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Quantitative Semantics

What is it ?

Linear Logic approach to semantics [Girard]

Structured Vector spaces, Linear maps and Entire functions

What is it used for ?

PCoh Spaces are fully abstract for Probabilist PCF
POPL14 with T. Ehrhard and M. Pagani

A convenient model of lambda calculus
Master dissertation of M. Kerjean

Postdoc hiring with M. Pagani

COmputing with QUAntitative Semantics [CoQuaS]

http://lipn.univ-paris13.fr/~pagani/pmwiki/

pmwiki.php/Coquas/Coquas
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Quantitative Semantics:

What is it ?

Intuitions from
Probabilistic Computation
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Modeling Probabilistic Computation:

Type: set of positive vectors

Program: function seen as a positive matrix

Interaction: composition seen as multiplication
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Probabilistic Modeling of Ground Types

Example: nat

Coin:nat outcomes the toss of a fair coin.

Random n:nat outcomes uniformly any {0, . . . , n − 1}.

Ground Type Programs as Vectors: Random Variables.

JCoinK =
(

1
2 ,

1
2 , 0, . . .

)
and JRandom nK =

(
1
n , . . . ,

1
n , 0, . . .

)
outcomes:

↓
0

↓
1

↓
2 ...

↓
0 ...

↓
n−1 ...

Subprobability Distributions over N: JnatK ⊆ (R+)N.

JnatK =

{
(λn)n∈N | ∀n, λn ∈ R+ and

∑
n

λn ≤ 1

}
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Probabilistic Modeling of Higher Types

Example: Random : nat→ nat

Input: an integer n

Output: any integer {0, . . . , n − 1} uniformly chosen.

Higher Type Programs as Matrices: JRandomK ∈ (R+)(N×N).

JRandomK =

inputs: 0
↓

1
↓

2
↓
··· n

↓
··· outputs

..

0 1 1
2 · · ·

1
n · · ·

0 0 1
2 · · ·

1
n · · ·

...
... 0

. . .
...

... 0 1
n

...
. . .



→0

→1

...
→n−1

...

Functions preserving subprobability distribution.
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Probabilistic Modeling of Higher Types

Once : nat→ nat

Input: an integer x

Output: if x=0

then Coin

else 42

JOnceK ⊆ (R+)N×N

([0], 0 ) 7→1/2
([0], 1 ) 7→1/2
([a], 42) 7→1 if a 6=0

(m , k ) 7→0 otherwise.

Twice : nat→ nat

Input: an integer x

Output: if x=0

then (if x=0

then Coin

else 42)

else (if x=0

then 42

else 0)

JTwiceK ⊆ (R+)Mfin(N)×N

([0, 0], 0 ) 7→1/2
([0, 0], 1 ) 7→1/2
([0, a], 42) 7→2 if a 6=0

([a, b], 0 ) 7→1 if a,b 6=0

( m , a ) 7→0 otherwise.
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Probabilistic Modeling of Interaction

Reminder: For x:nat, a ∈ N
JxKa = probability that random variable x outcomes a.

Decompose computation as disjoint events:
m = [a1, . . . , ak ] gathers effectively used input values.

JP xKb =
∑
m

JPK(m,b) · JxKa1 · · · JxKak

Linear Programs as Linear Functions

JOnce xKb =
∑
a

JOnceK([a],b) JxKa

Non Linear Program as Entire Functions

JTwice xKb =
∑
a,a′

JTwiceK([a,a′],b) JxKa JxKa′
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The essence of Quantitative Semantics

Type: Module
Set of admissible vectors/Topological structure

JnatK = {(λa)a∈N | ∀a, λa ∈ R+ and
∑

a λa ≤ 1} ⊆ (R)N

Linear Program: Linear Functions
Preserving the additional structure

JOnceK : x 7→
∑

aJOnceK([a],b) JxKa

Program: Entire Functions
Preserving the additional structure

JTwiceK : x 7→
∑

mJTwiceK(m,b) JxKm

Interaction: Functional Composition
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Quantitative Semantics: what is it use for ?

Full Abstraction:

Probabilistic Coherent Spaces
&

Probabilistic PCF

with T. Ehrhard and M. Pagani
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Full Abstraction

Denotational semantics:
a program as a function between mathematical spaces

Operational semantics:
a program as a sequence of computation steps

JPK = JQK
Adequacy

=⇒
⇐=

Completeness
P 'o Q

(∀C [ ], C [P] →∗ v ⇐⇒ C [Q] →∗ v)

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming Language, Plotkin (77)
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PCoh Objects

Probabilistic Coherent Space: X = (R+)|X |,P (X )
where |X | is a countable set

and P (X ) ⊆ (R+)|X |

such that the following holds:

closedness: P (X )⊥⊥ = P (X ),

boundedness: ∀a ∈ |X |, ∃µ > 0, ∀x ∈ P (X ), xa ≤ µ,

completeness: ∀a ∈ |X |, ∃λ > 0, λea ∈ P (X ).

