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Closure under intersection

is well known for regular languages
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Closure under intersection

is a nice property

An implementation I = L(M) cannot behave badly as specified by B = L(P):

L(M) ∩ L(P) = ∅

Build a machine A in the same class as M and P such that L(A) = L(M)∩L(P)
and test emptiness in this class.
Many other applications (see next talk).

The construction has been extended to
I automata for infinite words: Büchi

I automata for timed words: Alur - Dill 1990

automata for signal-event words

?
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Signal-Event (Timed) Automata

Asarin - Caspi - Maler 2002

q0, ok
q1, fault
x ≤ 3

q2, alarm

x = 3, ε

p, {x}

x < 3, r

r
[

q0

0

]

8.3
−−→

[

q0

8.2

]

p

−→

[

q1

0

]

· · ·

x: clock

Signal-event word : ok8.2 p fault3 alarm1.5 r . . .

I States emit (possibly hidden) signals

I Transitions emit (instantaneous, possibly silent) events

I Clocks are used for time constraints



6/21

Signal-Event (Timed) Automata

Alur - Dill 1990

q0 q1

q2

x = 3, ε

p, {x}

x < 3, r

r
[

q0

0

]

8.3
−−→

[

q0

8.2

]

p

−→

[

q1

0

]

· · ·

x: clock

time-event automata and time-event words:
8.2 p 4.5 r . . . or equivalently (p, 8.3)(r, 12.7) . . .

I States emit (possibly hidden) signals

I Transitions emit (instantaneous, possibly silent) events

I Clocks are used for time constraints
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Signal-Event (Timed) Words

I Σe finite set of (instantaneous) events

I Σs finite set of signals

I T time domain, T = T ∪ {∞}

I Σ = Σe ∪ (Σs × T)

I Notation: ad for (a, d) ∈ Σs × T

I Σ∞ : set of finite and infinite words over Σ
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Signal-Event (Timed) Words

I Σe finite set of (instantaneous) events

I Σs finite set of signals

I T time domain, T = T ∪ {∞}

I Σ = Σe ∪ (Σs × T)

I Notation: ad for (a, d) ∈ Σs × T

I Σ∞ : set of finite and infinite words over Σ

Signal stuttering

a2a3 ≈ a5, a1 ≈ a
1

2 a
1

4 a
1

8 . . ., a∞ = a2a2a2 . . .

a aε Observation of signal a is not interrupted

by an internal (instantaneous) action ε



8/21

Signal-Event (Timed) Words

Unobservable signal τ

I Useful to hide signals:

Signal-event word
hiding signals
−−−−−−−→ time-event word

a3fb1gfa2f τ3fτ1gfτ2f = (f, 3)(g, 4)(f, 4)(f, 6)

I τ0 ≈ ε : a hidden signal with zero duration is not observable.
a0 6≈ ε : a signal, even of zero duration, is observable.
τ2 6≈ ε : we still observe a time delay but the actual signal has been hidden.
Example : a2τ0a1fτ0gτ1fb2b2b2 · · · ≈ a3fgτ1fb∞

I SE (Σ) = Σ∞/ ≈ : signal-event words

I SELε : languages accepted by SE -automata

I SEL : languages accepted by SE -automata without ε-transitions
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Closure under intersection

Theorem

Classes SEL and SELε are closed under intersection

Remarks
I Easy for the class SEL or for time-event languages.

I More difficult with signals and ε-transitions due to stuttering and
unobservability of τ0.

I Asarin, Caspi and Maler 97 does not handle signal stuttering and considers
finite runs only.
Asarin, Caspi and Maler 02 deals with the intersection of time-event automata
only.

I Dima 00 gives a construction to remove stuttering for automata with a single
clock.

I Durand-Lose 04 gives a construction for intersection taking stuttering into
account but restricted to finite runs and without zero-duration signals.
His approach does not extend to infinite runs since it would introduce Zeno
runs leading to transfinite problems.



10/21

Closure under intersection

Theorem

Classes SEL and SELε are closed under intersection

Remarks
I Easy for the class SEL or for time-event languages.

I More difficult with signals and ε-transitions due to stuttering and
unobservability of τ0.

I Asarin, Caspi and Maler 97 does not handle signal stuttering and considers
finite runs only.
Asarin, Caspi and Maler 02 deals with the intersection of time-event automata
only.

I Dima 00 gives a construction to remove stuttering for automata with a single
clock.

I Durand-Lose 04 gives a construction for intersection taking stuttering into
account but restricted to finite runs and without zero-duration signals.
His approach does not extend to infinite runs since it would introduce Zeno
runs leading to transfinite problems.



