O carried by ∆. In non-trivial tasks, non-faulty processes cannot decide
solely based on their own inputs: some non-faulty process must become aware of inputs from other
non-faulty processes. Our Byzantine model requires t + 1 processes granting the existence of the
input before it is “learned”:

Definition 5.1. A process P learns a value v if it receives t+1 messages m1, . . . ,mt+1 from different
processes, with mi granting pi as having input v (pi ̸= pj when i ̸= j).

We now proceed with our main solvability theorem.

Theorem 5.2. A non-trivial colorless task (I,O,∆) has a t-resilient protocol in the asynchronous
Byzantine model if and only if

1. n+ 1 > t(dim(I) + 2) and

2. there is a continuous map f : | skelt(I)| → |O| carried by ∆.

Proof. Conditions imply protocol. Say that the map f exists. By the simplicial approximation
theorem [20, 18] (shown in Theorem 2.2), f has a simplicial approximation ϕ : BaryN skelt(I)→ O,
for some N > 0, also carried by ∆. The protocol for non-faulty processes is shown below, presuming
that n+ 1 > t(dim(I) + 2) with dim(I) > 0.

1. Execute the Byzantine k-set agreement protocol, for k = t+1, choosing vertices on a simplex
in skelt(I).

2. Execute the Byzantine barycentric agreement protocolN times, choosing vertices on a simplex
in BaryN skelt(I).

3. Apply ϕ : BaryN skelt(I)→ O to choose vertices on a simplex in O.

Since ϕ and f are carried by ∆, non-faulty processes starting on vertices of σI ∈ I finish on vertices
of σO ∈ ∆(σ). Also, since 1 ≤ dim(σI) ≤ dim(I), by definition, the preconditions are satisfied for
calling the protocols in steps (1) and (2).
Protocol implies conditions. Say that the protocol exists.

Condition (1). Assume, for the sake of contradiction, that n+1 ≤ t(dim(I)+2). Consider an
execution where Byzantine processes never send messages, and the (n+1)− t non-faulty processes
start on vertices of an arbitrary σ ∈ I, with dim(σ) = dim(I). Furthermore, say that less than
t+1 non-faulty processes input any particular vertex of σ, since (n+1)− t ≤ t(dim(I)+ 1) = t|σ|.
However, no process can learn any value in this case, by Definition 5.1, and since we presumed
a protocol solving (I,O,∆), we must have a simplicial map δ : I → O carried by ∆. The map
contradicts the fact that (I,O,∆) is non-trivial, so we must have n+ 1 > t(dim(I) + 2).

Condition (2). We argue by reduction to the crash-failure case. Note that any t-resilient
Byzantine protocol is also a t-resilient crash-failure protocol for colorless tasks. From [12, 15]6, for

6 These papers characterize connectivity in terms of c, the minimum core size, as defined by Junqueira and
Marzullo [17]. For t-resilient tasks in the crash-failure model, t = c+ 1. See also Appendix C.

9

any σ ∈ I, the protocol complex P(σ) is (t− 1)-connected in the crash-failure model, so, in light of
the previous observation, it is also (t−1) connected in the Byzantine-failure model. This implicates
that skelx(P(σ)) is (x − 1)-connected for 0 ≤ x ≤ t. We will inductively construct a sequence of
continuous maps gx : | skelx(I)| → |P(skelx(I))|, considering 0 ≤ x ≤ t, mapping skeletons of I to
skeletons of P(I).

Base. Let g0 map any vertex v ∈ σ to any vertex v′ ∈ P(v), which exists because skelx(P(v))
is (−1)-connected by hypothesis. We just constructed g0 : | skel0(I)| → |P(skel0(I))|.

Induction Hypothesis. Assume

gx−1 : | skelx−1(I)| → |P(skelx−1(I))|,

with x ≤ t, sending the geometrical boundary of a x-simplex σx in skelx(I) to |P(skelx−1(σx))|.
Formally, gx−1(| ∂ σx|) ⊆ |P(skelx−1(σx))|. By hypothesis, P(σx) is x-connected, so the continuous
image of the (x− 1)-sphere | ∂ σx| could be extended to a continuous x-disk |σx|, defining gx such
that gx(|σx|) ⊆ |P(skelx(I))|. As all such maps agree on their intersections, in light of definition 2.4,
we just constructed

gx : | skelx(I)| → |P(skelx(I))| ⊆ |P(I)|.

