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A denotational semantics for probabilistic
higher-order functional computation,

(based on quantitative semantics of Linear Logic)

Discrete setting:

Probabilistic Coherent Spaces are fully abstract for a pro-
gramming language with natural numbers as base types
suitable to encode discrete probabilistic programs.

Continuous setting:

A CCC of measurable spaces and stable maps that soundly
denotes a programming language with reals as base types
suitable to encode continuous probabilistic programs.
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1 Discrete Probability
Syntax: Discrete Probabilistic PCF
Semantics: Pcoh (Probabilistic Coherent Spaces)
Results: Probabilistic Adequacy & Full Abstraction
Discrete Probabilistic Call By Push Value

2 Continuous Probability
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General
Framework

Domains
Semantics

Quantitative
Semantics

Types Continuous dcpos
(X ,≤)

Proba. spaces
(|X |,P (X ) ⊆ (R+)|X |)

Programs Scott Continuous Analytic Functions
Probability Proba. monad Values as proba. distr.
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General
Framework

Domains
Semantics

Quantitative
Semantics

Types Continuous dcpos
(X ,≤)

Proba. spaces
(|X |,P (X ) ⊆ (R+)|X |)

Programs Scott Continuous Analytic Functions
Probability Proba. monad Values as proba. distr.

How to interpret a program M : N ⇒ N
Type:

N⊥ flat domain,
V(N⊥) proba. distr. over N⊥,

Prog: JMK : N⊥ → V(N⊥),
Jlet n=x in MK : V(N⊥)→V(N⊥)

x 7→

(∑
n

JMKn,qxn

)
q

Type:
|Nat| = N
P (Nat) subproba. dist. over N

Prog: JMK : P (Nat)→ P (Nat)

x 7→

 ∑
µ=[n1,...,nk ]

JMKµ,q
k∏

i=1
xni


q
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Types Continuous dcpos
(X ,≤)

Proba. spaces
(|X |,P (X ) ⊆ (R+)|X |)

Programs Scott Continuous Analytic Functions
Probability Proba. monad Values as proba. distr.

Problematic in domain

Finding a full
subcategory of

continuous dcpos that is:
Cartesian Closed and
closed under the proba.

monad V.

Full Abs.: PCOH/pPCF

Red(C [M], n)
∀n, ∀C [ ]=

Red(C [N], n)
iff

JMK = JNK.
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Syntax of PPCF

Syntax of PPCF:

Types: A,B ::= N | A→ B

Terms: M,N, L ::= x | λxA.M | (M)N | YM |
coin | n | succ(M) | ifz(L,M,N)

Operational Semantics:

Red(M,N) is the probability that M reduces to N in a step.
Red((λxA.M)N,M[N/x ]) = 1, as (λxA.M)N 1→ M[N/x ]

Red(coin, 0) = Red(coin, 1) = 1
2 , as

0
coin

1
2 44

** 1

If ` M : N , then Red∞(M,_) is the discrete distribution over N of
all normal forms computed by M.
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Types as Probabilistic Coherent Spaces: (|X |, P(X ))
Proba. Space

|X |: the web, a (potentially infinite) set of final states

P (X ): a set of vectors ⊆ (R+)|X | such that

closure: P(X)⊥⊥ = P(X) with
∀u, v ∈ (R+)|X |, 〈u, v〉 =

∑
a∈|X | uava

∀P ⊆ (R+)|X |, P⊥ = {v ∈ (R+)|X | ; ∀u ∈ P, 〈u, v〉 ≤ 1}

bounded covering: ∀a ∈ |X |,
∃v ∈ P(X ) ; va 6= 0 and ∃p > 0, ; ∀v ∈ P (X ) , va ≤ p.

Proposition: Proba. spaces as Domains

(|X |,P (X )) is a Proba. space iff P (X ) is bounded covering,
Scott Closed (downwards-closed and dcpo) and Convex.

