
Full Abstraction
40 years of research

The Gandy Colloquium

Christine Tasson (tasson@irif.fr)

February 2020

Institut de Recherche en Informatique Fondamentale

Road map

Higher-order computability and Full Abstraction for PCF

Probabilistic Programming

Next Full Abstraction Challenges

1

Computability at higher types

Church’s Thesis (1930) (nat→ nat)
A partial function on natural numbers with first order type is
‘computable’ or ‘effectively decidable’,
if and only if it is computable by a Turing machine,
if and only if it belongs to the general recursive functions (Gödel),
if and only if it is definable in λ-calculus (Church).

Kleene’s Problem (1960-1980) (σ, τ ::= nat |σ → τ)
Characterize all partial functions with higher types that are ‘computable’
or ‘effectively decidable’.

• Realizability, used to extract concrete programs from math. proofs
• An effective version of higher-type computability in term of dialogue
• Gandy and Pani explored this direction introducing concepts such as

no dangling questions, visibility with (counter-)examples, in a
framework tracing the route to game theory

2

Programming Computable Functions (PCF) (Scott 69-Plotkin 77)

Another approach to the higher type functions computability characterization

Syntax (σ, τ ::= nat |σ → τ)

M,N,P := x |λx M | (M)N︸ ︷︷ ︸
λ-calculus

| 0 | succM︸ ︷︷ ︸
Arithmetics

| ifM = 0 thenN elseP︸ ︷︷ ︸
Conditionnal

| fixM︸ ︷︷ ︸
Recursion

Operational Semantics (Call-by-Name) (selected rules)

(λx M)N → M [N/x] fix M → (M)(fixM)
M → M ′

(M)N → (M ′)N

Denotational Semantics
Complete Partial Orders with continuous functions

• nat interpreted as flat domains with partiality with arithmetic
• fix induces partiality

3

Results relating operational and denotational semantics

Soundeness: Semantics is an invariant of computation

If M → M ′, then JMK = JM ′K.

Computational Adequacy: A perfect match at observational types

For all closed term M of type nat, M →∗ n if and only if JMK = n.

Observational equivalence:

M 'obs N if ∀C C [M]→∗ n ⇐⇒ C [N]→∗ n

Full abstraction: Correspondence at any type

M 'obs N if and only if JMK = JNK

Milner proved that there is a (unique) Fully Abstract standard model of
PCF based on the syntax.

4

Definability criteria for Full Abstraction

A definable element of the model is the semantics of a program of PCF.

Separable definability: if f 6= g definable of type τ , then there is h
definable of type τ → nat such that h ◦ f 6= h ◦ g .

Propostion Separable definability implies Full Abstraction

Proof. By contradiction, if JMK 6= JNK, then there is P such that

J(P)MK = JPK ◦ JMK 6= JPK ◦ JNK = J(P)NK

Conclude by adequacy, as (P)M is of type nat.

Milner characterisation: Full Abstraction results from

• Compact definability (all compact elements at all types are definable)

• Extensionality (elements of the model at function types are functions)

5

Quest for a syntax free description of the FA model

Examples:

• Scott Model is not FA for PCF, but for PCF+POR
(Plotkin)

• Sequential algorithm is not FA for PCF, but for PCF+catch
(Curien-Berry)

• Strongly Stable model is extensional but not compact definable
(Bucciarelli-Ehrhard)

Game semantics are compact definable but not extensional

• Games and history free strategies (Abramsky-Jagadesen-Malacaria)

• Games and innocent, well-bracketed strategies (Hyland-Ong and Nickau)

The extensional quotient is a Fully Abstract model

at any type τ , f ' g whenever h ◦ f = h ◦ g for all h : τ → nat.

6

Gandy’s inspiration

Game semantics took is root in Kleene and Gandy’s work on higher-order
computability where game ingredients appeared (dialogue, views, non
dangling questions).

It resulted in a wide range of Full Abstraction results for various
languages and effects and new insight in denotational semantics.

Open questions

• Does PCF answers the question of higher type computability ?
(There is no hope for an effective characterization of the FA model of PCF as
the observational order is undecidable for finitary PCF as shown by Loader.)

• What is the Church thesis for Higher Type ?

7

Probabilistic Programming

Bayesian Inference

Probabilistic programming languages

Every programmer can perform data analysis by describing models as
programs and key operations (inference computations are delegated to
compiler).

BUGS (Spiegelhalter et al. 1995), BLOG (Milch et al. 2005), Church (Goodman
et al. 2008), WebPPL (Goodman et al. 2014), Venture (Mansinghka et al. 2014),
Anglican (Wood et al. 2015), Stan (Stan Development Team 2014), Hakaru
(Narayanan et al., 2016) BayesDB (Mansinghka et al. 2017), Edward (Tran et
al.Tran et al. 2017), Birch (Murray et al. 2018), Turing (Ge et al. 2018), Gen
(Cusumano-Towner et al. 2019), Pyro (Bingham et al. 2019), . . .

