Verification of Hybrid Systems

Béatrice Bérard

Sorbonne Université —LIP6

Based on joint work with:
P. Bouyer, S. Haddad, V. Jugé, C. Picaronny, M. Safey El Din, M. Sassolas

GALA, December 14th, 2019

Hybrid systems

DA

Hybrid systems

©

3

@ta rget
warm

cold

e)outside

Two modes:
1. Heater ON: © = 0(Otarget — O)
2. Heater OFF: © = B(Ooutside — ©)

A 4

Hybrid systems

eta rget

eoutside

Two modes:

1. Heater ON: © = 0(Otarget — O)

2. Heater OFF: © = B(Ooutside —

Duality between:
» Discrete set of system modes

» Continuous system evolution

©
N
warm
cold oo
> t
0
©)
_ cold
on | | oFF
warm

Thanks to V. Jugé

Verification

Verification problems are mostly undecidable on hybrid systems

Decidability requires restricting:
either the flows [Henzinger et al. 1998]

for instance with clocks: x = 1 in all modes

or the jumps [Alur et al. 2000]

using for instance strong resets between modes

Other approaches
like
bounded delay reachability,

or approximations by discrete transition systems.

Outline
Timed Automata from Alur, Dill (1990)
Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition
Algorithmic issues

A result on Dynamical Systems

DA

Timed automata

Variables: clocks with flow x = 1 for each x € X
Guards: conjunctions of x > k, with k € N and 1 in {<, <, =, >, >}
Updates: conjunctions of reset x := 0

Clock valuation: v = (v(x1),...,v(xn)) € RT if X = {x1,...,xs}

A geometric view of a trajectory

' x<1lay:=0 'x:lAy<1,b,x::0'

Timed automata

Variables: clocks with flow x =1 for each x € X

Guards: conjunctions of x 1 k, with k € N and xin {<,<,=,>,>}

Updates: conjunctions of reset x := 0

Clock valuation: v = (v(x1),...,v(xn)) € RT if X = {x1,...,xs}

A geometric view of a trajectory

' x<1lay:=0 'x:lAy<1,b,x::0'

Timed automata

Variables: clocks with flow x =1 for each x € X

Guards: conjunctions of x 1 k, with k € N and xin {<,<,=,>,>}

Updates: conjunctions of reset x := 0

Clock valuation: v = (v(x1),...,v(xn)) € RT if X = {x1,...,xs}

A geometric view of a trajectory

' x<1lay:=0 'x:lAy<1,b,x::0'

Timed automata

Variables: clocks with flow x = 1 for each x € X
Guards: conjunctions of x > k, with k € N and 1 in {<, <, =, >, >}
Updates: conjunctions of reset x := 0

Clock valuation: v = (v(x1),...,v(xn)) € RT if X = {x1,...,xs}

A geometric view of a trajectory

' x<1lay:=0 'x:lAy<1,b,x::0'

Reachability

Semantics of A
with clocks X = {xi,...,x,}, set of modes Q, set of transitions E:
a transition system 74 with
» configurations: (q,v) € Q x R’

> time steps: (q,v) LN (g,v+d)

8,a,r

» discrete steps: (g,v) = (¢’, V') for a transition e = g £25
An execution is a sequence alternating time and discrete steps.

values v satisfy the guard g and v/ = v[r]

g’ in E if clock

Reachability problem

Given A and gr € Q

is there an execution from initial configuration so = (g, 0) to (gr, v)
for some valuation v ?

A finite quotient for timed automata

[Alur, Dill, 1990]
From A, build a finite automaton Reg(.A) preserving reachability.

Equivalence ~ over R’ producing a partition R of regions

The automaton Reg(.A) is time-abstract bisimilar to T4:
set of states @ x R,
abstract time steps (g, R) — (g, succ(R)) consistent with time elapsing in T4,
discrete steps (g, R) = (g, R') consistent with discrete transitions in 7.