C. Tasson Introduction Discrete (Pcoh) Continuous (Cstabm) Conclusion 8/41



Types as Probabilistic Coherent Spaces: (|X |, P(X ))

Example: P(X ) ⊆ (R+)|X |

|1| = {∗} P (1) = [0, 1]
|Bool| = {t, f } P (Bool) = {(xt , xf ) ; xt + xf ≤ 1}

|Nat| = {0, 1, 2, . . . } P (Nat) = {x ∈ [0, 1]N ;
∑

n
xn ≤ 1}

|Bool→ 1| = {[tn, f m] ; n,m ∈ N},
P (Bool→ 1) = {Q ∈ (R+)|Bool→1| ;

∀xt + xf ≤ 1,
∞∑

n,m=0
Q[tn,f m] xn

t xm
f ≤ 1}

Proposition: Proba. spaces as Domains

(|X |,P (X )) is a Proba. space iff P (X ) is bounded covering,
Scott Closed (downwards-closed and dcpo) and Convex.
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A model of Linear Logic

Pcoh : Linear Category

Objects: Proba. Spaces

Morphisms: Linear Functions

Pcoh!: Kleisli Category

Objects: Proba. Spaces

Morphisms: Analytic Functions

Smcc (1,⊗,()

biproduct

Call by Name A→ B =!A ( B

CCC

(PCF+coin)

Comonad (!, der, dig)

Com. Comonoid
(!A, 1, ⊗)
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Linear Category

Pcoh(X ,Y )

Matrices Q ∈ (R+)|X |×|Y | such that:

∀x ∈ P (X ) , Q · x =

∑
a∈|X |

Qa,b xa


b

∈ P (Y )

Example

Pcoh(Nat,Nat): Stochastic Matrices Q ∈ (R+)N×N.

∀x ∈ (R+)N ;
∑
n∈N

xn ≤ 1,
∑

m,n∈N
Qm,nxn ≤ 1
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Free Commutative Comonoid and Comonad

Exponential

|!X | = Mfin (|X |) the set of finite multisets

P (!X ) = {x ! ; x ∈ P (X )}⊥⊥ where x !
[a1,...,ak ] =

∏k
i=1 xai

Example

Let Bcoin = (p, 1− p) ∈ P (Bool) = {(p, q) ; p + q ≤ 1}.

Bcoin!
[ ] = 1, Bcoin!

[t,t] = p2, Bcoin!
[t,f ] = p(1− p), . . .

Theorem (2017: Crubillé - Ehrhard - Pagani - T.)

This exponential computes the free commutative comonoid.
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P (!X ) = {x ! ; x ∈ P (X )}⊥⊥ where x !
[a1,...,ak ] =

∏k
i=1 xai

Commutative Comonoid Comonad

Cocontr.: !X c !X

−−→ !X ⊗ !X
Coweak.: !X w !X

−−→ 1

Comult.: dig!X : !!X → !X
Counit: der!X : !X → X

Theorem (2017: Crubillé - Ehrhard - Pagani - T.)

This exponential computes the free commutative comonoid.
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Non Linear Category

Pcoh!(X ,Y ) = Pcoh(!X ,Y )

Matrices Q ∈ (R+)Mfin(|X |)×|Y | such that

∀U ∈ P (!X ), Q·U =

 ∑
m∈Mfin(|X |)

Qm,b Um


b

∈ P (Y )

Non-Linear Morphisms are analytic and Scott Continuous.

Pcoh!(Bool, 1) = {Q ∈ (R+)|Bool→1| s.t. Q[tn,f m] ≤ (n+m)n+m

nn mm }

let rec f x =
if x then if x then f x

else ()
else if x then ()

else f x

denotes

∞∑
n,m=0

(n + m)!
n! m! x2n+1

t x2m+1
f
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Probabilistic Full Abstraction

Theorem (2014: Ehrhard - Pagani - T.)

Pcoh

JMK = JNK
Adequacy

=⇒
⇐=

Full Abstraction

pPCF

M 'o N
Red∞(C [M], n)

∀C [ ]∀n
= Red∞(C [N], n)

Adequacy Lemma (2011: Danos - Ehrhard):
If ` M : N , then ∀n ∈ N, JMKn = Red∞(M, n).