8

https://arxiv.org/pdf/1206.3255v2.pdf
http://webppl.org/
http://probcomp.csail.mit.edu/software/venture/
https://mc-stan.org/
https://probprog.github.io/anglican/index.html
http://probcomp.csail.mit.edu/software/bayesdb/
https://birch-lang.org/
http://probcomp.csail.mit.edu/software/gen/

Sampling

Idea: How to model probability distributions by programs

1 de f p l i n k o (n) :
2 i f (n==0) :
3 r e t u r n 0
4 e l s e :
5 i f c o i n () :
6 r e t u r n p l i n k o (n−1)+1
7 e l s e :
8 r e t u r n p l i n k o (n−1)−1

By Matemateca (IME USP)

9

Sampling

Idea: How to model probability distributions by programs

1 de f p l i n k o (n) :
2 i f (n==0) :
3 r e t u r n 0
4 e l s e :
5 i f c o i n () :
6 r e t u r n p l i n k o (n−1)+1
7 e l s e :
8 r e t u r n p l i n k o (n−1)−1

sample(plinko(4))
> 2

9

Sampling

Idea: How to model probability distributions by programs

1 de f p l i n k o (n) :
2 i f (n==0) :
3 r e t u r n 0
4 e l s e :
5 i f c o i n () :
6 r e t u r n p l i n k o (n−1)+1
7 e l s e :
8 r e t u r n p l i n k o (n−1)−1

sample(plinko(4))
> 2

nSample(plinko(4), 1000)
plot(gaussian(0,1))

9

What is Bayesian Inference

Gender Bias (Laplace): Paris, from 1745 to 1770
f 0 = 241 945 females out of B0 = 493 472 births (49%).

What is the probability to be born female ?

• female births are independent and follow the same law with bias θ
• the probability to get f females out of B births is

P(f |θ,B) =
(
B
f

)
θf (1− θ)B−f

Novelty: the bias θ to be born female follows a probabilistic distribution.

Inference paradigm: what is the law of θ conditioned on f and B?

• Sample θ from a postulated distribution π (prior)
• Simulate data f from the outcome θ (likelihood)
• Infer the distribution of θ (posterior) by Bayes Law

P(θ | f ,B) = P(f | θ,B) π(θ)∫
θ
P(f | θ,B) π(θ)

= α · P(f | θ,B) π(θ)

10

What is Bayesian Inference

Gender Bias (Laplace): Paris, from 1745 to 1770
f 0 = 241 945 females out of B0 = 493 472 births (49%).

What is the probability to be born female ?

• female births are independent and follow the same law with bias θ
• the probability to get f females out of B births is

P(f |θ,B) =
(
B
f

)
θf (1− θ)B−f

Novelty: the bias θ to be born female follows a probabilistic distribution.

Inference paradigm: what is the law of θ conditioned on f and B?

• Sample θ from a postulated distribution π (prior)
• Simulate data f from the outcome θ (likelihood)
• Infer the distribution of θ (posterior) by Bayes Law

P(θ | f ,B) = P(f | θ,B) π(θ)∫
θ
P(f | θ,B) π(θ)

= α · P(f | θ,B) π(θ)

10

What is Bayesian Inference

Gender Bias (Laplace): Paris, from 1745 to 1770
f 0 = 241 945 females out of B0 = 493 472 births (49%).

What is the probability to be born female ?

• female births are independent and follow the same law with bias θ
• the probability to get f females out of B births is

P(f |θ,B) =
(
B
f

)
θf (1− θ)B−f

Novelty: the bias θ to be born female follows a probabilistic distribution.

Inference paradigm: what is the law of θ conditioned on f and B?

• Sample θ from a postulated distribution π (prior)
• Simulate data f from the outcome θ (likelihood)
• Infer the distribution of θ (posterior) by Bayes Law

P(θ | f ,B) = P(f | θ,B) π(θ)∫
θ
P(f | θ,B) π(θ)

= α · P(f | θ,B) π(θ)

10

Conditioning and inference

1 # model
2 de f f B i r t h (theta , B) :
3 i f (B == 0) :
4 r e t u r n 0
5 e l s e :
6 f = f l i p (t h e t a)
7 r e t u r n f + f B i r t h (theta , B−1)
8

9 # paramete r (p r i o r)
10 t h e t a = un i fo rm (0 , 1)
11

12 # data 1747 − 1783
13 f 0 = 241 945
14 B0 = 493 472
15

16 # i n f e r e n c e (p o s t e r i o r)
17 i n f e r (fB i r t h , theta , f0 , B0)

Idea: adjust theta distribution by comparison to data by simulation. 11

Inference by rejection sampling

1 # p r i o r : Un i t −> S
2 de f g u e s s e r () :
3 sample (un i fo rm (0 , 1))
4

5 # p r e d i c a t e : i n t x i n t −> (S −> Boolean)
6 de f checke r (f0 , B0) :
7 lambda th e t a : gB i r t h (theta , B0) == f0
8

9 # i n f e r : (Un i t −> S) −> (S −> Boolean) −> S
10 de f r e j e c t i o n (gue s s e r , ch e cke r (f0 , B0)) :
11 t h e t a = gu e s s e r ()
12 i f c h e cke r (f0 , B0) (t h e t a) :
13 r e t u r n t h e t a
14 e l s e :
15 r e j e c t i o n (gue s s e r , ch e cke r (f0 , B0))

Problem: inefficient, hence other approximated methods
12

Inference by Metropolis-Hasting

Infer θ by Bayes Law: P(θ | f ,B) = α · P(f | θ,B) π(θ)

1 # pr opo r t i o n : S x S −> f l o a t
2 de f p r o p o r t i o n (x , y) :
3 r e t u r n P(f | x , B0) / P(f | y , B0)
4