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

e Equivalent valuations must be consistent with constraints x > k

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

e Equivalent valuations must be consistent with constraints x > k

e Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

>

e Equivalent valuations must be consistent with constraints x > k

e Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

7z

number of regions in O(|X|! - mXI)

e Equivalent valuations must be consistent with constraints x > k

e Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y - region R defined by
O<x<landl<y<?2

2 and y <x+1

1

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

[

region R defined by
O<x<landl<y<?2
and y <x+1

Time successor of R
x=landl<y<?2

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

y

[

region R defined by
O<x<landl<y<?2
and y <x+1

Time successor of R
x=landl<y<?2

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

I
y

[

region R defined by
O<x<landl<y<?2
and y <x+1

Time successor of R
x=landl<y<?2

Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y

[

region R defined by
O<x<landl<y<?2
and y <x+1

Time successor of R
x=landl<y<?2

Discrete step from R
with y :==0
0O<x<landy=0

Example of quotient

x<1lay:=0 /\X:l/\y<1,b,x::0
—® @ @)

Example of quotient

x<1lay:=0 /\X:l/\y<1,b,x::0
—(®) D @)

Example of quotient

x<1lay:=0 /\X:l/\y<1,b,x::0
—(®) D @)

Example of quotient

x<1lay:=0 /\X:l/\y<1,b,x::0
—(®) D @)

a a a
q1 q1 a1
o

Example of quotient

x<1lay:=0 /\X:l/\y<1,b,x::0
—(®) D @)

|
(S0

QOutline

Timed Automata from Alur, Dill (1990)

Polynomial Interrupt Timed Automata
Reachability using cylindrical decomposition
Algorithmic issues

A result on Dynamical Systems

Polynomial constraints with parameters

Landing a rocket

First stage (lasting x1) in state qo:
From distance d, the rocket approaches the land under gravitation g;

Second stage (lasting xo, while xy is frozen) in g1:
The rocket approaches the land with constant deceleration h < 0;

Third stage: The rocket must reach the land
with small positive speed (less than).

@ lod+gax+ihd =dA0<gq+ho<e @_}

For all g € [7,10]
does there exist an h € [-3, —1]
such that the rocket is landing?

Interrupt clocks

Many real-time systems include interruption mechanisms (as in processors).

Several levels with exactly one active clock at each level

level 4 >
| :
1 1
level 3 ¢—" :
| 1
! :
level 2 : !
l :
1
level 1 — - ..
X4 0 0 0 0 0
X3 1 0| 1s 0 2.1 21 | 17 0 2.2 0
e | B€C | o 0 0 o | | o
X1 0 1.5 1.5 1.5 3.7

Polynomial Interrupt Timed Automata

In the class POLITA

» variables are interrupt clocks with flow x =0 or x =1
ordered along hierarchical levels,

» guards are polynomial constraints
and variables can be updated by polynomials.

X'z:l@ %gX12+gX1Xz+%hX§=d/\0§gxl+th<8®
%1 =0

x> =0

xp =1

Main result: Reachability is decidable in 2EXPTIME
[BHPSS 15]

PollITA: Syntax

clocks X = {xq,...,x,} with x, active at level k,

set of modes @ with A : @ — {1,..., n} the state level,

Guards: conjunctions of polynomial constraints

P10 with xin {<,<,=,>,>}, and P € Q[xi, ..., x| at level k.

PollITA: Syntax

clocks X = {x1,...,xn} with xx active at level k,

set of modes Q with A : Q — {1,..., n} the state level,

Guards: conjunctions of polynomial constraints

P10 with i in {<,<,=,>,>}, and P € Q[xi, ..., x| at level k.

@ 252303 — %xzxf‘ +x1+1>0, a, u
d O

PollITA: Syntax

clocks X = {x1,...,xn} with xx active at level k,

set of modes Q with A : Q — {1,..., n} the state level,

Guards: conjunctions of polynomial constraints

P10 with xiin {<,<,=,>,>}, and P € Q[xi, ..., x| at level k.

(xa :=0)
> 252, (e
22 ! X2 =x2 —x

(x1 :=x1)
(Ch, 2) ' ! (q27 4)
Updates for increasing levels k < k'

Level i > k: reset

Level k: unchanged or polynomial update x, := P for some P € Q[x1, ..., Xk—1]
Level i < k: unchanged.

O
o)
I
l
it

PollITA: Syntax

clocks X = {x1,...,xn} with xx active at level k,

set of modes Q with A : Q@ — {1,..., n} the state level,

Guards: conjunctions of polynomial constraints

P10 with xiin {<,<,=,> >}, and P € Q[xi, ..., x| at level k.

(x4 :=0) (x4 :=0)

x3:=0 =
Xo > 2X12’)((23:: Xlz)_ x1 X4 = 3X12X2 + X3, g; — 2;
=X (x :)

@)

Updates for decreasing levels k > k'’

Level i > k’: reset
Otherwise: unchanged.

