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Quantitative Semantics

What is it ?
@ Linear Logic approach to semantics [Girard]

@ Structured Vector spaces, Linear maps and Entire functions

What is it used for ?

@ PCoh Spaces are fully abstract for Probabilist PCF
POPL14 with T. Ehrhard and M. Pagani

@ A convenient model of lambda calculus
Master dissertation of M. Kerjean

Postdoc hiring with M. Pagani
e COmputing with QUAntitative Semantics [CoQuaS]

@ http://lipn.univ-parisl3.fr/ pagani/pmwiki/
pmwiki.php/Coquas/Coquas
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Quantitative Semantics:

What is it ?

Intuitions from
Probabilistic Computation
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Modeling Probabilistic Computation:

Type: set of positive vectors
Program: function seen as a positive matrix

Interaction: composition seen as multiplication
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Probabilistic Modeling of Ground Types

Example: nat

Coin:nat outcomes the toss of a fair coin.

Random n:nat outcomes uniformly any {0,...,n—1}.
Ground Type Programs as Vectors: Random Variables.
[Coin] = (3,3,0,...) and [Randomn] = (i,....10,..)
11y 1 1
outcomes: 012 0 .. n-1
Subprobability Distributions over N: [nat] € (RT)N.

[nat] = {()\n)neN | Vn,A\p € RT and Z)\n < 1}
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Probabilistic Modeling of Higher Types

Example: Random : nat — nat
Input: an integer n

Output: any integer {0,...,n— 1} uniformly chosen.

Higher Type Programs as Matrices:  [Randon] € (RT)MNxN),

inputs: 9 1 E 7 out.;?uts
1 1
017 v -0
00 3 1
2 n —1
[Random] = 0 :
1 —n—1
0 n

Functions preserving subprobability distribution.
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Probabilistic Modeling of Higher Types

Once : nat — nat
Input: an integer x

Output: if x=0
then Coin
else 42

Twice : nat — nat

[once] € (RT)NXN
([0, 0)=1/2
([0], )H1/2
([al, 42) —1 ifazo0
(m, k)=

otherwise.

[Twice] C (RF)Man(N)xN

Input: an integer x ([0,0], 0)~1/2
Output: if x=0 ([0, 0], )F+1/2
then (if x=0 ([0, a], 42) if a0
then Coin ([a, b] 0)— if a,b£0
else 42) ( ) otherwise.
else (if x=0
then 42
else 0)
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Probabilistic Modeling of Interaction

Reminder: For x:nat, a€ N
[x]a = probability that random variable x outcomes a.

Decompose computation as disjoint events:
m = [a1, ..., ax] gathers effectively used input values.

[P xlo = D _[Plmp) - [xla; -~ [x]a

Linear Programs as Linear Functions

[Once x]p, = Z[[Once]]([a]b) [%]a

a

Non Linear Program as Entire Functions

[Twice x]p, = Z[[Twice]]([a,a/]’b) []a [x]ar

a,a’

C. Tasson Introduction Quantitative Semantics Full Abstraction Reflexive Spaces 8/37



The essence of Quantitative Semantics

Type: Module
Set of admissible vectors/Topological structure
[nat] = {(Ma)aen | Va,da € RT and > Ay <1} C (R)Y

Linear Program: Linear Functions
Preserving the additional structure

[Once] : x +— Za[[Onceﬂ([a]yb) [%]a

Program: Entire Functions
Preserving the additional structure

[Twice] : x — ZmﬂTwice]](mvb) [=]™
Interaction: Functional Composition
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Quantitative Semantics: what is it use for ?