Orthogonality: x , y ∈ (R+)|X |.

x ⊥X y ⇐⇒
∑
a∈|X|

xaya ≤ 1.

The orthogonal: P (X )⊥ = {y ∈ (R+)|X | | ∀x ∈ P (X ) , x ⊥X y}.

Example: JnatK = (R+)N,P (nat) = {(λn) |
∑

n λn ≤ 1}
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PCoh Morphisms

Morphisms: ((R+)|X |,P (X ))
f−→ ((R+)|Y|,P (Y))

are functions f : (R+)|X | → (R+)|Y|

preserving probabilistic coherence, f (P (X )) ⊆ P (Y).

Linear Morphisms: f (x) =
∑
a∈|X |

M(f )a · xm

given by a matrix M(f ) ∈ (R+)|X |×|Y|

Non-Linear Morphisms: f (x) =
∑

m∈Mfin(|X |)

M(f )m · xm

given by a matrix M(f ) ∈ (R+)Mfin(|X |)×|Y|
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Modeling Programs in PCoh

Once : nat→ nat
λx if x=0 then Coin else 42

JOnce xK0 = JOnce xK1 = 1
2
JxK0

JOnce xK42 =
∑
a≥1

JxKa

Twice : nat→ nat
λx if x=0 then (if x=0 then Coin else 42)

else (if x=0 then 42 else 0)

JTwice xK0 = 1
2
JxK20 +

∑
a,b≥1

JxKaJxKb

JTwice xK1 = 1
2
JxK20 JTwice xK42 = 2

∑
a≥1

JxK0JxKa
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Full Abstraction

Denotational semantics: Probabilistic Coherent Spaces
a program as a function between mathematical spaces

Operational semantics:
a program as a sequence of computation steps

Let P,Q : σ ∀α ∈ |σ|, JPKα = JQKα

Adequacy ⇓ ⇑ Completeness

P 'o Q
(∀C [ ], C [P] →∗ v ⇐⇒ C [Q] →∗ v)

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming Language, Plotkin (77)
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A Typed Probabilistic Functional Programing Language

Types: σ, τ = nat | σ ⇒ τ

Probabilistic PCF:

N, P, Q := n | pred(N) | succ(N) | x | λxσ P | (P)Q | fix(M)

| if (N = 0) thenP elseQ | Coin,

Operational Semantics: P r−→ Q
P reduces to Q in one step with probability r

Coin
1/2−−→ 0

Coin
1/2−−→ 1

Proba(P ∗−→ v) =∑
P
r1−→...

rn−→v

r1 · · · rn

C. Tasson Introduction Quantitative Semantics Full Abstraction Reflexive Spaces 16/37



A Typed Probabilistic Functional Programing Language

Integers :w

n : nat

pred(k + 1) 1−→ k

succ(k) 1−→ k + 1

Functions and Composition :

(λxσM
σ⇒τ

)N
σ

1−→ M [N/x ]
τ

Fixpoints :

fix(M) 1−→ (M)fix(M)

Case Zero :

if (0 = 0) thenP1 elseP2
1−→ P1

if (k + 1 = 0) thenP1 elseP2
1−→ P2

+ Context Rules

Probabilities :

Coin
1/2−−→ 0

Coin
1/2−−→ 1

where M r−→ M ′ means that:
M reduces to M ′ with probability r
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Randomized algorithm:

A Las Vegas example.
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An example of Randomized algorithm

Input: A 0/1 array of length n ≥ 2 with at least one cell is 0.

0 1 0 f : 0, 2 7→ 0, 1 7→ 1

Output: Find the index of a cell containing 0.

let rec LasVegas (f: nat -> nat) =

let k = random n in

if (f k = 0) then k

else LasVegas f

This algorithm succeeds with probability one.
Success in 1 step is : 2

3 .

Success in 2 steps is : 2
3

1
3 .

Success in n steps is : 2
3

1
3n .

. . .

Success in any steps is :
∞∑
k=1

2

3

1

3k
= 1.
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Las Vegas implementation in PCF

Caml encoding:

let rec LasVegas (f:nat->nat) =

let k = random n in

if (f k = 0) then k

else LasVegas f

PCF encoding:

fix
(
λ LasVegas(nat⇒nat)⇒nat

λfnat⇒nat(
1
nλg

nat⇒natg 0 + · · ·+ 1
nλg

nat⇒natg n − 1
)

λknat if (f k = 0) then k

else LasVegas f )
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Las Vegas Operational Semantics

Input: A 0/1 array of length n ≥ 2 with at least one cell is 0.

0 1 0 f : 0, 2 7→ 0, 1 7→ 1

Output: Find the index of a cell containing 0.

