

Directed Algebraic Topology and Concurrency MSC 2014

A Geometrical Interpretation of Asynchronous Computability

joint ongoing work with Éric Goubault and Samuel Mimram

Christine Tasson

Christine.Tasson@pps.univ-paris-diderot.fr

Laboratoire PPS - Université Paris Diderot

A Geometrical Interpretation of Asynchronous Computability

Asynchronous computations

Distributed System:

A fix family of n+1 processes communicate by **Update** and **Scan** of their **local** memory into a shared **global** memory.

Asynchronous:

- For each process, the kth Scan follows the kth Update
- Update and Scan are mutually exclusive
- no delay or order restriction

Interleaving Trace:

Each execution of a protocol is given by an **interleaving trace** $T \in \{U_i, S_i \mid i \in [n] = \{0 \cdots n\}\}^*$ well-bracketted.

3 processes, 2 rounds: $U_1 U_2 S_1 U_0 S_0 S_2 U_1 U_0 S_1 U_2 S_2 S_0$

Operational Semantics

Consider a program with n+1 processes and $(r_i)_{i \in [n]}$ rounds.

State: a pair $s = (\ell, m)$ where

- $\ell = (\ell_i)_{i \in [n]}$ **local** memories (one register by process)
- $m = (m_i)_{i \in [n]}$ global memory (one register by process)

Initial state s_0 : $\ell_i = i$ and $m_i = \bot$

Semantics:

Update: *i* updates its local view into the global memory

$$(\ell_0 \ldots \ell_i \ldots \ell_n , m_0 \ldots \mathbf{m_i} \ldots m_n) \xrightarrow{U_i} (\ell_0 \ldots \ell_i \ldots \ell_n , m_0 \ldots \ell_i \ldots m_n)$$

Scan: i scans the global memory into its local view

$$(\ell_0 \dots \ell_i \dots \ell_n, m) \xrightarrow{S_i} (\ell_0 \dots \mathbf{m} \dots \ell_n, m)$$

Operational Semantics: Examples

2 processes, 2 rounds: $U_0 U_1 S_1 S_0 U_0 S_0 U_1 S_1$

Operational Equivalence

Definition:

Two interleaving traces T, T' are operationally equivalent when

$$s_0 \xrightarrow{\mathcal{T}}^* s$$
 iff $s_0 \xrightarrow{\mathcal{T}}^* s$

Generators:

The interleaving trace equivalence \approx is the smallest congruence on well-bracketed words in $\{U_i, S_i \mid i \in [n]\}^*$ such that

$$U_i U_j \approx U_j U_i$$
 and $S_i S_j \approx S_j S_i$

Proof Sketch:

Operational Equivalence

Definition:

Two interleaving traces T, T' are operationally equivalent when

$$s_0 \xrightarrow{\mathcal{T}}^* s$$
 iff $s_0 \xrightarrow{\mathcal{T}}^* s$

Generators:

The interleaving trace equivalence \approx is the smallest congruence on well-bracketed words in $\{U_i, S_i \mid i \in [n]\}^*$ such that

$$U_i U_j \approx U_j U_i$$
 and $S_i S_j \approx S_j S_i$

Proof Sketch:

A Geometrical Interpretation of Asynchronous Computability

From Interleaving Traces to Interval Order

Consider a program with n+1 processes and $(r_i)_{i\in[n]}$ rounds.

[n]-Colored Interval Order: $X = \{i^k \mid k \in [r_i], i \in [n]\}$ with

- a partial order \prec induced by **intervals** $i^k = [u_i^k, s_i^k]$
- restriction to any process *i* is a **total** order:

$$\begin{cases} i^k \prec j^l & \text{iff} \quad s_i^k < u_j^l \\ u_i^k < s_i^k \\ i^k \prec i^{k+1} \end{cases}$$

Theorem [Fishburn]: Interval orders are exactly the (2 + 2)-free posets,

$$\boxed{i^k \prec j^\ell \quad \text{iff} \quad s_i^k < u_j^\ell}$$

$$\begin{array}{cccc} i^k \prec j^\ell & \Rightarrow & s^k_i < u^\ell_j \\ i^k || j^\ell & \Rightarrow & s^k_i > u^\ell_j & \text{and} & s^\ell_j > u^k_i \end{array}$$

$$i^k \prec j^\ell$$
 iff $s_i^k < u_j^\ell$

$$i^k \prec j^\ell \Rightarrow s_i^k < u_j^\ell$$

 $i^k || j^\ell \Rightarrow s_i^k > u_j^\ell \text{ and } s_j^\ell > u_i^k$

Remark:

Relative position of Ss and Us are fixed.

Proposition: Interval Order induces equivalent interleaving traces.