Adequacy proof:
If JMK = JNK then, Red∞((C)M, n) = Red∞((C)N, n)

1 Apply Adequacy Lemma : Red∞((C)M, n) = J(C)MK.
2 Apply Compositionality:

J(C)MK =
∑
µ

JCKµ
∏
α∈µ

JMKµ(α)
α =

∑
µ

JCKµ
∏
α∈µ

JNKµ(α)
α = J(C)NK
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Pcoh

JMK = JNK
Adequacy

=⇒
⇐=

Full Abstraction

pPCF

M 'o N
Red∞(C [M], n)

∀C [ ]∀n
= Red∞(C [N], n)

Adequacy Lemma (2011: Danos - Ehrhard):
If ` M : N , then ∀n ∈ N, JMKn = Red∞(M, n).

Full Abstraction proof:
Find testing terms that depend only on points of the web.
Use regularity of analytic functions.
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How to encode a LasVegas Algorithm?

Input: A 0/1 array of length n ≥ 2 s.t. 1
2 cells are 0.

0 1 2 3 4 5

0 1 0 1 1 0 f : 0, 2, 5 7→ 0
1, 3, 4 7→ 1

Output: Find the index of a cell containing 0.

Caml: let rec LasVegas (f: nat -> nat) (n:nat) =
let k = random n in

if (f k = 0) then k
else LasVegas f n

pPCF:
CBN

Y
(
λLasVegas(nat⇒nat)⇒nat⇒nat λfnat⇒natλnnat

(λknat ifz f k then k
else LasVegas f n) (rand n)
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Output: Find the index of a cell containing 0.

Caml:
let in
CBV
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Semantics gives the answer

Storage Operator

let k = rand n in if k = 0 then k else 42

Integer in Pcoh: JN K = Nat = (N,P (Nat) = {(λn) |
∑

n λn ≤ 1})

Equipped with a structure of comonoid in the linear Pcoh:
Cocontraction: cN : N → N ⊗N

Coweakening: wN : N → 1

Bibliography

1990 Krivine, Opérateurs de mise en mémoire et Traduction.
1999 Levy, Call by Push Value, a subsuming paradigm.
2000 Nour, On Storage operator.
2016 Curien, Fiore, Munch-Maccagnoni, A Theory of Effects and Resources .
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What sem. object to encode Storage Operator.

The Eilenberg Moore Category: Pcoh!

Coalgebras P = (P, hP) with P ∈ Pcoh and hP ∈ Pcoh(P, !P):

P hP //

Id ((

!P
derP
��

P

P hP //

hP ��

!P
digP��

!P !hP // !!P

Coalgebras have a comonoid structure: values can be stored.
Types interpreted as coalgebras:

!X by def. of the exp. ⊗, ⊕ and Y preserve coalgebras.

Example

Stream: Sϕ = ϕ⊗ !Sϕ List: λ0 = 1⊕ (ϕ⊗ λ0)
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Probabilistic Call By Push Value

Types:

!B

(Value) A ::= UB | A1 ⊕ A2 | 1 | A1 ⊗ A2 | α | Fixα · A

Example of natural numbers: N ::= Fixα · 1⊕ α

(Computation) B ::= FA | A ( B

Forget: A

Terms:

M ! der(M)

(Value) V ::= x | thunk(M) | iniV | () | (V ,W )

(Computation) M ::= return(V ) | force(M)

| λxA M | 〈M〉V | YM
| coin | case(M, x1 · N1, x2 · N2)

| n | succ(V ) | let(x ,V ,M) | ifz(V ,M,N)
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The Eilenberg Moore categoy and the Linear Category
Dense coalgebra

P = (P, hP) such that coalgebraic points characterize morphisms:
∀Y ∈ Pcoh and ∀t, t ′ ∈ Pcoh(P,Y ),
if ∀v ∈ Pcoh!(1,P), t v = t ′ v , then ∀u ∈ Pcoh(1,P), t u = t ′ u.

Already known for !X as: if ∀x ∈ Pcoh(1,X ), t x ! = t ′ x ! then t = t ′.

The Eilenberg Moore category Pcoh!

Value Types are interpreted as dense coalgebras
Values are morphisms of coalgebras

The Linear category Pcoh

Computation Types are interpreted in Pcoh
Computations are linear morphisms in Pcoh
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Probabilistic Full Abstraction

Theorem (2016: Ehrhard - T.)