5 # Met ropo l i s−Hast ing : i n t ∗ i n t ∗ i n t −> S
6 de f me t r o p o l i s (n , f0 , B0) :
7 i f (n=0) :
8 r e t u r n f0 /B0
9 e l s e :
10 x = me t r o p o l i s (n−1, f0 , B0)
11 y = gau s s i a n (x , 1)
12 z = b e r n o u i l l i (p r o p o r t i o n (x , y))
13 i f (z == 0) :
14 r e t u r n x
15 e l s e :
16 r e t u r n y

13

Probabilistic Programming

Semantics

Problems in semantics
• Prove formally the correspondence between algorithms,

implementations and mathematics.
• Prove that two programs have equivalent behavior

Operational Semantics describes how probabilistic programs compute.

Proba(M,N) is the probability p that M reduces to N in one step,
M p−→ N defined by induction on the structure of M:

• (λx .M)N 1−→ M[N/x] • coin
1/2−→ 0 • coin

1/2−→ 1 . . .

Denotational Semantics describes what probabilistic programs compute

JMK is a probabilistic distribution, if M is a closed ground type program.

• If M has type nat, then JMK a discrete distribution over integers
• If M has type real, then JMK a continuous distribution over reals

14

Problems in semantics
• Prove formally the correspondence between algorithms,

implementations and mathematics.
• Prove that two programs have equivalent behavior

Operational Semantics describes how probabilistic programs compute.

Proba(M,N) is the probability p that M reduces to N in one step,
M p−→ N defined by induction on the structure of M:

• (λx .M)N 1−→ M[N/x] • coin
1/2−→ 0 • coin

1/2−→ 1 . . .

Denotational Semantics describes what probabilistic programs compute

JMK is a probabilistic distribution, if M is a closed ground type program.

• If M has type nat, then JMK a discrete distribution over integers
• If M has type real, then JMK a continuous distribution over reals

14

Problems in semantics
• Prove formally the correspondence between algorithms,

implementations and mathematics.
• Prove that two programs have equivalent behavior

Operational Semantics describes how probabilistic programs compute.

Proba(M,N) is the probability p that M reduces to N in one step,
M p−→ N defined by induction on the structure of M:

• (λx .M)N 1−→ M[N/x] • coin
1/2−→ 0 • coin

1/2−→ 1 . . .

Denotational Semantics describes what probabilistic programs compute

JMK is a probabilistic distribution, if M is a closed ground type program.

• If M has type nat, then JMK a discrete distribution over integers
• If M has type real, then JMK a continuous distribution over reals

14

Operational Semantics on an example
(Borgström-Dal Lago-Gordon-Szymczak ICFP’16)

de f addCoins () :
a = co in
b = co in
c = co in
re turn (a + b + c)

• (λx .M)N 1−→ M[N/x]

• coin
1/2−→ 0

• coin
1/2−→ 1 . . .

addCoins ()
1−→

a = co in
b = co in
c = co in
(a + b + c)

1/2−→
a = 0
b = co in
c = co in
(a + b + c)

1/2−→
a = 0
b = 1
c = co in
(a + b + c)

1/2−→
a = 0
b = 1
c = 1
(a + b + c)

1−→
b = 1
c = 1
(0 + b + c)

1−→ c = 1
(0 + 1 + c)

1−→ (0 + 1 + 1)
1−→ 2

15

Operational Semantics on an example
(Borgström-Dal Lago-Gordon-Szymczak ICFP’16)

de f addCoins () :
a = co in
b = co in
c = co in
re turn (a + b + c)

• (λx .M)N 1−→ M[N/x]

• coin
1/2−→ 0

• coin
1/2−→ 1 . . .

addCoins ()
1−→

a = co in
b = co in
c = co in
(a + b + c)

1/2−−→
a=0

a = 0
b = co in
c = co in
(a + b + c)

1/2−−→
b=1

1/2−−→
c=1

1 ∗−−→ 2

addCoins() 2

∗
1/8

a=1 b=1 c=0

∗1/8

a=1 b=0 c=1
∗

1/8

a=0 b=1 c=1

Proba∞(addCoins(), 2) = 3
8

15

Operational Semantics on an example
(Borgström-Dal Lago-Gordon-Szymczak ICFP’16)

de f addCoins () :
a = co in
b = co in
c = co in
re turn (a + b + c)

• (λx .M)N 1−→ M[N/x]

• coin
1/2−→ 0

• coin
1/2−→ 1 . . .

addCoins ()
1−→

a = co in
b = co in
c = co in
(a + b + c)

1/2−−→
a=0

a = 0
b = co in
c = co in
(a + b + c)

1/2−−→
b=1

1/2−−→
c=1

1 ∗−−→ 2

addCoins() 2

∗
1/8

a=1 b=1 c=0

∗1/8

a=1 b=0 c=1
∗

1/8

a=0 b=1 c=1

Proba∞(addCoins(), 2) = 3
8

15

Operational Semantics

Proba∞(M,N) is the proba. that M reduces to N in any number of steps

Behavioral equivalence:

M1 ' M2 iff ∀C [], Proba∞(C [M1], 0) = Proba∞(C [M2], 0)

1 de f addCoins1 () :
2 a = co i n
3 b = co i n
4 c = co i n
5 r e t u r n (a + b + c)