As we assumed a protocol solving (I,O,∆), we have a simplicial map δ : P(I) → O carried
by ∆ (given by definition 2.5). Our map is induced by the composition gt ◦ δ. For details, on the
induced composition, see [20, 18].

We note that the barycentric agreement, which we employed in the “conditions imply protocol”
part of the previous proof, can be similarly accomplished using a multidimensional approximate
agreement protocol such as [19]. For the interested reader, we discuss such approach in Appendix D.

6 Conclusion

In this work, we give the first necessary and sufficient conditions for the solvability of non-trivial
colorless tasks in asynchronous Byzantine systems. This particular characterization is interesting
per se, as previous, analogous results exist for crash-failure systems [16]. However, this work also
evidences (i) the power and suitability of the combinatorial topology tools, and (ii) novel, yet
simple algorithms for the fundamental k-set agreement and barycentric agreement problems in
asynchronous Byzantine systems.

We saw how combinatorial topology tools can produce novel results in distributed computing
by virtue of being capable to support existential arguments without complicated, model-specific
constructive arguments. Indeed, we used or slightly adapted basic communication primitives (re-
liable broadcast, quorums, stable vectors) and straightforward algorithmic tools (k-set agreement
and barycentric agreement) to demonstrate our solvability theorem, relying on powerful, model-
independent observations from combinatorial topology to complement the proof.

Our necessary and sufficient conditions capture the relation between the number of processes,
the number of failures, and the topological structure of the task’s simplicial complexes. This differs
from the case of crash-failure systems, and opens similar questions for other scenarios, such as
synchronous systems and colored tasks, which we intend to carry as future work.

10

A Algorithms for Reliable Broadcast

Algorithms 6 to 8 show the reliable broadcast protocol for sender P , round r, and content c. The
symbol “·” represents a wildcard, matching any value.

Algorithm 6 P.RBSend((P, r, c))

send(P, r, c) to all processes

Algorithm 7 P.RBEcho()

upon recv(Q, r, c) from Q do
if never sent (Q, r{echo}, ·) then

send(Q, r{echo}, c) to all processes

upon recv(·, r{echo}, c) from ≥ (n+ 1)− t processes do
if never sent (P, r{ready}, ·) then

send(P, r{ready}, c) to all processes

upon recv(·, r{ready}, c) from ≥ t+ 1 processes do
if never sent (P, r{ready}, ·) then

send(P, r{ready}, c) to all processes

Algorithm 8 P.RBRecv((P, r, c))

recv(·, r{ready}, c) from (n+ 1)− t processes
return (P, r, c)

B Proofs for Communication Primitives

In this section, we prove lemmas related to quorum and stable vectors. The proofs on stable vector
guarantees are variations from those in [2].

B.1 Proof of Property 3.2

Proof. Since n + 1 > 3t, the processes can perform reliable broadcast. Note that the (n + 1) − t
messages sent by the non-faulty processes can be grouped by their contents:

(n+ 1)− t =
∑

c∈Good(Mr)

|{(P, r, c) : (P, r, c) ∈Mr, P is non-faulty}|.

If every content c in Good(Mr) was reliably broadcast by at most t non-faulty processes, we would
have (n + 1) − t ≤ |Good(Mr)| · t, which contradicts the hypothesis. Hence, at least one content
in Good(Mr) was reliably broadcast by more than t + 1 non-faulty processes. By the non-faulty
liveness of the reliable broadcast, such content will eventually be reliably received by all non-faulty
processes.

11

B.2 Proof of Property 3.3

Proof. If |M r
i \ M r

j | > t, then M r
j missed more than t messages in Mr, the messages reliably

broadcast in round r. However, this contradicts the fact that |M r
j | ≥ (n + 1) − t with M r

j being
obtained by reliable broadcast.

B.3 Proof of Lemma 3.4

Proof. First, note that the set M of Pi is monotonically increasing, so the sequence of transmitted
reports is also monotonically increasing. As we assume FIFO channels, any other non-faulty process
Pj receives those reports in the same order.

B.4 Proof of Lemma 3.5

Proof. Consider S, the set of all messages reliably received by at least one non-faulty process.
By the non-faulty liveness of the reliable broadcast, all non-faulty processes will eventually obtain
M = S, which is never expanded, or we would contradict the definition of S. All non-faulty
processes then send reports R = S, which are final, for the same reason as before.