Pcoh

JMK = JNK
Adequacy

=⇒
⇐=

Full Abstraction

pCBPV

M 'o N
Red(C [M], ())

∀C [ ]
= Red(C [N], ())

Adequacy Lemma Proof:
Handle values separately
Logical relations: fixpoint of types (hidden step indexing,
biorthogonality closure, fixpoints of pairs of logical relations)
Density: Morphisms on positive types are characterized by
their action on coalgebraic points.
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Probabilistic Full Abstraction

Theorem (2016: Ehrhard - T.)

Pcoh

JMK = JNK
Adequacy

=⇒
⇐=

Full Abstraction

pCBPV

M 'o N
Red(C [M], ())

∀C [ ]
= Red(C [N], ())

Full Abstraction Proof:
1 By contradiction: ∃α ∈ |σ|, JMKα 6= JNKα
2 Find testing context: Tα such that J〈Tα〉M !K 6= J〈Tα〉N !K

(context only depends on α)
3 Prove definability: Tα ∈ pCBPV using coin and regularity of

analytic functions and density.
4 Apply Adequacy Lemma:

Red(〈Tα〉M ! ∗−→ ()) 6= Red(〈Tα〉N ! ∗−→ ()).
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A denotational semantics for probabilistic
higher-order functional computation,

(based on quantitative semantics of Linear Logic)

Discrete setting:

Probabilistic Coherent Spaces are fully abstract for a pro-
gramming language with natural numbers as base types
suitable to encode discrete probabilistic programs.

Continuous setting:

A CCC of measurable spaces and stable maps that soundly
denotes a programming language with reals as base types
suitable to encode continuous probabilistic programs.

C. Tasson Introduction Discrete (Pcoh) Continuous (Cstabm) Conclusion 22/41



1 Discrete Probability

2 Continuous Probability
Syntax: Real Probabilistic PCF
Semantics: Cstabm (Cones and Stable measurable functions)
Results: Adequacy
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From Discrete to Continuous syntax

PPCF

Types: A,B ::= N | A→ B

Terms: M,N, L ::=
x | λxA.M | (M)N | YM |
n | succ(M) |
ifz(L,M,N) |
coin | let(x ,M,N)

Operational Semantics:
Red(coin, 0) = Red(coin, 1) = 1

2

If ` M : N , Red∞(M,_) is the
discrete distribution over N com-
puted by M.

Real PPCF

Types: A,B ::= R | A→ B

Terms: M,N, L ::=
x | λxA.M | (M)N | YM |
r | f (M1, . . . ,Mn) |
ifz(L,M,N) |
sample | let(x ,M,N)

Operational Semantics:
Red(sample,U) = λ[0,1](U)

If ` M : R, Red∞(M,_) is the
continuous distribution over R
computed by M.
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Operational Semantics

The probability to observe U after at most one reduction step
applied to M is Red( M , U )

ΛΓ`A: the set of terms M
s.t. Γ ` M : A.

ΣΛΓ`A , i.e. U is measurable:
∀n,∀S, {~r | S~r ∈ U} meas. in Rn

Red : ΛΓ`A × ΣΛΓ`A → R+ is a Kernel, i.e:
for all M ∈ ΛΓ`A, Red(M,_) is a measure;
for all U ∈ ΣΛΓ`A , Red(_,U) is a measurable function.

Measurable sets and kernels constitute the category Kern.

Red∞(M,U) is the probability to observe U after any steps.

It is computed by composition and lub.
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Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and
the value 0 with probability 1− p.

x

y
bernoulli p ::= let(x , sample, x≤p) tests if
sample draws a value within [0, p].

The exponential distribution is specified by its density e−x .

x

y
exp : R ::= let(x , sample,− log(x))
by the inversion sampling method.

The standard normal distribution defined by its density 1√
2π e−

1
2 x2

.

x

y normal ::=
let(x , sample, let(y , sample,

√
−2 log(x) cos(2πy)))

by the Box Muller method.
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Examples:

Conditioning: If U ⊆ R measurable, then observe(U) of type
R → R, taking a term M and returning the
renormalization of the distribution of M on the only
samples that satisfy U:
observe(U) = λm.Y(λy .let(x ,m, if(x ∈ U, x , y)))
conditioning by rejection sampling.