1 de f addCoins2 () :
2 b = co i n
3 a = co i n
4 c = co i n
5 r e t u r n (a + b + c)

1 de f i n f e r 1 (f0 , B0) :
2 r e j e c t i o n (gue s s e r , ch e cke r (f0 , B0)) :
3

4 de f i n f e r 2 (f0 , B0) :
5 me t r o p o l i s (f0 , B0 , 1000)

16

Semantics of a Bayesian Network (Jacobs-Kissinger-Zanasi FOSSACS’19)

P (S|W)

P (R|W)

P (G|S,R)

t f
[3/5 2/5]

[W\S t f

t 1/5 4/5
f 3/4 1/4

]

[W\R t f

t 4/5 1/5
f 1/10 9/10

]




S,R\G t f

t,t 19/20 1/20
t,f 9/10 1/10
f,t 4/5 1/5
f,f 0 1




Winter

Sprinkle

Rain

Grass

p(S) =

 ∑
a∈{t,f}

P(S|W)a,b · p(W)a


b∈{t,f}

17

Semantics of a Bayesian Network (Jacobs-Kissinger-Zanasi FOSSACS’19)

P (S|W)

P (R|W)

P (G|S,R)

t f
[3/5 2/5]

[W\S t f

t 1/5 4/5
f 3/4 1/4

]

[W\R t f

t 4/5 1/5
f 1/10 9/10

]




S,R\G t f

t,t 19/20 1/20
t,f 9/10 1/10
f,t 4/5 1/5
f,f 0 1




Winter

Sprinkle

Rain

Grass

p(W) P(S|W) = p(S)
p(W) P(R|W) = p(R)

and (p(S)⊗ p(R)) P(G |S,R) = p(G)

17

Semantics of a Bayesian Network (Jacobs-Kissinger-Zanasi FOSSACS’19)

P (S|W)

P (R|W)

P (G|S,R)∆

t f
[3/5 2/5]

[W\W⊗W t,t t,f f,t f,f

t 1 0 0 0
f 0 0 0 1

]

[W\S t f

t 1/5 4/5
f 3/4 1/4

]

[W\R t f

t 4/5 1/5
f 1/10 9/10

]




S,R\G t f

t,t 19/20 1/20
t,f 9/10 1/10
f,t 4/5 1/5
f,f 0 1




Winter

Sprinkle

Rain

Grass

p(W) ∆ (P(S|W)⊗ P(R|W)) P(G |S,R) = p(G)

17

Denotational Semantics: (Danos-Ehrhard 2011)

Probabilistic Coherent Spaces (Pcoh) an adequate model of
probabilistic functional programming with discrete probability.

Object (|X | ,P (X))
• the universe |X | is a (potentially infinite)

set of final states
• a set of vectors P (X) ⊆ (R+)|X |

closure: P(X)⊥⊥ = P(X) where
∀P ⊆ (R+)|X |, P⊥ = {v ∈ (R+)|X | ; ∀u ∈ P,

∑
a∈|X | uava ≤ 1}

bounded covering:

∀a ∈ |X | , ∃v ∈ P(X) ; va 6= 0 and ∃p > 0, ; ∀v ∈ P (X) , va ≤ p.

Type
A,B ::= nat | A → B | . . . are interpreted by objects
JAK = (|A| ,P (A)) defined by induction on A.

• unit type 1: |1| = {()} and P (1) = [0, 1]
• B = 1⊕ 1: |B| = {t, f} and P (B) = {x · t + y · f | x + y ≤ 1}

p(W) =
[
3/5, 2/5

]
∈ P (B).

• nat = 1⊕ nat: |nat| = N and P (nat) sub-proba distrib. over N
• B∗ = 1⊕ (B ⊗ B∗): |B∗| = {ε} ∪ {b1 · · · · · bn | n ∈ N, bi ∈ |B|} and

P (B∗) sub-probability distribution over words of booleans.

18

Denotational Semantics: (Danos-Ehrhard 2011)

Probabilistic Coherent Spaces (Pcoh) an adequate model of
probabilistic functional programming with discrete probability.

Object (|X | ,P (X))
• the universe |X | is a (potentially infinite)

set of final states
• a set of vectors P (X) ⊆ (R+)|X |

Type
A,B ::= nat | A → B | . . . are interpreted by objects
JAK = (|A| ,P (A)) defined by induction on A.

• unit type 1: |1| = {()} and P (1) = [0, 1]
• B = 1⊕ 1: |B| = {t, f} and P (B) = {x · t + y · f | x + y ≤ 1}

p(W) =
[
3/5, 2/5

]
∈ P (B).

• nat = 1⊕ nat: |nat| = N and P (nat) sub-proba distrib. over N
• B∗ = 1⊕ (B ⊗ B∗): |B∗| = {ε} ∪ {b1 · · · · · bn | n ∈ N, bi ∈ |B|}

and P (B∗) sub-probability distribution over words of booleans.

18

Denotational Semantics: (Danos-Ehrhard 2011)

Probabilistic Coherent Spaces (Pcoh) an adequate model of
probabilistic functional programming with discrete probability.

Object (|X | ,P (X))
• the universe |X | is a (potentially infinite)

set of final states
• a set of vectors P (X) ⊆ (R+)|X |

Type
A,B ::= nat | A → B | . . . are interpreted by objects
JAK = (|A| ,P (A)) defined by induction on A.

