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Verification

Verification problems are mostly undecidable on hybrid systems

Decidability requires restricting:
either the flows [Henzinger et al. 1998]

for instance with clocks: x = 1 in all modes

or the jumps [Alur et al. 2000]

using for instance strong resets between modes

Other approaches
like
bounded delay reachability,

or approximations by discrete transition systems.
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Reachability using cylindrical decomposition
Algorithmic issues

A result on Dynamical Systems
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Timed automata

Variables: clocks with flow x = 1 for each x € X
Guards: conjunctions of x > k, with k € N and 1 in {<, <, =, >, >}
Updates: conjunctions of reset x := 0

Clock valuation: v = (v(x1),...,v(xn)) € RT if X = {x1,...,xs}

A geometric view of a trajectory

' x<1lay:=0 'x:lAy<1,b,x::0'
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Reachability

Semantics of A
with clocks X = {xi,...,x,}, set of modes Q, set of transitions E:
a transition system 74 with
» configurations: (q,v) € Q x R’

> time steps: (q,v) LN (g,v+d)

8,a,r

» discrete steps: (g,v) = (¢’, V') for a transition e = g £25
An execution is a sequence alternating time and discrete steps.

values v satisfy the guard g and v/ = v[r]

g’ in E if clock

Reachability problem

Given A and gr € Q

is there an execution from initial configuration so = (g, 0) to (gr, v)
for some valuation v ?




A finite quotient for timed automata

[Alur, Dill, 1990]
From A, build a finite automaton Reg(.A) preserving reachability.

Equivalence ~ over R’ producing a partition R of regions

The automaton Reg(.A) is time-abstract bisimilar to T4:
set of states @ x R,
abstract time steps (g, R) — (g, succ(R)) consistent with time elapsing in T4,
discrete steps (g, R) = (g, R') consistent with discrete transitions in 7.
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Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

7z

number of regions in O(|X|! - mXI)

e Equivalent valuations must be consistent with constraints x > k

e Equivalent valuations must be consistent with time elapsing



Quotient construction
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y - region R defined by
O<x<landl<y<?2
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Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

[

region R defined by
O<x<landl<y<?2
and y <x+1

Time successor of R
x=landl<y<?2

Discrete step from R
with y :==0
0O<x<landy=0
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Polynomial constraints with parameters

Landing a rocket

First stage (lasting x1) in state qo:
From distance d, the rocket approaches the land under gravitation g;

Second stage (lasting xo, while xy is frozen) in g1:
The rocket approaches the land with constant deceleration h < 0;

Third stage: The rocket must reach the land
with small positive speed (less than ).

@ lod+gax+ihd =dA0<gq+ho<e @_}

For all g € [7,10]
does there exist an h € [-3, —1]
such that the rocket is landing?




Interrupt clocks

Many real-time systems include interruption mechanisms (as in processors).

Several levels with exactly one active clock at each level

level 4 >
| :
1 1
level 3 ¢—" :
| 1
! :
level 2 : !
l :
1
level 1 — - ..
X4 0 0 0 0 0
X3 1 0| 1s 0 2.1 21 | 17 0 2.2 0
e | B€C | o 0 0 o | | o
X1 0 1.5 1.5 1.5 3.7



Polynomial Interrupt Timed Automata

In the class POLITA

» variables are interrupt clocks with flow x =0 or x =1
ordered along hierarchical levels,

» guards are polynomial constraints
and variables can be updated by polynomials.

X'z:l@ %gX12+gX1Xz+%hX§=d/\0§gxl+th<8®
%1 =0

x> =0

xp =1

Main result: Reachability is decidable in 2EXPTIME
[BHPSS 15]



PollITA: Syntax

clocks X = {xq,...,x,} with x, active at level k,

set of modes @ with A : @ — {1,..., n} the state level,

Guards: conjunctions of polynomial constraints

P10 with xin {<,<,=,>,>}, and P € Q[xi, ..., x| at level k.
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PollITA: Syntax

clocks X = {x1,...,xn} with xx active at level k,

set of modes Q with A : Q — {1,..., n} the state level,

Guards: conjunctions of polynomial constraints

P10 with xiin {<,<,=,>,>}, and P € Q[xi, ..., x| at level k.

