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Differential Lambda Calculus (Ehrhard-Regnier 2003, Ehrhard 2018)

Semantical observation: in quantitative models of Linear Logic,
programs are interpreted by smooth functions, hence differentiation.

Programs Functions
M, N f,g
Variable X X Variable
Abstraction Ax.M f:xe f(x) Map
Application (Ax.M)N fog:xm f(g(x)) Composition
Differentiation Dax.M - N u, x — Df.(u) Derivation



Linear and Non-Linear substitutions in Differential 1-calculus

Substitution Linear approximation

Ax.M)N —  M[x\N]
Dax.M-N — /lx.(ﬂ . N)
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Categorical Model of Differential Lambda-Calculus

(Blute-Cockett-Seely 2010,Bucciarelli-Ehrhard-Manzonetto 2010)

Definition 4.2 A Cartesian (closed) differential category is a Cartesian (closed)
left-additive category having an operator D(—) that maps a morphism f: A — B
into a morphism D(f): A x A — B and satisfies the following axioms:

D1. D(f+g) = D(f)+ D(g) and D(0) =0

D2. D(f)o(h+ k,v) = D(f)o(h,v) + D(f)o(k,v) and D(f)o(0,v) =0
D3. D(Id) = w1, D(m) = mom and D(mg) = maom

D4. D((f.9)) = (D(f), D(9))

D5. D(fog) = D(f)o(D(g),gom2)

D6. D(D(f))e((g.0),(h, k)) = D(f)o (g, k)

D7. D(D(f)) ({0, k), {g,k})) = D(D(f)) ({0, 9), {h. k})

A differential operator such that if f : A— B, then Df : AXA— B
corresponds to u, x > Df,(u) with axioms (D2) for linearity in 1st coord.



Categorical Model of Differential Linear Logic
(Blute-Cockett-Seely 2006, Blute-Cockett-Lemay-Seely 2019)

Idea: Non-Linear types are annotated with !.

Definition: A differential category is
= an additive symmetric monoidal closed category X with

= a coalgebra modality made of a (monoidal) comonad ! : X — X
together with digging ¢ :!A —!1A and dereliction € :!1A — A s.t.

= |Ais a cocommutative comonoid together with contraction
A 1A —-!AQ!A and weakening e 1A — 1

= a deriving transformation d : AQ!A —!A with commuting diagrams.

The deriving transformation maps a morphism f : A — B =lA — Bin
the cartesian closed coKleisli category into a morphism

D(f) : ASIA %1A % B.



Categorical Model of Differential Linear Logic
(Blute-Cockett-Seely 2006, Blute-Cockett-Lemay-Seely 2019)

Idea: Non-Linear types are annotated with !.

Definition: A differential category is
= an additive symmetric monoidal closed category X with

= a coalgebra modality made of a (monoidal) comonad ! : X — X
together with digging ¢ :!A —!1A and dereliction € :!1A — A s.t.

= |Ais a cocommutative comonoid together with contraction
A 1A —-!AQ!A and weakening e 1A — 1

= a deriving transformation d : AQ!A —!A with commuting diagrams.

The deriving transformation maps a morphism f : A — B =lA — Bin
the cartesian closed coKleisli category into a morphism

D(f) : ASIA %1A % B.

Problem: What is the nature of a morphism !A® (/(B®!C)® D) —!A



A term calculus for Linear-Non-Linear Logic
(Benton-Bierman-de Paiva-Hyland 1993, Barber 1996)

e e . . . Linear Non-Linear
Dual Intuitionistic Linear Logic: T' | A Ft:c

Ix:a|Avrt:b
x:a|Arx:a F'|ArAx?t:a—ob

Linear rules:

' Ars:a—b I"|Art:a
LIV | Ar{s)t: b

A, x:art:b

Non-Linear rules:

I'Ax:brx:b F'ArAx2t:a— b
I'NArs:a— b |Art:a
F'lAr(s)t:b

I', x:a|Art:b
I'NA, x:art:b

Linear-Non-Linear rule:

If A is empty, we recover Multiplicative ILL and if T" is empty, we recover
simply typed A-calculus



Axiomatic using Categories

In a category X, equipped with the right structure (SMC/ CC)
Types are interpreted as objects
Contexts are interpreted as objects (products/tensors)

Terms are interpreted as morphisms.

Substitution is interpreted as composition.

In Multiplicative Linear Logic, a proof of is interpreted as a morphism

X1 :a1,...,Xgagkt:.c as a®---®ag —ocC.

In A-calculus, a term is interpreted as a morphism

x1:iby o xpibFticC as by x---xb,—c.



Axiomatic using Multicategories

In a multicategory

Types are interpreted as objects in X
Terms are interpreted as multimorphisms

Substitution is interpreted as multicomposition.

In Multiplicative Linear Logic, a term is interpreted as a
multimorphism in a symmetric multicategory:

X]:a,...,Xp agkt:c as ai,...,ag —o C.
In A-calculus, a term is interpreted as a multimorphism in a cartesian
multicategory:

x1:by..xnib,FtcC as by,....b, —c.