• unit type 1: |1| = {()} and P (1) = [0, 1]

• B = 1⊕ 1: |B| = {t, f} and P (B) = {x · t + y · f | x + y ≤ 1}
p(W) =

[
3/5, 2/5

]
∈ P (B).

• nat = 1⊕ nat: |nat| = N and P (nat) sub-proba distrib. over N
• B∗ = 1⊕ (B ⊗ B∗): |B∗| = {ε} ∪ {b1 · · · · · bn | n ∈ N, bi ∈ |B|}

and P (B∗) sub-probability distribution over words of booleans.

18

Denotational Semantics: (Danos-Ehrhard 2011)

Probabilistic Coherent Spaces (Pcoh) an adequate model of
probabilistic functional programming with discrete probability.

Object (|X | ,P (X))
• the universe |X | is a (potentially infinite)

set of final states
• a set of vectors P (X) ⊆ (R+)|X |

Type
A,B ::= nat | A → B | . . . are interpreted by objects
JAK = (|A| ,P (A)) defined by induction on A.

• unit type 1: |1| = {()} and P (1) = [0, 1]
• B = 1⊕ 1: |B| = {t, f} and P (B) = {x · t + y · f | x + y ≤ 1}

p(W) =
[
3/5, 2/5

]
∈ P (B).

• nat = 1⊕ nat: |nat| = N and P (nat) sub-proba distrib. over N
• B∗ = 1⊕ (B ⊗ B∗): |B∗| = {ε} ∪ {b1 · · · · · bn | n ∈ N, bi ∈ |B|}

and P (B∗) sub-probability distribution over words of booleans.

18

Denotational Semantics: (Danos-Ehrhard 2011)

Probabilistic Coherent Spaces (Pcoh) an adequate model of
probabilistic functional programming with discrete probability.

Object (|X | ,P (X))
• the universe |X | is a (potentially infinite)

set of final states
• a set of vectors P (X) ⊆ (R+)|X |

Type
A,B ::= nat | A → B | . . . are interpreted by objects
JAK = (|A| ,P (A)) defined by induction on A.

• unit type 1: |1| = {()} and P (1) = [0, 1]
• B = 1⊕ 1: |B| = {t, f} and P (B) = {x · t + y · f | x + y ≤ 1}

p(W) =
[
3/5, 2/5

]
∈ P (B).

• nat = 1⊕ nat: |nat| = N and P (nat) sub-proba distrib. over N

• B∗ = 1⊕ (B ⊗ B∗): |B∗| = {ε} ∪ {b1 · · · · · bn | n ∈ N, bi ∈ |B|}
and P (B∗) sub-probability distribution over words of booleans.

18

Denotational Semantics: (Danos-Ehrhard 2011)

Probabilistic Coherent Spaces (Pcoh) an adequate model of
probabilistic functional programming with discrete probability.

Object (|X | ,P (X))
• the universe |X | is a (potentially infinite)

set of final states
• a set of vectors P (X) ⊆ (R+)|X |

Type
A,B ::= nat | A → B | . . . are interpreted by objects
JAK = (|A| ,P (A)) defined by induction on A.

• unit type 1: |1| = {()} and P (1) = [0, 1]
• B = 1⊕ 1: |B| = {t, f} and P (B) = {x · t + y · f | x + y ≤ 1}

p(W) =
[
3/5, 2/5

]
∈ P (B).

• nat = 1⊕ nat: |nat| = N and P (nat) sub-proba distrib. over N
• B∗ = 1⊕ (B ⊗ B∗): |B∗| = {ε} ∪ {b1 · · · · · bn | n ∈ N, bi ∈ |B|}

and P (B∗) sub-probability distribution over words of booleans. 18

Semantics: Probabilistic Coherent Spaces (Danos-Ehrhard 2011)

Morphism MX Y ∈ (R+)|X |×|Y | is a matrix

∀x ∈ P (X)
⊆(R+)|X|

, M·x =

∑
a∈|X |

Ma,b xa


b∈|Y |

∈ P (Y)
⊆(R+)|Y |

Program
M,N ::= x | λxA.M | (M)N | fix(M) | n | coin | . . .
are interpreted by morphisms, by induction on M

• if M : A, then JMK ∈ P (A)

JnK = (0, . . . , 1
n
, 0, . . .) JcoinK = (12

0
, 12
1
, 0, . . .)

• if M : A→ B, then JMK : P (A)→ P (B) is a Taylor series

if M : 1→ 1, then JMK is smooth real function from [0, 1] to [0, 1]
if M : nat (nat, then JMK is a sub-stochastic matrix

19

Semantics: Probabilistic Coherent Spaces (Danos-Ehrhard 2011)

Morphism MX Y ∈ (R+)Mfin(|X |)×|Y | is a matrix

∀x ∈ P (X)
⊆(R+)|X|

, M(x) =

 ∑
m∈Mfin(|X |)

Mm,b
∏
a∈m

xm(a)
a


b∈|Y |

∈ P (Y)
⊆(R+)|Y |

Program
M,N ::= x | λxA.M | (M)N | fix(M) | n | coin | . . .
are interpreted by morphisms, by induction on M

• if M : A, then JMK ∈ P (A)

JnK = (0, . . . , 1
n
, 0, . . .) JcoinK = (12

0
, 12
1
, 0, . . .)