Monte Carlo Simulation, Metropolis Hasting,...
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1 Discrete Probability

2 Continuous Probability
Syntax: Real Probabilistic PCF
Semantics: Cstabm (Cones and Stable measurable functions)
Results: Adequacy
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Semantical context

1981, Kozen Memory as measurable space and programs as kernels
representing the transformation of the memory.
What is a measurable subset for function space ?

1999, Panangaden
Meas, the category of measurable sets and functions
Kern, the category of measurable sets and kernels
They are cartesian but not closed.

2017, Heunen, Kammar, Staton, Yang Quasi-borel spaces
A CCC based on Meas embedded into presheaves.
How to interpret recursive types ?

2017, Keimel and Plotkin Kegelspitzen
A CCC of dcpos equipped with a convex structure
(basic operations being scott continous) with scott
continuous functions
How to restrict to measurable functions ?
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Semantical context

If ` M : N , then JMK is a
discrete distribution over N

If ` M : R, then JMK is a
continuous measure over R

JRK as Meas(R) the set of measures over the measurable
space R.
Fixpoint of terms.

Cstabm is a CCC based on Selinger’s cones (dcpos with the
order induced by addition and a convex structure).

Objects are cones and measurable spaces
Morphisms are stable and measurable functions

Pcoh is a subcategory of Cstabm which is a subcategory of
Kegelspitzen.
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An elegant model in 3 steps

Our purpose is to be able to interpret R as the set of bounded
measures.

1 Complete cones (convex dcpos with the order induced by
addition) with Scott continuous functions
However, the category is cartesian but not closed.

2 Complete cones and Stable functions (∞-non-decreasing
functions) is a CCC.
However, not every stable function is measurable.

3 Measurable Cones (complete cones with measurable
tests). Measurable paths pass measurable tests and
Measurable functions preserve measurable paths.
Cstabm is a CCC with measurability included !
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Step 1: Complete Cones

A Cone P is analogous to a real normed vector space, except
that scalars are R+ and the norm ‖_‖P : P → R+ satisfies:

x + y = 0⇒ x, y = 0, ‖x + x′‖P ≤ ‖x‖P + ‖x′‖P , ‖αx‖P = α‖x‖P

x + y = x + y′ ⇒ y = y′
, ‖x‖P = 0⇒ x = 0, ‖x‖P ≤ ‖x + x′‖P

The Unit Ball is the set BP = {x ∈ P | ‖x‖P ≤ 1}.

Order x ≤P x ′ if there is a y ∈ P such that x ′ = x +y . This
unique y is denoted as y = x ′ − x .

A Complete Cone is s.t. any non-decreasing (xn)n∈N of BP has
a lub and ‖ supn∈N xn‖P = supn∈N ‖xn‖P .

Example of Complete Cones

Meas(X ) with X a measurable space.

X̂ = {u ∈ (R+)|X | | ∃ε > 0 εu ∈ PX} if X ∈ Pcoh.
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Step 2: Stable functions

The category of complete cones and Scott-continuous functions
is not cartesian closed as currying fails to be non-decreasing.

A function f : BP → Q is n-non-decreasing function if:
n = 0 and f is non-decreasing
n > 0 and ∀u ∈ BP, ∆f (x ; u) = f (x + u)− f (x) is

(n − 1)-non-decreasing in x .
A function is stable if it is Scott-continuous and ∞-non-
decreasing, i.e. n-non-decreasing for all n ∈ N.

Complete cones and stable functions constitute a CCC.

Weak Parallel Or

wpor : [0, 1]×[0, 1]→ [0, 1] given as wpor(s, t) = s+t−st is Scott-
continuous, but not Stable. Its currying is not Scott-continuous.
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Step 3: The Measurability Problem

Type R is interpreted as JRK = Meas(R),
Closed term ` M : R as a measure µ and
Term x : R ` N : R as a stable f : Meas(R)→ Meas(R).