Full Abstraction:

Probabilistic Coherent Spaces

&
Probabilistic PCF

with T. Ehrhard and M. Pagani
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Full Abstraction
Denotational semantics:
a program as a function between mathematical spaces

Operational semantics:
a program as a sequence of computation steps

Adequacy
[P] = [Q] = P~ Q
Completeness (VCl], CIPl =* v <= C[Q] =™ v)

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming | Plotkin (77)
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Full Abstraction
Denotational semantics: Probabilistic Coherent Spaces
a program as a function between mathematical spaces

Operational semantics:
a program as a sequence of computation steps

Adequacy
[Pl =[QI = P~ Q
Completeness (VC[1, CIP] =* v = C[Q] —=* v)

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming | Plotkin (77)
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PCoh Objects

Probabilistic Coherent Space: X =RH* P(X)
where |X| is a countable set
and P (X) C (RT)I*

such that the following holds:

closedness: P (X)'" =P (X),
boundedness: Va € |X|, 31 > 0, Vx € P(X), x, < p,
completeness: Va € |X|, 3\ > 0, Ae, € P (X).

Orthogonality: x,y € (R)I¥I.

Xlyy < Zxayagl.

ae|Xx|
The orthogonal: P(X)" ={y e (RT)* |vx e P(X),x Ly y}.
Example: [nat] = (RT)N, P (nat) = {(\) | >, An < 1}
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PCoh Morphisms

Morphisms: (R, P (X)) 5 (R, P ()
are functions f : (R*)I*l — (R+)V
preserving probabilistic coherence, f(P (X)) C P (Y).

Linear Morphisms: f(x) = Z M(f),-x™
ae|X|
given by a matrix M(f) e (R*)I*1>xYI

Non-Linear Morphisms: f(x) = Z M(f)m - x™
meMiin(|X])
given by a matrix M(f) € (RT)Man(IX])x|¥|
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Modeling Programs in PCoh

Once : nat — nat
Ax if x=0 then Coin else 42

[Once x]o = [Once x]; = L[x]o

[Once x]an = Z[[X]]a

a>1

Twice : nat — nat
Ax if x=0 then (if x=0 then Coin else 42)
else (if x=0 then 42 else 0)

[Twice x]o = 3[x]5 + Y [xlalxls

a,b>1

[Twice x]; = 4[x]3  [Twice x]a2 =2 [x[o[x]a
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Full Abstraction
Denotational semantics: Probabilistic Coherent Spaces
a program as a function between mathematical spaces

Operational semantics:
a program as a sequence of computation steps

Let P,Q: 0o Va € o], [Pla = [Q]a
Adequacy |} ft Completeness
P~,Q

(VC[], CIP] =* v <= C[Q] =™ v)

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming | Plotkin (77)
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Full Abstraction

Denotational semantics: Probabilistic Coherent Spaces
a program as a function between mathematical spaces

Operational semantics: Probabilistic PCF
a program as a sequence of computation steps

Let P,Q: o Va € |o|, [Pla = [Q]a
Adequacy |} ft Completeness
P~,Q

(VC[], CIP] =* v <= C[Q] =* v)

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming | Plotkin (77)
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A Typed Probabilistic Functional Programing Language

Types: o,7T=nmnat|oc =71
Probabilistic PCF:

N,P,Q:=n | pred(N) | succ(N) | x | Ax? P | (P)Q | fix(M)
| if (N =0)then Pelse Q | Coin,

Operational Semantics: P Q
P reduces to Q in one step with probability r

Proba(P =55 v) =

E rl.--rn

1 n

T
P—...—v
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A Typed Probabilistic Functional Programing Language

Functions and Composition :

Integers :w
(Ax7 M)N L MN/x]

n:nat

1
pred(k+1) = k Fixpoints :

succ(k) & k+1 fix(M) & (M)fix(M)
Case Zero :
if (0 = 0)then Py else P, 15 Py + Context Rules
if (k+1 = 0)then Py else Py 5 P,
Probabilities :
Coin 1/—2> 0

where M & M’ means that:

1/2
Coin — 1 . .
oin M reduces to M’ with probability r
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Randomized algorithm:

A Las Vegas example.
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An example of Randomized algorithm

Input: A 0/1 array of length n > 2 with at least one cell is 0.

[0]1]0] f:0,2—0, 11

Output: Find the index of a cell containing 0.

let rec LasVegas (f: nat -> nat) =
let k = random n in
if (f k = 0) then k
else LasVegas f

This algorithm succeeds with probability one.