A Geometrical Interpretation of Asynchronous Computability

 $U_1 U_0 S_1 S_0 U_2 S_2$ Interleaving Trace/ \approx

Directed Algebraic Topology

Pospace:
$$\mathbb{X}_n = \prod_{i \in [n]} [0, r_i] \setminus \bigcup_{\substack{i,j \in [n] \\ k \in [r_i], \ l \in [r_j]}} U_i^k \cap S_j^l$$

Directed Algebraic Topology

Pospace:
$$\mathbb{X}_n = \prod_{i \in [n]} [0, r_i] \setminus \bigcup_{\substack{i,j \in [n] \\ k \in [r_i], \ l \in [r_j]}} U_i^k \cap S_j^l$$

Dipath: $\alpha:[0,1]\to\mathbb{X}_n$ continuous and non decreasing

Directed Algebraic Topology

Pospace:
$$\mathbb{X}_n = \prod_{i \in [n]} [0, r_i] \setminus \bigcup_{\substack{i,j \in [n] \\ k \in [r_i], \ l \in [r_i]}} U_i^k \cap S_j^l$$

Dipath: $\alpha:[0,1]\to\mathbb{X}_n$ continuous and non decreasing

Dihomotopy: $h: [0,1] \times [0,1] \to \mathbb{X}_n$ continuous non decreasing

From Dipath to Interval Order

Intersection with Update and Scan hyperplanes:

From Dipath to Interval Order

Intersection with Update and Scan hyperplanes:

Interval Order: Characterized by relative position of U and S,

$$U_1^0 < S_0^1 < U_1^1$$

A Geometrical Interpretation of Asynchronous Computability

 $U_1 U_0 S_1 S_0 U_2 S_2$ Interleaving Trace/ \approx

Consider a program with n+1 processes and $(r_i)_{i \in [n]}$ rounds.

Complex of executions:

- Vertex: (process, local memory)
- Maximal Simplex: $\{(0, \ell_0), \dots, (n, \ell_n)\}$ where ℓ_i is the local view by process i of the global execution.

Consider a program with n+1 processes and $(r_i)_{i\in[n]}$ rounds.

Complex of executions:

- Vertex: (process, local memory)
- Maximal Simplex: $\{(0, \ell_0), \dots, (n, \ell_n)\}$ where ℓ_i is the local view by process i of the global execution.

Examples:

$$0,0 \perp \frac{\bullet}{0 \to 1} 1,01 \stackrel{\bullet}{0} 0,01 \stackrel{\bullet}{1 \to 0} 1, \perp 1$$

Global
$$\perp$$
 \perp \cup_0 0 \perp \cup_0 0 \perp \cup_1 \cup_1

Consider a program with n+1 processes and $(r_i)_{i \in [n]}$ rounds.

Complex of executions:

- Vertex: (process, local memory)
- Maximal Simplex: $\{(0, \ell_0), \dots, (n, \ell_n)\}$ where ℓ_i is the local view by process i of the global execution.

Examples:

$$0,0 \perp \frac{\bullet}{0 \to 1} 1,01 \frac{\bullet}{0 \to 1} 0,01 \frac{\bullet}{1 \to 0} 1, \perp 1$$

Global
$$\perp$$
 \perp \cup \cup 0 \perp \cup 1 \cup 1

Interval Order Complex

Operational Semantics: The *i*th local memory contains all the Updates preceding the last *i*th Scan.

Interval Order:

$$i^k \prec j^\ell$$
 iff $S_i^j < U_k^\ell$

$$S_i^k > U_i^\ell$$
 iff $i^k \parallel j^\ell$ or $j^\ell \prec i^k$ (1)

Asynchronous Complex: n processes, $(r_i)_{i \in [n]}$ rounds

- **Vertex:** (i^k, V_i^k) with V_i^k interval order satisfying (1),
- Maximal Simplex: $\{(0^{r_0}, V_0^{r_0}), \dots, (n^{r_n}, V_n^{r_n})\}$ if there is $X_n = \{j^{\ell} \mid j \in [n], \ \ell \in [r_i]\}$ an interval order its restriction to i^k is

$$V_i^k = \left\{ j^\ell \mid i^k \| j^\ell \text{ or } j^\ell \prec i^k \right\}$$

Interval Order Complex Examples

2 processes, 2 rounds: (no layer, no immediate snapshot)

Interval Order Complex Examples

2 processes, 2 rounds: (no layer, no immediate snapshot)

Interval Order Complex Examples

3 processes, 1 rounds: (no layer, no immediate snapshot)

Impossibility Results

Theorem [Herlihy & al.]: If the Protocol Complex is **contractible** then, the consensus is impossible.

Proof sketch:

Assume there is an algorithm δ solving the task, for any execution.

Theorem [Kozlov]:

Chromatic subdivision is collapsible, thus contractible.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subsetneq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subsetneq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subsetneq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subsetneq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subsetneq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Free Face: $\tau \subseteq \sigma$ in K, with σ the **only** such maximal simplex.

Collapses and (Colored) Joins

Join:

Collapses:

$$\chi(\Delta^I) \star \Delta^J \Rightarrow \partial \chi(\Delta^I) \star \Delta^J$$
$$\chi(\Delta^I) \star \Delta^J \Rightarrow \chi(\Delta^I) \star \partial \Delta^J$$

Equivalent presentations of Asynchronous Computations:

Collapsing path of iterated protocol complex: a procedure

What's next:

- Such equivalence for other models of communication
- Compare collapsing procedure with Kozlov procedure
- Translate collapsing path into pospace (link with Trace Space [Raussen]).