PollTA: semantics

Clock valuations: v = (v(x1),...,v(xy)) € R"

The semantics of A is the transition system T4

» configurations S = Q x R”, initial configuration sy = (qo, 0)

> time steps from q at level k: (q,v) 9, (g, v +« d), only x¢ is active, with all
clock values in v +4 d unchanged except (v 4+« d)(xx) = v(xk) + d

» discrete steps (g,v) = (g’, V') for a transition e : g £20, o if v satisfies the
guard g and v/ = v[u].

An execution is a sequence alternating time and discrete steps.

Semantics: example

xt>x1+1,a, x:=0

2 i1 (2 —1)x¢ >1, b
X X , a
q0, ———— w2 @2

x <5—x% ¢

X2
b
\ b: x> 4
< c: x» <3.56
b
:
2
a \ X1
— T \

(90,0,0) 23 (g0, 1.2,0) 2 (q1,1.2,0) 2% (g1,1.2,0.97) 2 (gp,1.2,0.97)....
Blue and green curves meet at real roots of —2x° + xi + 20x7 — 10x? — 50x; + 26.

Reachability problem for PollTA

Build a finite automaton Reg(.A) time-abstract bisimilar to 74

states: (g, C) for suitable sets of valuations C C R”,
where polynomials of A have constant sign (and number of roots),

abstract time steps: (g, C) — (q, succ(C)) consistent with time elapsing in
Ta,
discrete steps: (g, C) <> (¢’, C) consistent with discrete transitions in 4.

The sets C will be cells from a cylindrical decomposition (CAD)
adapted to the polynomials in A.

CAD: basic example

The decomposition starts from a set of polynomials and proceeds in two phases:
Elimination phase and Lifting phase.

Starting from single polynomial P; = x¥ + x5 + x3 — 1 € Q[xy, x2][x3]

Elimination phase
Produces polynomials in Q[x, x2] and Q[x1] required to determine the sign of Ps.
First polynomial P, = x? + x5 — 1 is produced.
If P> > 0 then Pz has no real root.

If P, =0 then P3; has 0 as single root.
If P, < 0 then P; has two real roots.

In turn the sign of P, € Q[xi][x2] depends on P; = x? — 1.

Lifting phase

Produces partitions of R, R? and R3 organized in a tree of cells
where the signs of these polynomials (in {—1,0,1}) are constant.

Lifting phase

" Level 1: partition of R in 5 cells
/// _ Cfoo = _007_1[7 C,].:{—l},CO :]_171[a

Ci = {1}, Cyoo =1, +o]

Lifting phase

Level 2 : partition of R?

Above C_,: a single cell C_ xR

Above C_1: three cells

{=1}x] = 00,0[{(=1,0)}, {-1}x]0, +-oc]

Level 1 : partition of R in 5 cells
Cfoo =] — o0, _1[7 C,]. - {_1}7 CO :] - 17 1[a
G = {1}7 Cioo :]1’ +OO[

Level 2 above (

\\\\\\\\\\\\\\\\\\

- — - —

-1

Level 2 above (

A
|
|
|
|
/v\ —1<x <1
Co,0

—V1-xX <x < /1—x3

- — - —

-1

Level 2 above (

-

&

Co,1 {
. @t
Co,—1 {

-1<x<1

x2 = /1 —x2

—1<x <1

—V1-xX <x < /1—x3

-1l<x<1

xo = —y/1 — x2

Level 2 above (

—l<x <1

o> V1=K

C —l<x <1

0.1 x2 = /1 —x2

—1l<x<1

b Cop “VI-xd <xe<y1-x

C -1l<x<l1

R

—l<x<1

Co,—o0 X < —y/1—x2

The tree of cells

RO
7
c_oo/ C., G G \c+oo
{—1}><]—oo,0[\ \/ ¥ ¥ \ ¥
C_oo xR {(=1,0} Cioo xR
{—1}x]0, +o0o[
C—oo X Rz {_1}X]Ov "_OO[X]R C+oo X Rz

Building the quotient

using the sphere case with some refinements:

xt4+x3 <1

0<x <1
E+xE+x3>1

Building the quotient

using the sphere case with some refinements:

0<x <1
E+xE3+x>1

level 1: Ry = (X1 = 0), R, = (0 <x1 < 1),

Building the quotient
using the sphere case with some refinements:

x4+x3 <1

0<x <1

level 1: Ry = (X1 = 0), R, = (0 <x1 < 1),
level 2 above Ry: Riyg = (Rl,Xz = 0), Ry = (R1,0 <xp < 4/1-— X12),