® Success in I step is : 3. Success in any steps is :

3 2 1

5 Zggzl
k=1

@ Success in 2 steps is :

WIN WIN

@ Success in n steps is :
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Las Vegas implementation in PCF

Caml encoding:

let rec LasVegas (f:nat->nat) =
let k = random n in
if (f k = 0) then k
else LasVegas f

PCF encoding:

fix ()\ LasVe gas(nat=>nat):>nat

)\ f nat—-nat

(%)\gnat >natg 0+ -+ %/\gnat >natg n— 1)
Ak"et if (f k:Q) then k
else LasVegas f )
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Las Vegas Operational Semantics

Input: A 0/1 array of length n > 2 with at least one cell is 0.

(0]1]0] f:0,20, 11

Output: Find the index of a cell containing 0.

LV = fix (A LasVegas(nat=nat)=nat
)\ fhat=nat (%)\g g Q+%/\g g l+%/\g g 2)
Ak™t if (£ k=0) then k
else LasVegas f)

Operational Semantics:

LV -1/3-L-13-1LV—-13-LV >

kz kz kQ
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Full Abstraction

Denotational semantics: Probabilistic Coherent Spaces
a program as a function between mathematical spaces

Operational semantics: Probabilistic PCF
a program as a sequence of computation steps

Let P,Q: 0 Va € |o|, [P]la = [Q]a
Adequacy |} ft Completeness

VC : o = nat, Vn € |nat|,
Proba((C)P = n) = Proba((C)Q = n))

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming | Plotkin (77)
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Full Abstraction
Denotational semantics: Probabilistic Coherent Spaces
a program as a function between mathematical spaces

Operational semantics: Probabilistic PCF
a program as a sequence of computation steps

Let P,Q: 0 Va € |o|, [P]la = [Q]a
Adequacy |} ft Completeness

VC : o = nat, Vn € |nat|,
Proba((C)P = n) = Proba((C)Q = n))

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming | Plotkin (77)
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Full Abstraction at Ground Types

Let P, @ : nat vneN, [P],=[Q]n
Adequacy |} 1} Completeness
VC :nat = nat, Vn € N, Proba((C)P - n) = Proba((C)Q - n))

Adequacy Lemma:[DanosEhrhard]  Vn, Proba(P — n) = [P],.

By contradiction:

[P]n # [Q]n = Proba(P = n) # Proba(@ = n)
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Full Abstraction at Higher Types

Assumption: Let P, Q : ¢ = 1,
o = ([71. ... 7. B) such that [Pla # [Q]a-

Goal: Find T, : (¢ = ¢) — nat s.t.
Proba(( T, )P = 0) # Proba((T,)Q — 0)
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Full Abstraction at Higher Types

Assumption: Let P, Q : ¢ = 1,
Jo = ([v1,...,7nl, 3) such that [P]a # [Q]a-

Goal: Find T, : (¢ = 1) — nat s.t. [(Ta)Plo # [(Ta)Rlo
Proba(( T, )P = 0) # Proba((T,)Q — 0)
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Full Abstraction at Higher Types

Assumption: Let P, Q : ¢ = 9,

Jo = ([v1,...,7nl, 3) such that [P]a # [Q]a-
Choose Testing Context and add Parameters

Tal7) = M=V T(7 ( Z”Nm )

Na(7) = Ax?if (A ,.:le,(r,-)x = 0) then NV3(7') else Q.

Goal: Find T, : (¢ = ) — nat s.t. [(Ta)Plo # [(Ta) Qo
Proba(( T, )P = 0) # Proba((T,)Q — 0)
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Full Abstraction at Higher Types

Assumption: Let P, Q : ¢ = 9,

Joa = ([y1,....7n], ) such that [P]a # [Q]a-
Choose Testing Context and add Parameters

Tal7) = M7 T(7 ( Z”Nm )
Na(7) = Ax?if (A ,:lﬂi(r,-)x = 0) then N3(7") else Q.