Again, by the non-faulty liveness property of the reliable broadcast, all these processes will
eventually receive (n + 1) − t reports R. By the monotonicity of received reports (Lemma 3.4)
and FIFO message delivery, those reports are not overwritten, matching the local M = S. All
non-faulty processes then return from RecvStable().

B.5 Proof of Lemma 3.6

Proof. Call Br
i the set of buddies whose reports are stored in R, for process Pi and round r, right

before it decides. Since all reports are transmitted via reliable broadcast, and every non-faulty
process collects (n + 1) − t reports, |Br

i \ Br
j | ≤ t with |Br

i | ≥ (n + 1) − t, which implies that
|Br

i ∩ Br
j | ≥ n + 1 − 2t. In other words, any two non-faulty processes identify n + 1 − 2t > t + 1

buddies in common, including a non-faulty process Pk. Therefore, M
r
i = R′

k and M r
j = R′′

k, where
R′

k and R′′
k are reports sent by Pk at possibly different occasions.

Since the set M r
k is monotonically increasing, either R′

k ⊆ R′′
k or R′′

k ⊆ R′
k, guaranteeing

property (iii). Both R′
k and R′′

k contain Rk, the first report sent by Pk, by Lemma 3.4. Finally,
|Rk| ≥ (n+1)− t and Quorum(Rk) ̸= ∅, by Lemma 3.2, which guarantee properties (i) and (ii).

C Solvability for Non-Independent Faults

The t-resilient model presumes independent, identically distributed process failures, however in
practice they correlate to the same processor, machine, etc. The core/survivor-set model from Jun-
queira and Marzullo [17] assumes an adversarial scheduler that defines sets of possibly faulty/correct
processes. Although we provided our results in the more well-known uniform model, our algorithms
and theorem do apply to such extended failure model, as we discuss below.

In the model, a core is a minimal set of processes that will never fail together in any admissible
execution. The minimum core size is denoted as c, and processes can always wait for (n+1)−(c−1)
messages. Note that t-resilient tasks have c = t+ 1.

In the non-uniform failure model, we redefine the variable t to be c − 1, one less than the
minimum core size, in the reliable broadcast, quorum, and stable vector protocols, As any process

12

can always wait for (n + 1) − (c − 1) = (n + 1) − t messages, our correctness arguments for these
protocols remain identical, and therefore algorithms 1 and 2 allow us to solve c-set agreement and
barycentric agreement, respectively.

We here overview the changes in the proof of our solvability theorem between its principal
formulation, and in the one following the model of Junqueira and Marzullo [17]. The overall proof
structure is identical to the one for Theorem 5.2 – we highlight only changes to make it work in
the non-uniform failure model, which are trivial and short in nature.

Theorem C.1. A non-trivial colorless task (I,O,∆) has a protocol in the asynchronous Byzantine
model with core size c if and only if n + 1 > (c − 1) · (dim(I) + 2) and there is a continuous map
f : | skelc−1(I)| → |O| carried by ∆.

Proof. Conditions imply protocol. Assuming the map f exists, proceed as before, but use
the c-set agreement protocol to jump to skelc−1(I). The application of the barycentric agreement
protocol and of the simplicial approximation theorem remain identical.

Protocol implies conditions. For the first condition, the argument remains identical, as we still
presume non-trivial tasks. The second condition also preserves our argument, as [12, 15] actually
define the connectivity of the protocol complexes in terms of c: for any σ ∈ I, we have that P(σ)
is (c− 2)-connected. As we defined c = t+ 1, the argument remains identical.

D Barycentric Agreement via Approximate Agreement

In this section, we show how to transform the multi-dimensional approximate agreement protocol
of [19] into barycentric agreement. The point-set occupied by I is compact, and the open stars of
the vertices of Bary I form an open cover of I. Any such cover has a Lebesgue number λ > 0 [20],
such that every set of diameter less than λ is contained in some member of the cover.

Here is a Byzantine barycentric agreement protocol. Suppose the non-faulty processes start at
the vertices of an input simplex σ. Using (λ/2)-approximate agreement, each non-faulty process
pi chooses a point inside σ, the convex hull of the inputs, such that the distance between any pair
of points is less than λ/2. Equivalently, each open ball of radius λ/2 around vi contains all values
chosen by the approximate agreement protocol. Because the diameter of this set is less than the
Lebesgue number λ, there is at least one vertex ui in Bary I such that B(vi, λ/2) lies in the open
star around ui. Let each Pi choose any such ui.