• if M : A→ B, then JMK : P (A)→ P (B) is a Taylor series

if M : 1→ 1, then JMK is smooth real function from [0, 1] to [0, 1]
if M : nat (nat, then JMK is a sub-stochastic matrix

19

Semantics: Probabilistic Coherent Spaces (Danos-Ehrhard 2011)

Morphism MX Y ∈ (R+)Mfin(|X |)×|Y | is a matrix

∀x ∈ P (X)
⊆(R+)|X|

, M(x) =

 ∑
m∈Mfin(|X |)

Mm,b
∏
a∈m

xm(a)
a


b∈|Y |

∈ P (Y)
⊆(R+)|Y |

Program
M,N ::= x | λxA.M | (M)N | fix(M) | n | coin | . . .
are interpreted by morphisms, by induction on M

• if M : A, then JMK ∈ P (A)

JnK = (0, . . . , 1
n
, 0, . . .) JcoinK = (12

0
, 12
1
, 0, . . .)

• if M : A→ B, then JMK : P (A)→ P (B) is a Taylor series

if M : 1→ 1, then JMK is smooth real function from [0, 1] to [0, 1]
if M : nat (nat, then JMK is a sub-stochastic matrix

19

Semantics: Probabilistic Coherent Spaces (Danos-Ehrhard 2011)

Morphism MX Y ∈ (R+)Mfin(|X |)×|Y | is a matrix

∀x ∈ P (X)
⊆(R+)|X|

, M(x) =

 ∑
m∈Mfin(|X |)

Mm,b
∏
a∈m

xm(a)
a


b∈|Y |

∈ P (Y)
⊆(R+)|Y |

Program
M,N ::= x | λxA.M | (M)N | fix(M) | n | coin | . . .
are interpreted by morphisms, by induction on M

• if M : A, then JMK ∈ P (A)

JnK = (0, . . . , 1
n
, 0, . . .) JcoinK = (12

0
, 12
1
, 0, . . .)

• if M : A→ B, then JMK : P (A)→ P (B) is a Taylor series

if M : 1→ 1, then JMK is smooth real function from [0, 1] to [0, 1]
if M : nat (nat, then JMK is a sub-stochastic matrix

19

Semantics: Probabilistic Coherent Spaces (Danos-Ehrhard 2011)

Morphism MX Y ∈ (R+)Mfin(|X |)×|Y | is a matrix

∀x ∈ P (X)
⊆(R+)|X|

, M(x) =

 ∑
m∈Mfin(|X |)

Mm,b
∏
a∈m

xm(a)
a


b∈|Y |

∈ P (Y)
⊆(R+)|Y |

Program
M,N ::= x | λxA.M | (M)N | fix(M) | n | coin | . . .
are interpreted by morphisms, by induction on M

• if M : A, then JMK ∈ P (A)

JnK = (0, . . . , 1
n
, 0, . . .) JcoinK = (12

0
, 12
1
, 0, . . .)

• if M : A→ B, then JMK : P (A)→ P (B) is a Taylor series
if M : 1→ 1, then JMK is smooth real function from [0, 1] to [0, 1]
if M : nat (nat, then JMK is a sub-stochastic matrix

19

Probabilistic Coherent Spaces

Sound: Deterministic case: if M → N, then JMK = JNK.

JMK =
∑

N
Proba(M,N)JNK

Adequate: If M close term of type nat, then JMKn = Proba∞(M, n)
(Danos-Ehrhard 2011) JMK sub-proba distrib. on N.

Fully abstract: JMK = JNK iff M ' N
(Ehrhard-Pagani-T. POPL’14) Based on Taylor series

This Full Abstraction result generalizes to:

• Probabilistic Games (Castellan-Clairambault-Paquet-Winskel LICS’18)

• Call-By-Push-Value (Ehrhard-T. JACM 2019)

• Quantum Programming (Clairambault-De Visme POPL’20)

20

Probabilistic Coherent Spaces

Sound: Deterministic case: if M → N, then JMK = JNK.

JMK =
∑

N
Proba(M,N)JNK

Adequate: If M close term of type nat, then JMKn = Proba∞(M, n)
(Danos-Ehrhard 2011) JMK sub-proba distrib. on N.

Fully abstract: JMK = JNK iff M ' N
(Ehrhard-Pagani-T. POPL’14) Based on Taylor series

This Full Abstraction result generalizes to:

• Probabilistic Games (Castellan-Clairambault-Paquet-Winskel LICS’18)

• Call-By-Push-Value (Ehrhard-T. JACM 2019)

• Quantum Programming (Clairambault-De Visme POPL’20)

20

Probabilistic Coherent Spaces

Sound: Deterministic case: if M → N, then JMK = JNK.

JMK =
∑

N
Proba(M,N)JNK

Adequate: If M close term of type nat, then JMKn = Proba∞(M, n)
(Danos-Ehrhard 2011) JMK sub-proba distrib. on N.

Fully abstract: JMK = JNK iff M ' N
(Ehrhard-Pagani-T. POPL’14) Based on Taylor series

This Full Abstraction result generalizes to:

• Probabilistic Games (Castellan-Clairambault-Paquet-Winskel LICS’18)

• Call-By-Push-Value (Ehrhard-T. JACM 2019)

• Quantum Programming (Clairambault-De Visme POPL’20)

20

Zoom on analytic Full Abstraction

Key idea: Prove separate definability

Assume f 6= g of type σ. Then, there is α ∈ |σ| such that fα 6= gα.