LV = fix
(
λ LasVegas(nat⇒nat)⇒nat

λfnat⇒nat
(
1
3
λg g 0 + 1

3
λg g 1 + 1

3
λg g 2

)
λknat if (f k = 0) then k

else LasVegas f)

Operational Semantics:

LV

0

LV

2

0

LV

2

0

LV

2

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3
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Full Abstraction

Denotational semantics: Probabilistic Coherent Spaces
a program as a function between mathematical spaces

Operational semantics: Probabilistic PCF
a program as a sequence of computation steps

Let P,Q : σ ∀α ∈ |σ|, JPKα = JQKα

Adequacy ⇓ ⇑ Completeness

∀C : σ ⇒ nat, ∀n ∈ |nat|,
Proba((C )P ∗−→ n) = Proba((C )Q ∗−→ n))

Full Abstraction studies connections between denotational and
operational semantics. LCF Considered as a Programming Language, Plotkin (77)
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Full Abstraction at Ground Types

Let P,Q : nat ∀n ∈ N, JPKn = JQKn

Adequacy ⇓ ⇑ Completeness

∀C : nat⇒ nat, ∀n ∈ N, Proba((C )P ∗−→ n) = Proba((C )Q ∗−→ n))

Adequacy Lemma:[DanosEhrhard] ∀n, Proba(P ∗−→ n) = JPKn.

By contradiction:

JPKn 6= JQKn ⇒ Proba(P ∗−→ n) 6= Proba(Q ∗−→ n)
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Full Abstraction at Higher Types

Assumption: Let P,Q : φ⇒ ψ,
∃α = ([γ1, . . . , γn], β) such that JPKα 6= JQKα.

Choose Testing Context and add Parameters

Tα(~r) = λf φ⇒ψ Tβ(~r ′)

(
(f )

n∑
i=1

ri
n
Nγi (~r

′
i )

)
Nα(~r) = λxφ if (∧ki=1Tγi (~ri )x = 0) thenNβ(~r ′) else Ωψ.

Observe by induction:

J(Tα(~r))MK0 is entire with finitely many parameters (dα).

If 0 <~r < 1 are dyadic reals, then Tα(~r) is in PPCF.

The coefficient of
∏
~r is proportional to JMKα.

Entire series: J(Tα(~r))PK0 and J(Tα(~r))QK0 are entire Rdα → R
with different coefficients.

Goal: Find Tα : (φ⇒ ψ)→ nat s.t.
Proba((Tα)P ∗−→ 0) 6= Proba((Tα)Q ∗−→ 0)
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Related Works:

Weighted Relational Models of Typed λ-calculi
[LairdManzonettoMcCuskerPagani]

R+ ∪∞
Not well pointed.
Fully Abstract for probabilistic PCF

Probabilistic Games [DanosHarmer]
Keep order of inputs.
Definability result followed by the extentional collapse.
Fully Abstract for probabilistic idealized algol (with references)

Probabilistic monads [PlotkinJones]

A model of first-order call by value language
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Quantitative Semantics: what is it use for ?

A convenient model of

Functional computation
&

Derivation

with M. Kerjean
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Interaction Syntax and Semantics:

Stable functions & Linear Logic A⇒ B =!A ( B

Quantitative Semantics & Differential lambda-calculus

Differential equations & ??

A convenient category for mathematics...
that is a category of topological spaces which is

Cartesian Closed;

Complete and Cocomplete.

... and for classical linear logic (¬¬A = A).

The Convenient Global Setting for analysis
Most results are extracted or adapted from [Michor and Kriegl]
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Reflexive Spaces and Bornologies

Let E ,F be locally convex topological vector spaces (tvs).

Bounded sets: B ⊆ E absorbed by any open, up to dilatation.

B bounded ⇐⇒ ∀V , ∃ρ s.t. B ⊆ ρV

Bounded maps: f : E → F preserving bounded sets.

∀B bounded in E , f (B) is bounded in F

Bounded equivalence: E ' F iff there is a bijection E
φ−→ F such

that φ and φ−1 are bounded linear.
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Linear Category of Reflexive Spaces: Definition

Bounded dual: E× is the lcts of bounded linear forms, endowed
with the bounded open topology:

E× = {φ : E → C | φ bounded linear}
∀B, ε, W(B, ε) = {φ : E → C | ∀x ∈ B, |φ(x)| ≤ ε}

Linear Category of Reflexive spaces:

Objects: E lcts s.t. E×× ' E

Maps: Lin(E ,F ) = {φ : E → F bounded linear}

Examples: JboolK = C⊕ C and JnatK = C(N)

Counter-Examples: c0, l1 and l∞.
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Linear Category of Reflexive Spaces: Constructions

BiProduct E × F and BE × BF

Diagonal

{
E → E × E
x 7→ (x , x)

Codiagonal

{
E × E → E
(x , y) 7→ x + y

Accessible Products and Coproducts⊕
i∈I Ei and finite sum of bounded∏

i∈I Ei and infinite product of bounded

Linear Function Space Lin(E ,F ) and equibounded B
∀BE , ∃BF ,∀f ∈ B, f (BE ) ⊆ BF

Tensor Product E ⊗ F as vector spaces and BE ⊗ BF

(E ⊗ F )× ' Lin(E ,F×)

φ 7→ λx [λy φ(x ⊗ y)]
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Linear Category of Reflexive Spaces: Properties

Theorem: Lin is Symetric Monoidal Closed.