Observe by induction:
o [(7a(r))M]o is entire with finitely many parameters (d., ).
e If 0 < 7 < 1 are dyadic reals, then 7,(r) is in PPCF.
@ The coefficient of [] 7 is proportional to [M],.

Goal: Find T, : (¢ = ¢) — nat s.t. [(To)P]o # [(T. )Q]]o
Proba((T,)P — 0) # Proba((T,)Q — 0)
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Full Abstraction at Higher Types

Assumption: Let P, Q : ¢ = 9,

Joa = ([y1,....7n], ) such that [P]a # [Q]a-
Choose Testing Context and add Parameters

Tal7) = M7 T(7 ( Z”Nm )
Na(7) = Ax?if (A ,:lﬂi(r,-)x = 0) then N3(7") else Q.

Observe by induction:

o [(7a(r))M]o is entire with finitely many parameters (d., ).

e If 0 < 7 < 1 are dyadic reals, then 7,(r) is in PPCF.

@ The coefficient of [] 7 is proportional to [M],.
Entire series: [(7.(F))P]o and [(7.(F))Q]o are entire R% — R
with different coefficients.

Goal: Find T, : (¢ = ¢) — nat s.t. [(To)P]o # [(T. )Q]]o
Proba((T,)P — 0) # Proba((T,)Q — 0)
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Related Works:

Weighted Relational Models of Typed A-calculi
[LairdManzonettoMcCuskerPagani]
Rt Uoo
Not well pointed.
Fully Abstract for probabilistic PCF

Probabilistic Games [DanosHarmer|

Keep order of inputs.
Definability result followed by the extentional collapse.
Fully Abstract for probabilistic idealized algol (with references)

Probabilistic monads [PlotkinJones]

A model of first-order call by value language
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Quantitative Semantics: what is it use for ?

C. Tasson

A convenient model of

Functional computation
&

Derivation

with M. Kerjean

Introduction Quantitative Semantics Full Abstraction Reflexive Spaces
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Interaction Syntax and Semantics:
@ Stable functions & Linear Logic A= B =!A— B
@ Quantitative Semantics & Differential lambda-calculus

o Differential equations & 77

A convenient category for mathematics...
that is a category of topological spaces which is

Cartesian Closed;
Complete and Cocomplete.
. and for classical linear logic (——A = A).

The Convenient Global Setting for analysis
Most results are extracted or adapted from [Michor and Kriegl]
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Reflexive Spaces and Bornologies

Let E, F be locally convex topological vector spaces (tvs).

Bounded sets: B C E absorbed by any open, up to dilatation.
B bounded <= VYV, dps.t. BC pV
Bounded maps: f : E — F preserving bounded sets.

VB bounded in E, f(B) is bounded in F

Bounded equivalence: E ~ F iff there is a bijection E i> F such
that ¢ and ¢! are bounded linear.
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Linear Category of Reflexive Spaces: Definition

Bounded dual: E* is the Icts of bounded linear forms, endowed
with the bounded open topology:

E* ={¢: E — C| ¢ bounded linear}
VB,e, W(B,e) ={¢p: E— C|Vx e B, |p(x)] <€}

Linear Category of Reflexive spaces:
Objects: E Icts s.t. EX* ~ E
Maps: Lin(E, F) = {¢ : E — F bounded linear}

Examples: [bool] = C @ C and [nat] = C™)

Counter-Examples: co, 1t and 1°°.
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Linear Category of Reflexive Spaces: Constructions

BiProduct E x F and Bge x Bf
. E — EXE . ExXE — E
Diagonal Codiagonal
x = (x,x) (x,¥y) — x+y

Accessible Products and Coproducts

;¢ Ei and finite sum of bounded
[1Iic, Ei and infinite product of bounded

Linear Function Space Lin(E, F) and equibounded B
VBg,dBg,Vf € B, f(BE) C BF

Tensor Product E ® F as vector spaces and Be ® Br

(E® F)* ~ Lin(E,F*)
¢ = M[yo(x®y)]
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Linear Category of Reflexive Spaces: Properties

Theorem: Lin is Symetric Monoidal Closed.