Building the quotient

using the sphere case with some refinements:

xt4+x3 <1

O<x <1

level 1: Ry = (X1 = 0), Ry = (0 <x < 1),
level 2 above Ry: Rig = (Ri,x2 = 0), Ri1 = (R1,0 < x2 < /1 — x3),
level 3 above Ri1: Ri19 = (R11,X3 = 0), Ri11 = (R11,0 < x3 < 4/1 —X12 —X2),

Riiz = (Ri1,x3 = /1 — x2 — x2), Ri1z = (Ri1,x3 > /1 — x? — x2),

Building the quotient

using the sphere case with some refinements:

xt4+x3 <1

O<x <1

level 1: Ry = (X1 = 0), Ry = (0 <x < 1),
level 2 above Ry: Rig = (Ri,x2 = 0), Ri1 = (R1,0 < x2 < /1 — x3),
level 3 above Ri1: Ri19 = (R11,X3 = 0), Ri11 = (R11,0 < x3 < 4/1 —X12 —X2),

Riiz = (Ri1,x3 = /1 — x2 — x2), Ri1z = (Ri1,x3 > /1 — x? — x2),

and back to level 1

Effective construction: Elimination

From an initial set of polynomials, the elimination phase produces in 2EXPTIME a
family of polynomials P = {Px}k<n with Px C Q[x1, ..., xk] for level k.

Some polynomials do not always have the same degree and roots.
For instance, B = (2x; — 1)x3 — 1 is of degree 2 in x; if and only if x; # 3.

For A,
Starting from {x1,A} and {x;,B,C} with A=x —x; —1land C =x +xZ -5
results in

7)1 - {X17A7Da EvFa G},

772 = {XQ, B, C},
with D = 2x; — 1, E = X12 -5 F = —2Xi5 —|—X{1 + 20x13 — 10x12 — 50x; + 26,
G = 4(2X1 — 1)2

Effective construction: Lifting

To build the tree of cells in the lifting phase, we need a suitable representation of
the roots of these polynomials (and the intervals between them), obtained by
iteratively increasing the level.

A description like x3 > /1 — x2 — x2 cannot be obtained in general.

» A point is coded by “the n'" root of P".
» The interval](n, P), (m, Q)[is coded by a root of (PQ)’.

This lifting phase can be performed on-the-fly, producing only the reachable part of
the quotient automaton Reg(A).

Outline
Timed Automata from Alur, Dill (1990)
Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition
Algorithmic issues

A result on Dynamical Systems

Dynamical systems
A dynamical system is a hybrid system with:
> a single system mode,
» several possible trajectories,
» and guards.

hence non-deterministic choice when more than one are available,

DA

Dynamical systems

A dynamical system is a hybrid system with:

> a single system mode,

» several possible trajectories,
hence non-deterministic choice when more than one are available,

» and guards.

y = system state

)/max

Ymin

Dynamical systems

A dynamical system is a hybrid system with:

> a single system mode,

» several possible trajectories,
hence non-deterministic choice when more than one are available,

» and guards.

y = system state

)/max

Ymin

Dynamical systems

A dynamical system is a hybrid system with:

> a single system mode,

» several possible trajectories,
hence non-deterministic choice when more than one are available,

» and guards.

y = system state

.ymaX
Y2 Gl
Vi
Gy

Ymin

y1="Ff(t1) = yo = f(t2) = g(tz) = y3 = g(ta)
thh <t t3 <ty

Dynamical systems

A dynamical system is a hybrid system with:

> a single system mode,

» several possible trajectories,
hence non-deterministic choice when more than one are available,

» and guards.

y = system state

.ymaX
v Gy
i
| G
ymi)r:3 2

Transition system:

y1="Ff(t1) = yo = f(t2) = g(tz) = y3 = g(ta)
thh <t t3 <ty

Notations and examples
A dynamical system (M, ~):

» M =(M,<,...) a linearly ordered structure,

syt Vi x V= Wy for Vi C MR,V C M, Vo C Mk, all (FO-)definable in M,
and a finite set of guards: definable subsets of V5.