1. Define Tα(ζα) a testing term with finitely many parameters ζα
2. if ζα are replaced by small enough positive reals, then Tα is in pPCF
3. JTα(ζα)Kf is a formal series with finitely many parameters such that

JTα(ζα)Kf = · · ·+ c · fα
∏
i∈α

ζi + . . .

4. If two formal series have different coefficients, then there are reals
small enough on which they differ

5. Tα is the program that separates f and g

Definability: Pcoh morphisms are far from being definable

21

Zoom on analytic Full Abstraction

Key idea: Prove separate definability

Assume f 6= g of type σ. Then, there is α ∈ |σ| such that fα 6= gα.

1. Define Tα(ζα) a testing term with finitely many parameters ζα

2. if ζα are replaced by small enough positive reals, then Tα is in pPCF
3. JTα(ζα)Kf is a formal series with finitely many parameters such that

JTα(ζα)Kf = · · ·+ c · fα
∏
i∈α

ζi + . . .

4. If two formal series have different coefficients, then there are reals
small enough on which they differ

5. Tα is the program that separates f and g

Definability: Pcoh morphisms are far from being definable

21

Zoom on analytic Full Abstraction

Key idea: Prove separate definability

Assume f 6= g of type σ. Then, there is α ∈ |σ| such that fα 6= gα.

1. Define Tα(ζα) a testing term with finitely many parameters ζα
2. if ζα are replaced by small enough positive reals, then Tα is in pPCF

3. JTα(ζα)Kf is a formal series with finitely many parameters such that

JTα(ζα)Kf = · · ·+ c · fα
∏
i∈α

ζi + . . .

4. If two formal series have different coefficients, then there are reals
small enough on which they differ

5. Tα is the program that separates f and g

Definability: Pcoh morphisms are far from being definable

21

Zoom on analytic Full Abstraction

Key idea: Prove separate definability

Assume f 6= g of type σ. Then, there is α ∈ |σ| such that fα 6= gα.

1. Define Tα(ζα) a testing term with finitely many parameters ζα
2. if ζα are replaced by small enough positive reals, then Tα is in pPCF
3. JTα(ζα)Kf is a formal series with finitely many parameters such that

JTα(ζα)Kf = · · ·+ c · fα
∏
i∈α

ζi + . . .

4. If two formal series have different coefficients, then there are reals
small enough on which they differ

5. Tα is the program that separates f and g

Definability: Pcoh morphisms are far from being definable

21

Zoom on analytic Full Abstraction

Key idea: Prove separate definability

Assume f 6= g of type σ. Then, there is α ∈ |σ| such that fα 6= gα.

1. Define Tα(ζα) a testing term with finitely many parameters ζα
2. if ζα are replaced by small enough positive reals, then Tα is in pPCF
3. JTα(ζα)Kf is a formal series with finitely many parameters such that

JTα(ζα)Kf = · · ·+ c · fα
∏
i∈α

ζi + . . .

4. If two formal series have different coefficients, then there are reals
small enough on which they differ

5. Tα is the program that separates f and g

Definability: Pcoh morphisms are far from being definable

21

Zoom on analytic Full Abstraction

Key idea: Prove separate definability

Assume f 6= g of type σ. Then, there is α ∈ |σ| such that fα 6= gα.

1. Define Tα(ζα) a testing term with finitely many parameters ζα
2. if ζα are replaced by small enough positive reals, then Tα is in pPCF
3. JTα(ζα)Kf is a formal series with finitely many parameters such that

JTα(ζα)Kf = · · ·+ c · fα
∏
i∈α

ζi + . . .

4. If two formal series have different coefficients, then there are reals
small enough on which they differ

5. Tα is the program that separates f and g

Definability: Pcoh morphisms are far from being definable

21

Next Full Abstraction Challenges

Continuous probability semantics

Denotational Semantics A crucial challenge

" The developers of probabilistic programming languages need to ensure
that the implementation of compilers, optimizers, and inference
algorithms do not have bugs." (van de Meent-Paige-Yang-Wood 2018)

Denotational semantics allows to define the mathematical meaning of
every probabilistic program.

Problem: Measurable sets and measurable functions are not
suitable to interpret higher order functional probabilistic programming
languages.

The evaluation map ev : F(R,R)× R→ R with ev(f , r) = f (r) is not
measurable whatever measurable sets we put on the set F(R,R) of
measurable functions between reals endowed with borel sets.

(Aumann 1961)

22

Towards FA for continuous probability

Models for Higher-order languages with continuous probabilities

• Quasi Borel Spaces
(Kammar-Staton+Heunen-Yang LICS’17, +Vakar POPL’19)

• Measurable postive Cones and Stable maps
(Ehrhard-Pagani-T. POPL’18)

• Ordered Banach Spaces and Regular maps
(Dahlqvist-Kozen POPL’20)

Towards full abstraction for the measurable positive cones model

• This model is a conservative extension of Pcoh (Crubillé LICS18)

• The linear and non-linear structures of cones (Ehrhard 2020)

• Wanted: prove that morphisms are power series

23

Towards FA for continuous probability

Models for Higher-order languages with continuous probabilities

• Quasi Borel Spaces
(Kammar-Staton+Heunen-Yang LICS’17, +Vakar POPL’19)