(xa :=0)
> 252, (e
22 ! X2 =x2 —x

(x1 :=x1)
(Ch, 2) ' ! (q27 4)
Updates for increasing levels k < k'

Level i > k: reset

Level k: unchanged or polynomial update x, := P for some P € Q[x1, ..., Xk—1]
Level i < k: unchanged.
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PollITA: Syntax

clocks X = {x1,...,xn} with xx active at level k,

set of modes Q with A : Q@ — {1,..., n} the state level,

Guards: conjunctions of polynomial constraints

P10 with xiin {<,<,=,> >}, and P € Q[xi, ..., x| at level k.

(x4 :=0) (x4 :=0)

x3:=0 =
Xo > 2X12’ )((23:: Xlz)_ x1 X4 = 3X12X2 + X3, g; — 2;
=X (x : )

@)

Updates for decreasing levels k > k'’

Level i > k’: reset
Otherwise: unchanged.




PollTA: semantics

Clock valuations: v = (v(x1),...,v(xy)) € R"

The semantics of A is the transition system T4

» configurations S = Q x R”, initial configuration sy = (qo, 0)

> time steps from q at level k: (q,v) 9, (g, v +« d), only x¢ is active, with all
clock values in v +4 d unchanged except (v 4+« d)(xx) = v(xk) + d

» discrete steps (g,v) = (g’, V') for a transition e : g £20, o if v satisfies the
guard g and v/ = v[u].

An execution is a sequence alternating time and discrete steps.



Semantics: example

xt>x1+1,a, x:=0

2 i1 (2 —1)x¢ >1, b
X X , a
q0, ———— w2 @2

x <5—x% ¢

X2
b
\ b: x> 4
< c: x» <3.56
b
:
2
a \ X1
— T \

(90,0,0) 23 (g0, 1.2,0) 2 (q1,1.2,0) 2% (g1,1.2,0.97) 2 (gp,1.2,0.97)....
Blue and green curves meet at real roots of —2x° + xi + 20x7 — 10x? — 50x; + 26.



Reachability problem for PollTA

Build a finite automaton Reg(.A) time-abstract bisimilar to 74

states: (g, C) for suitable sets of valuations C C R”,
where polynomials of A have constant sign (and number of roots),

abstract time steps: (g, C) — (q, succ(C)) consistent with time elapsing in
Ta,
discrete steps: (g, C) <> (¢’, C) consistent with discrete transitions in 4.

The sets C will be cells from a cylindrical decomposition (CAD)
adapted to the polynomials in A.



CAD: basic example

The decomposition starts from a set of polynomials and proceeds in two phases:
Elimination phase and Lifting phase.

Starting from single polynomial P; = x¥ + x5 + x3 — 1 € Q[xy, x2][x3]

Elimination phase
Produces polynomials in Q[x, x2] and Q[x1] required to determine the sign of Ps.
First polynomial P, = x? + x5 — 1 is produced.
If P> > 0 then Pz has no real root.

If P, =0 then P3; has 0 as single root.
If P, < 0 then P; has two real roots.

In turn the sign of P, € Q[xi][x2] depends on P; = x? — 1.

Lifting phase

Produces partitions of R, R? and R3 organized in a tree of cells
where the signs of these polynomials (in {—1,0,1}) are constant.



Lifting phase

" Level 1: partition of R in 5 cells
/// _ Cfoo = _007_1[7 C,].:{—l},CO :]_171[a

Ci = {1}, Cyoo =1, +o]




Lifting phase

Level 2 : partition of R?