Proof Sketch
@ Bounded version of Hahn Banach

@ Reflexive spaces are bounded complete:
Eg, the span of any bounded B, is a Banach Space.

Bounded Banach Steinhaus (equibounded = simply bounded).
(Lin(E, F))* = ([Laeg F)* =~ ®aceF

Tensor and Linear function spaces preserve reflexivity.
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NonLinear Category of Reflexive Spaces:

n-Monomial: f, : E — F n-homogene f,(tx) = t"f,(x).
Ser(E,F) the reflexive space of bounded entire functions f =3 f,
uniformly converging on bounded sets.

Bounded Open Topology

W(BE, VF) = {f € Ser(E, F) ’ f(BE) - VF}
Equibounded Bornology

Bs.t. VBg,dBr,f € B= f(BE) C BF

Non Linear Category
Objects: E Ictss.t. EX* ~ E
Maps: Ser(E, F)

Theorem: Ser is Cartesian Closed.
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Exponential Modality: A= B =!A— B

Exponential Functor:
lE = Ser(E,C)* | 'f: IE — IF=Ser(F,C)*

| 6 —» (FhHo) =, ELFL Q)
Dirac Mass:

Vx € E, 0y : frs f(x) €lE | 1E = span(dy [x € E).

A comonad:
: E — E | pu: NWE — IE==Ser(E,C)*

x o 0| 6 = (ELHC)m (0, b)
Free comonoid:
c: EQIE — IE | w: IE - 1=C
Ox ®0y, — Oxty | o — (¢, Ax1)

LL Theorems:
Ser(E,F) ~Lin('E,F) | 'E®Q!F ~/(E X F)
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Linear-Non Linear Adjunction

E IE
f:E=F f'E —olF, f'(6x) = f(x)
L
ccc Ser L Lin smcc
Forget
E E
f:E=F f:E—F

C. Tasson Introduction Quantitative Semantics Full Abstraction Reflexive Spaces 34/37



Differential Cartesian Closed Category

Some inhabitants of !E:

Taylor expansion:

Ox =Y 0n(x)

Bialgebra structure:

IE — EQIE
¢ = P®9
A derivation operator:
IEQE 2%,
K@y

|EQIE
8y @ lim S22
t—0

C. Tasson

Introduction Quantitative Semantics Full Abstraction Reflexive Spaces

Ser(E,C)*
Vx € E, 0y : f— f(x)
On(x) 2>, fa = f(x)

\ s 7 =B =n 5B
Ser(E,F) =Pol,(E,F) =&, ® E

(equibounded)

IExIE & IE
h = d(Ax YAy h(x +y)))

dg € Lin(E, 'E)

e, IE 4 F
s im S0 )iy o))
t—0 t t—0 t
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Related Works:
Fock Spaces [BlutePanangadenSeely|

Banach Spaces and contractive maps
A model of weakening

Kothe Spaces and Finiteness Spaces [Ehrhard]
Sequence spaces, continuous linear and entire functions

Convenient Vector Spaces [BluteEhrhardTasson]
CVS, bounded continuous linear maps, and smooth functions

Applying Quantitative Semantics to Higher-Order
Quantum Computing [PaganiValiron]
Coefficients are Positive Matrices
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Quantitative Semantics

What is it ?
@ Linear Logic approach to semantics

@ Topological vector spaces, Linear maps and Entire functions

What is it used for ?

@ PCoh Spaces are fully abstract for Probabilist PCF,
with T. Ehrhard and M. Pagani

@ A convenient model of lambda calculus,
Master dissertation of M. Kerjean

Postdoc hiring with M. Pagani
e COmputing with QUAntitative Semantics [CoQuaS]
@ http://lipn.univ-parisl3.fr/ pagani/pmwiki/
pmwiki.php/Coquas/Coquas
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