• Measurable postive Cones and Stable maps
(Ehrhard-Pagani-T. POPL’18)

• Ordered Banach Spaces and Regular maps
(Dahlqvist-Kozen POPL’20)

Towards full abstraction for the measurable positive cones model

• This model is a conservative extension of Pcoh (Crubillé LICS18)

• The linear and non-linear structures of cones (Ehrhard 2020)

• Wanted: prove that morphisms are power series

23

Next Full Abstraction Challenges

An effective observational equivalence

Distance and Observational equivalence (Ehrhard FSCD19)

Observational equivalence: is not effective

M1 ' M2 iff ∀C [], Proba∞(C [M1], 0) = Proba∞(C [M2], 0)

Observational distance:

d

p

obs(M,N) = sup
C
|Proba∞(C

p

[M1], 0)− Proba∞(C

p

[M2], 0)|

Semantical distance: dPcoh(x , y) =‖ x − x ∧ y ‖ + ‖ x − x ∧ y ‖

Amplification Pb: dobs(coin 0, coin ε) = 1 due to C = λx .if(x ,C x , 0)

Calm down contexts: Cp = λz .C [if(coin p, z , ω)]

Theorem: correspondence between syntax and semantics

dp
obs(M,N) = 0⇒ JMK = JNK

dp
obs(M,N) ≤ p

1− pdPcoh(JMK, JNK)

24

Distance and Observational equivalence (Ehrhard FSCD19)

Observational equivalence: is not effective

M1 ' M2 iff ∀C [], Proba∞(C [M1], 0) = Proba∞(C [M2], 0)

Observational distance:

d

p

obs(M,N) = sup
C
|Proba∞(C

p

[M1], 0)− Proba∞(C

p

[M2], 0)|

Semantical distance: dPcoh(x , y) =‖ x − x ∧ y ‖ + ‖ x − x ∧ y ‖

Amplification Pb: dobs(coin 0, coin ε) = 1 due to C = λx .if(x ,C x , 0)

Calm down contexts: Cp = λz .C [if(coin p, z , ω)]

Theorem: correspondence between syntax and semantics

dp
obs(M,N) = 0⇒ JMK = JNK

dp
obs(M,N) ≤ p

1− pdPcoh(JMK, JNK)

24

Distance and Observational equivalence (Ehrhard FSCD19)

Observational equivalence: is not effective

M1 ' M2 iff ∀C [], Proba∞(C [M1], 0) = Proba∞(C [M2], 0)

Observational distance:

d

p

obs(M,N) = sup
C
|Proba∞(C

p

[M1], 0)− Proba∞(C

p

[M2], 0)|

Semantical distance: dPcoh(x , y) =‖ x − x ∧ y ‖ + ‖ x − x ∧ y ‖

Amplification Pb: dobs(coin 0, coin ε) = 1 due to C = λx .if(x ,C x , 0)

Calm down contexts: Cp = λz .C [if(coin p, z , ω)]

Theorem: correspondence between syntax and semantics

dp
obs(M,N) = 0⇒ JMK = JNK

dp
obs(M,N) ≤ p

1− pdPcoh(JMK, JNK)

24

Distance and Observational equivalence (Ehrhard FSCD19)

Observational equivalence: is not effective

M1 ' M2 iff ∀C [], Proba∞(C [M1], 0) = Proba∞(C [M2], 0)

Observational distance:

dp
obs(M,N) = sup

C
|Proba∞(Cp[M1], 0)− Proba∞(Cp[M2], 0)|

Semantical distance: dPcoh(x , y) =‖ x − x ∧ y ‖ + ‖ x − x ∧ y ‖

Amplification Pb: dobs(coin 0, coin ε) = 1 due to C = λx .if(x ,C x , 0)

Calm down contexts: Cp = λz .C [if(coin p, z , ω)]

Theorem: correspondence between syntax and semantics

dp
obs(M,N) = 0⇒ JMK = JNK

dp
obs(M,N) ≤ p

1− pdPcoh(JMK, JNK)

24

Distance and Observational equivalence (Ehrhard FSCD19)

Observational equivalence: is not effective

M1 ' M2 iff ∀C [], Proba∞(C [M1], 0) = Proba∞(C [M2], 0)

Observational distance:

dp
obs(M,N) = sup

C
|Proba∞(Cp[M1], 0)− Proba∞(Cp[M2], 0)|

Semantical distance: dPcoh(x , y) =‖ x − x ∧ y ‖ + ‖ x − x ∧ y ‖

Amplification Pb: dobs(coin 0, coin ε) = 1 due to C = λx .if(x ,C x , 0)

Calm down contexts: Cp = λz .C [if(coin p, z , ω)]

Theorem: correspondence between syntax and semantics

dp
obs(M,N) = 0⇒ JMK = JNK

dp
obs(M,N) ≤ p

1− pdPcoh(JMK, JNK)
24

Conclusion

Higher-order computability and the related Full Abstraction are
fascinating questions developed by Gandy with inspiring insights.

They generated theoretical development that had practical applications in
the programming language community.

I believe that it is not the end.

25

	Higher-order computability and Full Abstraction for PCF
	Probabilistic Programming
	Bayesian Inference
	Semantics

	Next Full Abstraction Challenges
	Continuous probability semantics
	An effective observational equivalence