Multicategories can be seen as distributors combined with a monad.
(Fiore-Plotkin-Turi 1999, Tanaka-Power 2006, Hirschowitz-Maggesi 2010)



Distributors, Kleisli Bicategories and 2-Monads

The category Rel has objects sets and morphisms F : X = Y relations
F:YxX — 2, composition Go F ={(a,c) | 3b (b,c) € GA(ab)c< F}

The bicategory Prof has objects categories and morphisms F : X -+ Y
distributors F : Y°P x X — Set and composition
GoF(ac)= [*F G(b,c)x F(a b)

A relation is X — PY with # is the powserset monad, so Rel is Setp.
A distributor is a functor X — PshY where Psh is the presheaf pseu-
domonad. The bicategory Prof is the Kleisli bicategory Catpsp

The commutative monoid monad My, extends from Set to Rel, thanks
to a distributive law of P over Mg,. (Beck 1969)

A 2-monad 7 extends from Cat to Prof, thanks to a pseudo distributive
law of Psh over 7. (Tanaka 2005, Fiore-Gambino-Hyland-Winskel 2016)




Multicategories as Distributors with Context Monad

Let 7 be a 2-monad on Cat that extends to Prof. For instance,

= L the 2-monad for free symmetric monoidal categories

= M the 2-monad for free categories with products

A multicategory can be seen as a distributor in the Kleisli bicat of 7 :
M: X+ TX M : T X°Px X — Set

Together with a monadic structure that represents:

= identity: 1= M

= multicomposition: Mo M = M




Axiomatization using Multicategories via Distributors

In a multicategory M : X -+ 7 X, thatis M : T X% x X — Set

Types are interpreted as objects in X

Terms are interpreted as elements of M

Substitution is interpreted by the monadic structure Mo M = M

In Multiplicative Linear Logic, 7 = £ with £X the free symmetric
monoidal category over X (Fiore-Gambino-Hyland-Winskel 2007)

X1 al,....Xp agkt:c as ai,...,ag —oc in M(ay...,ar);c)

In A-calculus, 7 = M with MX the free category with product over X
(Tanaka-Power 2004, Hyland 2017)

X{ by, ... x, b Ft:cC as by,....,b,—c in M(by,....b,);c)

What is 7 for a Mixed Linear-Non-Linear Calculus ? What is 7 X ?

. . ’ . ’ . .
xl.al,...,Xg.ag|x1.91,...,x,,.gnl-t.c 0



Mathematical Theory of Linear / Non-Linear Substitution

What construction to combine into a 2-monad lifting to profunctors ?

= [ free symmetric monoidal category 2-monad
L X: objects are sequences (ay, ..., a¢)
morphisms are bijections and sequence of morphisms.

= M free cateogory with products 2-monad
MX: objects are sequences (b;,...,b,)
morphisms are functions and sequence of morphisms.

= Q Mixed Iinear/ non linear 2-monad (Power-Tanaka 2005, Fiore 2006)

QX: objects are mixed sequences (ay,...,ar | by,....b,)
morphisms combine functions, bijections and sequence of morphisms.
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Colax colimits induced by a map in a 2-category K

If 2: A— Bis a map in K, then the induced colax colimit is 4

i

There are two universal aspects for 1-cells and 2-cells

B—)
A\ A¢’/ f
— T
. = / | ’
for any l;\ /ai C3Alr =1 st
B -

f r 7
— —{ 2 —{
A D =A—*sCc "D B D =8B-tsc D
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Mixing Linear and Non-Linear monads via a colimit

A map of 2-monads: 1: L — M as every category with products is a
symmetric monoidal category.

Colax Colimit over A in the 2-category of SymmMonCat satisfies

LX X A:(ay,...,ae) > (a5,....a,)
/ll % k:(a1,...,ar) + (a1,...,a¢| ")
MX — QX €:(bpe.viby) = (- |bp...b)

X1:a1,...,x¢:a |- Ft:b
“Ixiiap....xera,Ftib

a:(-|ap...,a)—(a,...,a | ")

| can substitute a linear variable with a non-linear one.
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Properties of the QX from universality for 1-cell and 2-cell

QX a category whose objects are mixed sequences (a1, ...,a¢ | by,...,b,)
and morphisms combine functions, bijections and sequence of morphisms.

= QX is a symmetric monoidal category

= QX splits through the free category with MX:

f:QX > MX - QX

(ar,....ac | by,....b)y = (ar,...,ap. b1,...by) = (- | ay,...,a, b ..., b,)

>=n

= f is a strictly idempotent comonad that is strictly monoidal:
X1 :a1,....,x¢.ar |Art:b

B:f=1 “lxtiap,..xeia, ARt b

<' |é]_""aéfaél»~~‘7én>_><al7'~"a[)|él’~‘-»én>
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Mixed Linear-Non-Linear 2-Monad

Compute a Colimit in the 2-category of Symmetric Monoidal Categories.

I ¢ = L X the free symmetric monoidal

{L %/ category X

MX — Qx = MX the free category with products

over X

Q is a 2-monad on Cat.

The proof uses universality of the colimit.

A Q-algebra is a Symmetric Monoidal Category that splits through
a Cartesian Category with coherences.
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What is a model of Linear-Non-Linear Calculus

We are looking for a multicategorical axiomatisation: M : X - QX

DONE We have defined a 2 monad Q on Cat which describes
Linear-Non-Linear contexts.

TODO To describe what is a Q-multicategory, we need to extend Q to a
pseudo-monad on the bicategory of distributors.

HOW Instead we prove that Psh lifts to pseudo Q algebras

PROBLEM The presheaf pseudo monad lifts from L-algebra (symmetric
strict monoidal category) to pseudo-L-algebra, where there are NO
COLIMITS.

IDEA Pseudo version of the characterisation of Q-algebras, together with
a strictification to recover colimits.
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Back to differential A-calculus

Mixed Linear-Non-Linear Calculus ?

= Closed structure to interpret abstractions
(Fiore-Plotkin-Turi 1999, Hyland 2017)

Differentiation u, x — Df,(u)

= Derivation operator transforms a LNL-multimap of type
(I'| b,A) — ¢ to a LNL-multimap of type (I, b | b,A) — ¢
instead of d : AQIA —!A

= Chain rule will induce an additive structure
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