Operational semantics
∀r , s.t. M → r , let(x ,M,N)→ N{r/x}

By Soundness
Jlet(x ,M,N)K =

∫
R

( f ◦ δ )(r) µ (dr)

JNK Dirac measure JMK
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Type R is interpreted as JRK = Meas(R),
Closed term ` M : R as a measure µ and
Term x : R ` N : R as a stable f : Meas(R)→ Meas(R).

Operational semantics
∀r , s.t. M → r , let(x ,M,N)→ N{r/x}

By Soundness
Jlet(x ,M,N)K =

∫
R

( f ◦ δ )(r) µ (dr)

Thus f ◦ δ needs to be measurable.

There are non measurable stable functions
We need to equip every cone with a notion of measurability
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Step 3: Measurability tests

Measurability tests of Meas(R) are given by measurable sets of R:

∀U ⊆ R measurable, εU ∈ Meas(R)′ : µ 7→ µ(U)

For needs of CCC, we parameterized measurable tests of a cone:
Measurable Cone

A cone P with a collection (Mn(P))n∈N with Mn(P) ⊆ (P ′)Rn s.t.:

0 ∈ Mn(P), ` ∈ Mn(P) and h : Rp → Rn ⇒ ` ◦ h ∈ Mp(P)

` ∈ Mn(P) and x ∈ P ⇒
{

Rn → R+

~r 7→ `(~r)(x) measurable.
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Measurable Tests, Paths and Functions

Cstabm is the category of complete and measurable cones
with stable and measurable functions.

Let P and Q be measurable and complete cones:
Measurable Test: Mn(P) ⊆ (P ′)Rn

Measurable Path: Pathn(P) ⊆ PRn the set of bounded γ : Rn → P
such that ` ∗ γ : Rk+n → R+ is measurable with

` ∗ γ : (~r ,~s) 7→ `(~r)(γ(~s))

Measurable Functions: Stable functions f : P → Q such that:

∀n ∈ N, ∀γ ∈ Pathn
1(P), f ◦ γ ∈ Pathn(Q)

If X is a measurable space, then Meas(X ) is equipped with:
Mn(X ) = {εU : Rn → Meas(X )′ s.t. εU(~r)(µ) = µ(U), U meas.}
Pathn

1(P) is the set of stochastic kernels from Rn to X .
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1 Discrete Probability

2 Continuous Probability
Syntax: Real Probabilistic PCF
Semantics: Cstabm (Cones and Stable measurable functions)
Results: Adequacy
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Results

The category Cstabm is a CCC and a model of Real PPCF.

Interpretation of some terms:
JrK = δr , JsampleK = λ[0,1], Jlet(x ,M,N)K(U) =

∫
R
JNK(δr )(U) JMK(dr)

Soundness

JMKΓ`A =
∫

ΛΓ`A
JtKΓ`ARed(M, dt)

Adequacy

JMK`R(U) = Red∞(M,U)
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Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and
the value 0 with probability 1− p.

x

y
bernoulli p ::= let(x , sample, x≤p)
Jbernoulli pK`R = pδ1 + (1− p)δ0

The exponential distribution is specified by its density e−x .

x

y exp : R ::= let(x , sample,− log(x))

JexpK`R(U) =
∫
R+
χU(s)e−sλ(ds)

The standard normal distribution defined by its density 1√
2π e−

1
2 x2

.

x

y
normal ::=
let(x , sample, let(y , sample,

√
−2 log(x) cos(2πy)))

JnormalK`R(U) = 1√
2π

∫
U

e−
x2

2 λ(dx)
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Examples:

Conditioning: If U ⊆ R measurable, then observe(U) of type
R → R, taking a term M and returning the
renormalization of the distribution of M on the only
samples that satisfy U:
observe(U) = λm.Y(λy .let(x ,m, if(x ∈ U, x , y)))
conditioning by rejection sampling.
Whenever M represents a probability distribution,
this equation gives the conditional probability:

Jobserve(U)MK(V ) = JMK(V ∩ U)
JMK(U)
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Conclusion

Pcoh and Cstabm models of probabilistic programming

For countable data types, Pcoh is fully abstract.
For real data types, Cstabm is a sound model that
encodes probability measures used in probabilistic
programming.

Further directions:
A model of LL ?
A model of pCBPV ?
Full abstraction ?
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