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Why add time ?

The gas burner example [ACHH93]

The gas burner may leak and :

I each time leaking is detected, it is repaired or stopped in less than 1s

I two leaking periods are separated by at least 30s

Leaking Not leaking

stop

start

Is it possible that the gas burner leaks during a time greater than 1
20 of the global

time after the first 60s?

Timed features are needed in the model and in the properties:

Instead of observing a sequence of events a1 a2 . . .
observe a sequence of alternating events and delays: a1 d1 a2 d2 . . .
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Timed models and their semantics

A Timed Model
is obtained from a classical one by introducing delay transitions, with a dense or
discrete time:

I either by adding clocks

I or (a particular case) by associating firing intervals with transitions.

Semantics: a Timed Transition System

Act alphabet of actions,

T = (S, s0, E) transition system

I S set of configurations, s0 initial configuration,

I E ⊆ S × Act × S contains

action transitions: s
a
−→ s′, instantaneous execution of a

delay transitions: s
d
−→ s′, time elapsing for d time units.
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Adding clocks: timed automata
a variation of [Alur Dill 1990]

The gas burner as a timed automaton

I each time leaking is detected, it is repaired or stopped in less than 1s

I two leaking periods are separated by at least 30s

Leaking
x ≤ 1

Not leaking

x ≤ 1, stop, x := 0

x ≥ 30, start, x := 0

x is a real valued clock, invariant x ≤ 1 is associated with state Leaking,
x ≥ 30 and x ≤ 1 are guards and x := 0 is a reset.

Configuration: (q, v) where q ∈ {L, NL} and v a value of clock x.
An execution:
(L, [0])

0.3
−−→ (L, [0.3])

stop
−−→ (NL, [0])

35

−→ (NL, [35])
start
−−−→ (L, [0]) · · ·

Not expressive enough for the property: Is it possible that the gas burner leaks during

a time greater than 1

20
of the global time after the first 60s?
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Semantics of timed automata
A geometric view with two clocks x et y

y ≤ 2 x ≤ 1
y = 1, y := 0

x ≤ 2, x := 0

y ≥ 2, y := 0

x = 0, y = 2
x := 0
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Adding time intervals on transitions

Example : Time Petri Nets [Merlin 1974]

... ...

...

• •

•

Clients

Server

t1, a, [1, +∞[
(service)

t2, b, [2, 2] (maintenance)

Configuration: (M, v) for a marking M
and a transition valuation v

Markings : M0 = (2, 1), M1 = (1, 1), M2 = (1, 0)

Valuation of transition t: time elapsed since t was last enabled, ⊥ if t is not enabled.
Classical semantics: when a firing occurs, an enabled transition is newly enabled if
it was disabled after the token consumption or if it is the transition fired.

An execution:
(M0, [0,0])

1.3
−−→ (M0, [1.3,1.3])

a
−→ (M1, [0,0])

2
−→ (M1, [2,2])

b
−→ (M2, [⊥, ⊥])
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Other timed models and timed logics
The gas burner

as a linear hybrid automaton

Leaking
x ≤ 1
ẏ = 1

Not leaking
ẏ = 0

x ≤ 1, stop, x := 0

x ≥ 30, start, x := 0

Add a stopwatch y and a clock z which are never reset

and use these variables in a CTL-like formula:

AG(z ≥ 60 ⇒ 20y ≤ z)

the gas burner always leaks during a time less than or equal to 1
20 of the global time

after the first 60s.

Timed temporal logics

have been defined to extend Linear Temporal Logic LTL and Computational Tree
Logic CTL.
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Verification

is often not possible

Reachability of a control state is undecidable for linear hybrid automata
[Alur et al. 1995].

but can sometimes be done
Reachability of a control state for timed automata is PSPACE-complete
[Alur, Dill 1990].

Several tools
have been developed and applied to case studies, in spite of the high complexity:

I Kronos and UppAal for timed automata

I HCMC and HyTech for linear hybrid automata (semi-algorithms)

I TSMV for automata with duration (discrete time)

I Romeo and TINA, for time Petri nets

I ...
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Which equivalence relation ?
between two timed transition systems T1 = (S1, s

0
1, E1) and T2 = (S2, s

0
2, E2)

Language equivalence

T1 and T2 are language-equivalent if they accept the same sets of timed observation
sequences (with respect to accepting conditions).

Weak timed bisimulation
With an alphabet Act containing an internal action ε, the systems T1 and T2 are
weaky timed bisimilar if there is an equivalence relation on S1×S2 such that s0

1 and
s0
2 are equivalent and:
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A global view

of timed transition systems

Discrete part
Control states/transitions

⊗ Timed part
Valuations

I Discrete part: TPNs are more expressive than TA
Unbounded TPNs can represent an infinite number of discrete states.

I Timed part: TA are more expressive than TPNs

I In TPNs, transitions are controlled by a single clock,
I clock reset is associated with newly enabled transitions,
I lazy behaviour in not possible.