Above C_,: a single cell C_ xR

Above C_1: three cells

{=1}x] = 00,0[ {(=1,0)}, {-1}x]0, +-oc]

Level 1 : partition of R in 5 cells
Cfoo =] — o0, _1[7 C,]. - {_1}7 CO :] - 17 1[a
G = {1}7 Cioo :]1’ +OO[
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Level 2 above (

—l<x <1

o> V1=K

C —l<x <1

0.1 x2 = /1 —x2

—1l<x<1

b Cop “VI-xd <xe<y1-x

C -1l<x<l1

R

—l<x<1

Co,—o0 X < —y/1—x2




The tree of cells

RO
7
c_oo/ C., G G \c+oo
{—1}><]—oo,0[\ \/ ¥ ¥ \ ¥
C_oo xR {(=1,0} Cioo xR
{—1}x]0, +o0o[
C—oo X Rz {_1}X]Ov "_OO[X]R C+oo X Rz
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Building the quotient

using the sphere case with some refinements:

xt4+x3 <1

O<x <1

level 1: Ry = (X1 = 0), Ry = (0 <x < 1),
level 2 above Ry: Rig = (Ri,x2 = 0), Ri1 = (R1,0 < x2 < /1 — x3),
level 3 above Ri1: Ri19 = (R11,X3 = 0), Ri11 = (R11,0 < x3 < 4/1 —X12 —X2),
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Building the quotient

using the sphere case with some refinements:

xt4+x3 <1

O<x <1

level 1: Ry = (X1 = 0), Ry = (0 <x < 1),
level 2 above Ry: Rig = (Ri,x2 = 0), Ri1 = (R1,0 < x2 < /1 — x3),
level 3 above Ri1: Ri19 = (R11,X3 = 0), Ri11 = (R11,0 < x3 < 4/1 —X12 —X2),

Riiz = (Ri1,x3 = /1 — x2 — x2), Ri1z = (Ri1,x3 > /1 — x? — x2),

and back to level 1



Effective construction: Elimination

From an initial set of polynomials, the elimination phase produces in 2EXPTIME a
family of polynomials P = {Px}k<n with Px C Q[x1, ..., xk] for level k.

Some polynomials do not always have the same degree and roots.
For instance, B = (2x; — 1)x3 — 1 is of degree 2 in x; if and only if x; # 3.

For A,
Starting from {x1,A} and {x;,B,C} with A=x —x; —1land C =x +xZ -5
results in

7)1 - {X17A7Da EvFa G},

772 = {XQ, B, C},
with D = 2x; — 1, E = X12 -5 F = —2Xi5 —|—X{1 + 20x13 — 10x12 — 50x; + 26,
G = 4(2X1 — 1)2



Effective construction: Lifting

To build the tree of cells in the lifting phase, we need a suitable representation of
the roots of these polynomials (and the intervals between them), obtained by
iteratively increasing the level.

A description like x3 > /1 — x2 — x2 cannot be obtained in general.

» A point is coded by “the n'" root of P".
» The interval ](n, P), (m, Q)[ is coded by a root of (PQ)’.

This lifting phase can be performed on-the-fly, producing only the reachable part of
the quotient automaton Reg(A).
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Dynamical systems
A dynamical system is a hybrid system with:
> a single system mode,
» several possible trajectories,
» and guards.

hence non-deterministic choice when more than one are available,
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Dynamical systems

A dynamical system is a hybrid system with:

> a single system mode,

» several possible trajectories,
hence non-deterministic choice when more than one are available,

» and guards.

y = system state

.ymaX
v Gy
i
| G
ymi)r:3 2

Transition system:

y1="Ff(t1) = yo = f(t2) = g(tz) = y3 = g(ta)
thh <t t3 <ty



Notations and examples
A dynamical system (M, ~):

» M =(M,<,...) a linearly ordered structure,

syt Vi x V= Wy for Vi C MR,V C M, Vo C Mk, all (FO-)definable in M,
and a finite set of guards: definable subsets of V5.
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Notations and examples
A dynamical system (M, ~):

» M =(M,<,...) a linearly ordered structure,
>y Vi x V=V, for V) C Mk1

VM, V,C
and a finite set of guards: definable subsets of V,
Clocks have dynamics v : R’}

C M’ all (FO-)definable in M,

[0, +oo[— RY with y(v, t)

:'YV(t):V+t




Notations and examples
A dynamical system (M, ~):

» M =(M,<,...) a linearly ordered structure,

syt Vi x V= Wy for Vi C MR,V C M, Vo C Mk, all (FO-)definable in M,
and a finite set of guards: definable subsets of V5.

th —1 0

t. 1152

3t

4
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Bisimulations for dynamical systems

Bisimulations:

» Splitting system states (V,) according to similar behaviours (consistent with
guards and time elapsing)

» k-step bisimulation: similar behaviours up to k steps.