We must still show that the vertices ui chosen by the processes Pi lie on a single simplex of
Bary σ. Note that ui, uj are vertices of a common simplex if and only if the open star around ui
intersects the open star around uj . By construction, vj ∈ B(vi, λ/2), which is in the open star
around ui, and vj is in the open star around uj , hence ui, uj are vertices of a single simplex.

13

References

[1] I. Abraham, Y. Amit, and D. Dolev. Optimal resilience asynchronous approximate agree-
ment. In Proceedings of the 8th international conference on Principles of Distributed Systems,
OPODIS’04, pages 229–239, Berlin, Heidelberg, 2005. Springer-Verlag.

[2] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an Asynchronous
Environment. Journal of the ACM, July 1990.

[3] H. Attiya and J. Welch. Distributed Computing Fundamentals, Simulations, and Advanced
TopicsSecond Edition. John Wiley and Sons, Inc., 2004.

[4] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous
computations. In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pages 91–100, New York, NY, USA, 1993. ACM.

[5] E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum. The BG distributed simulation algorithm.
Distributed Computing, 14(3):127–146, 2001.

[6] G. Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2), 1987.

[7] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming. Springer, 2nd ed. 2011 edition, Feb. 2011.

[8] S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous
systems. Information and Computation, 105(1):132–158, July 1993.

[9] M. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility Of Distributed Commit With One
Faulty Process. Journal of the ACM, 32(2), Apr. 1985.

[10] M. Herlihy and S. Rajsbaum. Algebraic spans. Mathematical Structures in Computer Science,
10(4):549–573, 2000.

[11] M. Herlihy and S. Rajsbaum. A classification of wait-free loop agreement tasks. Theor.
Comput. Sci., 291(1):55–77, 2003.

[12] M. Herlihy and S. Rajsbaum. Concurrent computing and shellable complexes. In N. Lynch and
A. Shvartsman, editors, Distributed Computing, volume 6343 of Lecture Notes in Computer
Science, pages 109–123. Springer Berlin Heidelberg, 2010.

[13] M. Herlihy and S. Rajsbaum. The topology of shared-memory adversaries. In Proceeding of
the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC
’10, pages 105–113, New York, NY, USA, 2010. ACM.

[14] M. Herlihy and S. Rajsbaum. Simulations and reductions for colorless tasks. In Proceedings of
the 2012 ACM symposium on Principles of distributed computing, PODC ’12, pages 253–260,
New York, NY, USA, 2012. ACM.

[15] M. Herlihy, S. Rajsbaum, and M. Tuttle. An Axiomatic Approach to Computing the Con-
nectivity of Synchronous and Asynchronous Systems. Electron. Notes Theor. Comput. Sci.,
230:79–102, 2009.

14

[16] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J. ACM,
46(6):858–923, 1999.

[17] F. P. Junqueira and K. Marzullo. Designing Algorithms for Dependent Process Failures.
Technical report, 2003.

[18] D. N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and Computation
in Mathematics. Springer, 1 edition, Oct. 2007.

[19] H. Mendes and M. Herlihy. Multidimensional approximate agreement in byzantine asyn-
chronous systems. In STOC ’13: Proceedings of the fourty-fifth annual ACM symposium
on Theory of computing, to appear, June 2013.

[20] J. Munkres. Elements of Algebraic Topology. Prentice Hall, 2 edition, Jan. 1984.

[21] M. Saks and F. Zaharoglou. Wait-Free k-Set Agreement is Impossible: The Topology of Public
Knowledge. SIAM J. Comput., 29(5):1449–1483, 2000.

[22] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant
algorithms. Distributed Computing, 2, 1987.

15

	Introduction
	Our Contributions

	Topological Model
	Combinatorial Tools
	Simplicial Approximations
	Connectivity

	Model for Concurrent Computation
	Colorless Tasks
	Byzantine Colorless Tasks
	Protocols and Complexes

	Basic Algorithmic Tools
	Reliable Broadcast
	Quorums
	Stable Vectors

	k-Set Agreement and Barycentric Agreement
	k-Set Agreement
	Barycentric Agreement

	The Solvability Theorem
	Conclusion
	Algorithms for Reliable Broadcast
	Proofs for Communication Primitives
	Proof of Property 3.2
	Proof of Property 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemma 3.6

	Solvability for Non-Independent Faults
	Barycentric Agreement via Approximate Agreement