Proof Sketch

Bounded version of Hahn Banach

Reflexive spaces are bounded complete:
EB , the span of any bounded B, is a Banach Space.

Bounded Banach Steinhaus (equibounded = simply bounded).

(Lin(E ,F ))×
∼
↪→ (

∏
a∈E F )× ' ⊕a∈EF

Tensor and Linear function spaces preserve reflexivity.
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NonLinear Category of Reflexive Spaces:

n-Monomial: fn : E → F n-homogene fn(tx) = tnfn(x).

Ser(E,F) the reflexive space of bounded entire functions f =
∑

n fn
uniformly converging on bounded sets.

Bounded Open Topology
W(BE ,VF ) = {f ∈ Ser(E ,F ) | f (BE ) ⊆ VF}

Equibounded Bornology
B s.t. ∀BE ,∃BF , f ∈ B ⇒ f (BE ) ⊆ BF

Non Linear Category

Objects: E lcts s.t. E×× ' E

Maps: Ser(E ,F )

Theorem: Ser is Cartesian Closed.
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Exponential Modality: A⇒ B =!A ( B

Exponential Functor:

!E = Ser(E ,C)× | !f : !E → !F = Ser(F ,C)×

| φ 7→ (F
h−→ C) 7→ 〈φ , E f−→ F

h−→ C〉
Dirac Mass:

∀x ∈ E , δx : f 7→ f (x) ∈!E | !E = span(δx |x ∈ E )
B

A comonad:

δ : E → !E | µ : !!E → !E = Ser(E ,C)×

x 7→ δx | φ → (E
f−→ C) 7→ 〈φ , δf 〉

Free comonoid:

c : !E⊗!E → !E | w : !E → 1 = C
δx ⊗ δy → δx+y | φ → 〈φ , λx1〉

LL Theorems:

Ser(E ,F ) ' Lin(!E ,F ) | !E⊗!F '!(E × F )
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Linear-Non Linear Adjunction

Ser Lin

L

Forget
`ccc smcc

E
f : E ⇒ F

!E
f ! :!E (!F , f !(δx) = f (x)

E
f : E ⇒ F

E
f : E ( F
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Differential Cartesian Closed Category

Some inhabitants of !E: Ser(E ,C)×

∀x ∈ E , δx : f 7→ f (x)
θn(x) :

∑
n fn 7→ fn(x)

Taylor expansion:

δx =
∑

θn(x) Ser(E ,F ) = Poln(E ,F )
B

= ⊕n ⊗̃n
E
B

(equibounded)

Bialgebra structure:

!E → !E ⊗ !E
φ 7→ φ⊗ φ

!E ⊗ !E
cE−→ !E

h 7→ φ(λx ψ(λy h(x + y)))

A derivation operator: dE ∈ Lin(E , !E )

!E ⊗ E
−⊗dE−−−−→ !E⊗!E

cE−→ !E
f−→ F

δx ⊗ y 7→ δx ⊗ lim
t→0

δty−δ0

t 7→ lim
t→0

δx+ty−δx
t 7→ lim

t→0

f (x+ty)−f (x)
t
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Related Works:

Fock Spaces [BlutePanangadenSeely]
Banach Spaces and contractive maps
A model of weakening

Köthe Spaces and Finiteness Spaces [Ehrhard]
Sequence spaces, continuous linear and entire functions

Convenient Vector Spaces [BluteEhrhardTasson]
CVS, bounded continuous linear maps, and smooth functions

Applying Quantitative Semantics to Higher-Order
Quantum Computing [PaganiValiron]

Coefficients are Positive Matrices
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Quantitative Semantics

What is it ?

Linear Logic approach to semantics

Topological vector spaces, Linear maps and Entire functions

What is it used for ?

PCoh Spaces are fully abstract for Probabilist PCF,
with T. Ehrhard and M. Pagani

A convenient model of lambda calculus,
Master dissertation of M. Kerjean

Postdoc hiring with M. Pagani

COmputing with QUAntitative Semantics [CoQuaS]

http://lipn.univ-paris13.fr/~pagani/pmwiki/

pmwiki.php/Coquas/Coquas
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