Bisimulation is undecidable
but under mild assumptions, k-step bisimulation is decidable for all kK > 0.

Theorem [Lafferriere, Pappas, Sastry 2000]

Bisimulation is decidable and induces a finite partition when:

v :R"” x R — R" is solution of dy(x, t)/dt = F(y(x, t)) definable in an o-minimal
theory of R.
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O-minimal structures

A linearly ordered structure (M, <,

) is o-minimal
if every definable set is a finite union of intervals with bounds in My .

.and counter-examples:

A few examples: (R, <, +, %), (Q,<,1,+), (Zx0, <), (R, <, +, X, exp)
» (Q <+, %)

> (Zz0,<,+)
» (R, <, sin)

<141 —V2<x<V2
Jdz,x =z+z & x is even

sin(x) =0 x enZ



Properties
[Pillay, Steinhorn 88]

Property 1
Let (M,<,...) be o-minimal and f : M — M be definable. There exists a finite

Ny

partition (Z1,...,Zx) of M into intervals s.t., for all j < k:
1. f|Ij is constant, or
2. f|z, is one-to-one and monotonic, and f(Z;) is an interval.
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Property 1
Let (M, <,...) be o-minimal and f : M — M be definable. There exists a finite

»

partition (Zy,...,Zx) of M into intervals s.t., for all j < k:
1. f|Ij is constant, or
2. f|z; is one-to-one and monotonic, and f(Z;) is an interval.

f(t)
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Result
[BBJ 18]
Generalising Lafferriere et al.:

» o-minimal real theory = — any o-minimal theory
> trajectories partition R” — trajectories may overlap

In an o-minimal dynamical system

if Vi(x) Qef {x" | x ~* x'} is finite for all x, (FINITE CROSSING)
the bisimulation relation is decidable; (if the theory is decidable)
if the sizes |Vj(x)| are uniformly bounded, (UNIFORM CROSSING)

the bisimulation relation is definable and induces finite partition.

\fxl X1~ X2
x1 74 x3
. X2 ~ X3

X1 ~* X3




Idea of the proof

First step: decomposition
For all x € V4 with dynamics 7y:
Produce a classification of time intervals into x-static or x-adaptable intervals.

If Vi(x) ={x" € Vi | x ~ x'} is finite, then there is a finite definable partition
of the time set v into maximal x-static and x-adaptable intervals.

For those Z, all states in 74(Z) are bisimilar.



Idea of the proof

First step: decomposition
For all x € V4 with dynamics 7y:
Produce a classification of time intervals into x-static or x-adaptable intervals.

If Vi(x) ={x" € Vi | x ~ x'} is finite, then there is a finite definable partition
of the time set v into maximal x-static and x-adaptable intervals.

For those Z, all states in 74(Z) are bisimilar.

Second step: building a bisimulation graph
with nodes (x,Z) for the intervals above,
edges (x,Z) — (x,J) that represent time elapsing on 7y,
e-edges (x,Z) — (x’,Z') that represent jumps between trajectories.
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Conclusion

Summary

» Reachability is decidable in two models without strong resets: Timed
Automata and Polynomial Interrupt Timed Automata.

» Bisimulation is decidable in a richer model of dynamical systems, which can
immediately be extended with modes and strong resets.

Going further

» Refine the crossing conditions,

» Add modes with weaker jump conditions.
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» Bisimulation is decidable in a richer model of dynamical systems, which can
immediately be extended with modes and strong resets.

Going further

» Refine the crossing conditions,

» Add modes with weaker jump conditions.

Thank you
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