10/21

Closure under intersection

Theorem

Classes SEL and SELε are closed under intersection

Remarks
I Easy for the class SEL or for time-event languages.

I More difficult with signals and ε-transitions due to stuttering and
unobservability of τ0.

I Asarin, Caspi and Maler 97 does not handle signal stuttering and considers
finite runs only.
Asarin, Caspi and Maler 02 deals with the intersection of time-event automata
only.

I Dima 00 gives a construction to remove stuttering for automata with a single
clock.

I Durand-Lose 04 gives a construction for intersection taking stuttering into
account but restricted to finite runs and without zero-duration signals.
His approach does not extend to infinite runs since it would introduce Zeno
runs leading to transfinite problems.



10/21

Closure under intersection

Theorem

Classes SEL and SELε are closed under intersection

Remarks
I Easy for the class SEL or for time-event languages.

I More difficult with signals and ε-transitions due to stuttering and
unobservability of τ0.

I Asarin, Caspi and Maler 97 does not handle signal stuttering and considers
finite runs only.
Asarin, Caspi and Maler 02 deals with the intersection of time-event automata
only.

I Dima 00 gives a construction to remove stuttering for automata with a single
clock.

I Durand-Lose 04 gives a construction for intersection taking stuttering into
account but restricted to finite runs and without zero-duration signals.
His approach does not extend to infinite runs since it would introduce Zeno
runs leading to transfinite problems.



10/21

Closure under intersection

Theorem

Classes SEL and SELε are closed under intersection

Remarks
I Easy for the class SEL or for time-event languages.

I More difficult with signals and ε-transitions due to stuttering and
unobservability of τ0.

I Asarin, Caspi and Maler 97 does not handle signal stuttering and considers
finite runs only.
Asarin, Caspi and Maler 02 deals with the intersection of time-event automata
only.

I Dima 00 gives a construction to remove stuttering for automata with a single
clock.

I Durand-Lose 04 gives a construction for intersection taking stuttering into
account but restricted to finite runs and without zero-duration signals.
His approach does not extend to infinite runs since it would introduce Zeno
runs leading to transfinite problems.



10/21

Closure under intersection

Theorem

Classes SEL and SELε are closed under intersection

Remarks
I Easy for the class SEL or for time-event languages.

I More difficult with signals and ε-transitions due to stuttering and
unobservability of τ0.

I Asarin, Caspi and Maler 97 does not handle signal stuttering and considers
finite runs only.
Asarin, Caspi and Maler 02 deals with the intersection of time-event automata
only.

I Dima 00 gives a construction to remove stuttering for automata with a single
clock.

I Durand-Lose 04 gives a construction for intersection taking stuttering into
account but restricted to finite runs and without zero-duration signals.
His approach does not extend to infinite runs since it would introduce Zeno
runs leading to transfinite problems.



11/21

Closure under intersection

Theorem

Classes SEL and SELε are closed under intersection



11/21

Closure under intersection

Theorem

Classes SEL and SELε are closed under intersection

Basic technique for SEL or time-event words

p1

a, I1

q1

b, J1

g, f, α p2

a, I2

q2

b, J2

h, f, β

p1, p2

a, I1 ∧ I2

q1, q2

b, J1 ∧ J2

g ∧ h, f, α ∪ β
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Closure under intersection

Theorem

SELε is closed under intersection

Problem 1 : stuttering with unobservability of τ
0

B1:
p1

a

p2

a

p3

τ

p4

b
ε

ε

ε

ε

B2:
q1

τ

q2

a

q3

b

ε

ε

ε
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Closure under intersection
Theorem

SELε is closed under intersection

Problem 1 : stuttering with unobservability of τ
0

B1:
p1

a

p2

a

p3

τ

p4

b
ε

ε

ε

ε

B2:
q1

τ

q2

a

q3

b

ε

ε

ε

Problem 2 : finite and infinite runs

A1 : a a
x ≥ 1, ε

A2 :
a

y < 1
ε

L(A1) ∩ L(A2) = {a1} a1 ≈ a
1

2 a
1

4 a
1

8 . . .
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Stuttering with unobservability of τ
0

Connecting modules for a-blocks with synchronous transitions

a-block
A1 ⊗ A2

b-block
A1 ⊗ A2

τ -block
A1 ⊗ A2

f f

f

f | ε

f | ε

f | ε

f | ε
f | ε

f | ε

All transitions reset a new clock z
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Stuttering with unobservability of τ
0

Building maximal a-blocks

States : (a, p, q, i), where i is the synchronization mode.