For weak timed bisimilarity

Bounded-TPN �W TA [Cassez, Roux 2004] (and Bounded-TPN ⊂ TPN).
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Back to semantics

A timing property of TPNs
I Time elapsing does not disable transition firing.

I For the following TA, there is no (weakly timed) bisimilar TPN [BCHLR 2005].

x ≤ 1, a

Three questions:
I Investigate the power of reset (memory policy) in TPNs : when should a

transition be newly enabled ?

I What about comparing the models with language equivalence ?

I What is the maximal subclass of TA for which there exists a bisimilar TPN ?
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Reset in TPNs (1)

We consider three semantics
For a transition enabled after a firing:

I Intermediate (classical) semantics (I): the transition is newly enabled if it was
disabled after the consuming step or if it is the fired transition.

I Atomic semantics (A): the transition is newly enabled if it was disabled before
the firing or if it is the fired transition.

I Persistent atomic semantics (PA): the transition is newly enabled if it was
disabled before the firing.
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t2, b, [2, 2] (2p1 + p2, [0,0])
1.3
−−→ (2p1 + p2, [1.3,1.3])

a
−→ · · ·

(I): (p1 + p2, [0,0])
2
−→ (p1 + p2, [2,2])

(A): (p1 + p2, [0,1.3])
0.7
−−→ (p1 + p2, [0.7,2])

b
−→ (p1, [⊥, ⊥])

(PA):(p1 + p2, [1.3,1.3])
a
−→ (p2, [⊥,1.3])
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Reset in TPNs (2)
Why alternative semantics ?

I (PA) is closer to the semantics of TA

I (A) or (PA) are sometimes more convenient than (I):

Component Observer

p

t1, a, I1 t2, b, I2

t, c, I

I For e.g. instantaneous multicast, (PA) is more convenient than (A) or (I):

• •

•

clients

diffusion source

t, d, [1, 1]
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Reset in TPNs: results

(PA) semantics is the most expressive [BCHLR ATVA 2005]

I TPN(I) �W TPN(A) �W TPN(PA)

I (PA) is strictly more expressive than (A): TPN(A) <W TPN(PA).
For the following TPN with (PA) semantics, there is no bisimlar TPN with
(A) semantics.

t, ε, [0, 1[

I For Bounded-TPNs with upper-closed intervals, the three semantics are
equivalent: for any such net in TPN(PA), there exists a net in TPN(I) which
is bisimilar.
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Comparing with language equivalence

TPNs and TA are equally expressive [BCHLR FORMATS 2005]

Bounded-TPN =L TA

Proof
It consists in the construction of a TPN accepting the same language as a given
timed automaton A, and involves constructions of subnets encoding atomic
constraints and clock reset.

A transition e : q1
g,a,r
−−−→ q2, with g = g1 ∧ g2, is simulated by a subnet of the form:
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Proof
It consists in the construction of a TPN accepting the same language as a given
timed automaton A, and involves constructions of subnets encoding atomic
constraints and clock reset.

A transition e : q1
g,a,r
−−−→ q2, with g = g1 ∧ g2, is simulated by a subnet of the form:

Pq1

te, a, [0,∞[

Nreset

r1 rn

endr, ε, [0, 0]

Pq2

Ng1

Ng2
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Characterisation of TA bisimilar to TPNs

Find TAwb the maximal subclass of TA for which there is a bisimilar TPN

The characterisation is expressed with topological properties of the region automa-
ton, used for analysis of a timed automaton.
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• Equivalent valuations satisfy the same constraints x ./ k

• Equivalent valuations respect time elapsing

region R defined by

Ix =]0; 1[, Iy =]1; 2[

frac(x) > frac(y)

Time successor of R

Ix = [1; 1], Iy =]1; 2[
R

Action successor of R

with y := 0

Ix =]0; 1[, Iy = [0; 0]
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q1 q1
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The maximal subclass TAwb (cont.)

Sketch of the proof
I For a timed automaton A in TAwb, conditions (a), (b) and (c) hold in (a

variant of) the region automaton.
I For a TPN N with rational constants i/g, weakly timed bisimilar to A, we

consider a region automaton R(g,∞), based on an infinite grid with
granularity g.

I We prove an extended property called uniform bisimulation, which implies
conditions (a), (b), (c) for R(g,∞).

I The conditions are then lifted from R(g,∞) to R(1,∞) and then to some
R(1,K).

I Conversely, if conditions (a), (b) and (c) hold for a timed automaton A then
we can build:

I a TPN N with integer constants and size exponential w.r.t. the size of A,
I a TPN N with rational constants and size linear w.r.t. the size of A.
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Illustration of second construction
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Conclusion

Comparing Time Petri nets and Timed Automata
I can be useful for practical purposes: the tools developed for both models are

available via translation,

I provides a better view of the behaviour of timed models,

I creates a fruitful relation between the two communities.

Perspectives
I compare unfolding techniques for nets of timed automata and time Petri nets

(work in progress in the DOTS project),

I study control problems and game theory for timed models,

I specify non-interference and covert channel detection for timed systems,

I consider other quantitative extensions with costs or probabilities.
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Thank you
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