a, −, −, 1
a, true

a, −, −, 0
τ, z ≤ 0

a, −, −, 2
τ, z ≤ 0

with a 6= τ and asynchronous ε-transitions that reset clock z.
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Example
The a-block for B1 and B2

p1

a
p2

a
p3

τ
p4

b
ε

ε

ε

ε q1

τ
q2

a
q3

b

ε

ε

ε

a, p1, q1, 0
τ, z ≤ 0

To be completed with a τ -block and a b-block.
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Example
The a-block for B1 and B2

p1

a
p2

a
p3

τ
p4

b
ε

ε

ε

ε q1

τ
q2

a
q3

b

ε

ε

ε

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p1, q2, 1
a

To be completed with a τ -block and a b-block.
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Example
The a-block for B1 and B2

p1

a
p2

a
p3

τ
p4

b
ε

ε

ε

ε q1

τ
q2

a
q3

b

ε

ε

ε

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p1, q2, 1
a

a, p3, q1, 0
τ, z ≤ 0

a, p3, q2, 0
τ, z ≤ 0

a, p2, q2, 1
a

a, p1, q1, 2
τ, z ≤ 0

a, p2, q1, 2
τ, z ≤ 0

a, p3, q1, 2
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

To be completed with a τ -block and a b-block.
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Example (cont.)

Connecting the blocks

· · ·

.... . .

a, p2, q2, 1
a

a, p2, q1, 2
τ, z ≤ 0

a, p3, q1, 2
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

b, p3, q3, 0
τ, z ≤ 0

b, p4, q3, 1
b

b, p4, q1, 0
τ, z ≤ 0

b, p3, q1, 0
τ, z ≤ 0

τ, p3, q1, 1
τ
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Finite and infinite runs

Theorem : a normal form for SE-automata

Let A be a SE-automaton. We can effectively construct an equivalent SE-automaton
A′ such that:

1. no infinite run of A′ accepts a finite word with finite duration, and

2. no finite run of A′ accepts a word with infinite duration.

Remarks
I The construction removes Zeno runs accepting finite runs with finite duration:

replacing for instance an infinite ε-loop producing a
1

2 , a
1

4 , a
1

8 . . . by a finite
run producing a1.

I Easy if Zeno runs or ε-transitions are forbidden.

I The result is interesting in itself to obtain a more realistic implementation of
an arbitrary SE-automaton.
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Finite and infinite runs
Theorem: a normal form for SE-automata

Let A be a SE-automaton. We can effectively construct an equivalent SE-automaton
A′ such that:

1. no infinite run of A′ accepts a finite word with finite duration, and

2. no finite run of A′ accepts a word with infinite duration.

Main problem

We have to replace infinite accepting ε-loops

by finite accepting runs.
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A′ such that:

1. no infinite run of A′ accepts a finite word with finite duration, and

2. no finite run of A′ accepts a word with infinite duration.

Main problem

We have to replace infinite accepting ε-loops

a
I1

g0, f, α0 a
I2

τ
I3

g1, ε, α1 g2, ε, α2

g3, ε, α3

by finite accepting runs.
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Finite and infinite runs
Theorem: a normal form for SE-automata

Let A be a SE-automaton. We can effectively construct an equivalent SE-automaton
A′ such that:

1. no infinite run of A′ accepts a finite word with finite duration, and

2. no finite run of A′ accepts a word with infinite duration.

Main problem

We have to replace infinite accepting ε-loops

a
I1

g0, f, α0 a
I2

τ
I3

g1, ε, α1 g2, ε, α2

g3, ε, α3

by finite accepting runs.

a
I1

g0, f, α0
· · ·

a
I

g, ε, α
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Example

Simulating the loop

q0 q1, a
f, {y}

q2, a
q3, τ
y ≤ 3

y > 1, ε, {x} x > 0, ε
ε
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Example

Simulating the loop

q0 q1, a
f, {y}

q2, a
q3, τ
y ≤ 3

y > 1, ε, {x} x > 0, ε
ε

q0 q1, a
f, {y}

q2, a
q3, a
y ≤ 3

y > 1, ε, {x}

x > 0 ∧ y ≥ 1
ε, {z}

q1, q3, a

ε, {z}

q2, q3, a
y > 1

ε, {x, z}

q3, q3, a
y ≤ 3 ∧ z ≤ 0

x > 0
ε, {z}

qf , a
y ≤ 3

ε, {z}
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Conclusion

I Extending classical results to SE-automata is not always easy due to
ε-transitions, signal stuttering, unobservability of τ0, Zeno runs, . . .

I We have proved closure under intersection for the general case of languages
accepted by SE-automata.

I Signal-event words are natural objects for studying refinements and
abstractions, see next talk.


	Introduction
	Signal-Event (Timed) Words and Automata
	Closure under intersection
	Conclusion