DA

Notations and examples
A dynamical system (M, ~):

» M =(M,<,...) a linearly ordered structure,
>y Vi x V=V, for V) C Mk1

VM, V,C
and a finite set of guards: definable subsets of V,
Clocks have dynamics v : R’}

C M’ all (FO-)definable in M,

[0, +oo[— RY with y(v, t)

:'YV(t):V+t

Notations and examples
A dynamical system (M, ~):

» M =(M,<,...) a linearly ordered structure,

syt Vi x V= Wy for Vi C MR,V C M, Vo C Mk, all (FO-)definable in M,
and a finite set of guards: definable subsets of V5.

th —1 0

t. 1152

3t

4

Bisimulations for dynamical systems

» Splitting system states (V,) according to similar behaviours (consistent with
guards and time elapsing)
» k-step bisimulation: similar behaviours up to k steps.

Bisimulations for dynamical systems

Bisimulations:

» Splitting system states (V,) according to similar behaviours (consistent with
guards and time elapsing)

» k-step bisimulation: similar behaviours up to k steps.

Bisimulation is undecidable

but under mild assumptions, k-step bisimulation is decidable for all kK > 0.

Bisimulations for dynamical systems

Bisimulations:

» Splitting system states (V,) according to similar behaviours (consistent with
guards and time elapsing)

» k-step bisimulation: similar behaviours up to k steps.

Bisimulation is undecidable
but under mild assumptions, k-step bisimulation is decidable for all kK > 0.

Theorem [Lafferriere, Pappas, Sastry 2000]

Bisimulation is decidable and induces a finite partition when:

v :R"” x R — R" is solution of dy(x, t)/dt = F(y(x, t)) definable in an o-minimal
theory of R.

O-minimal structures

A linearly ordered structure (M

<

Ny

) is o-minimal

if every definable set is a finite union of intervals with bounds in My,

O-minimal structures

A linearly ordered structure (M, <,

) is o-minimal

if every definable set is a finite union of intervals with bounds in My .

A few examples: (R, <, +, %), (Q,<,1,+), (Zx0, <), (R, <, +, X, exp)

DA

O-minimal structures

A linearly ordered structure (M, <,

) is o-minimal
if every definable set is a finite union of intervals with bounds in My .

.and counter-examples:

A few examples: (R, <, +, %), (Q,<,1,+), (Zx0, <), (R, <, +, X, exp)
» (Q <+, %)

> (Zz0,<,+)
» (R, <, sin)

<141 —V2<x<V2
Jdz,x =z+z & x is even

sin(x) =0 x enZ

Properties
[Pillay, Steinhorn 88]

Property 1
Let (M,<,...) be o-minimal and f : M — M be definable. There exists a finite

Ny

partition (Z1,...,Zx) of M into intervals s.t., for all j < k:
1. f|Ij is constant, or
2. f|z, is one-to-one and monotonic, and f(Z;) is an interval.

Properties
[Pillay, Steinhorn 88]
Property 1
Let (M, <,...) be o-minimal and f : M — M be definable. There exists a finite

»

partition (Zy,...,Zx) of M into intervals s.t., for all j < k:
1. f|Ij is constant, or
2. f|z; is one-to-one and monotonic, and f(Z;) is an interval.

f(t)

A 4
~

VL "L L, 7 Is

Properties
[Pillay, Steinhorn 88]

Property 1

Let (M,<,...) be o-minimal and f : M — M be definable. There exists a finite
partition (Z1,...,Zx) of M into intervals s.t., for all j < k:

1. f|Ij is constant, or
2. f|z, is one-to-one and monotonic, and f(Z;) is an interval.

Property 2

Let ¢ be an f-variable formula. There exists N, s.t., for all b,..., by € M, the set
{ae M| (a,bo,...,be) = ¢} is a union of at most N, intervals.

b

Properties
[Pillay, Steinhorn 88]

Property 1

Let (M,<,...) be o-minimal and f : M — M be definable. There exists a finite
partition (Z1,...,Zx) of M into intervals s.t., for all j < k:

1. f|Ij is constant, or
2. f|z, is one-to-one and monotonic, and f(Z;) is an interval.

Property 2

Let ¢ be an f-variable formula. There exists N, s.t., for all b,..., by € M, the set
{ae M| (a,bo,...,be) = ¢} is a union of at most N, intervals.

b

Result
[BBJ 18]
Generalising Lafferriere et al.:
» o-minimal real theory = — any o-minimal theory

> trajectories partition R” — trajectories may overlap

Result
[BBJ 18]
Generalising Lafferriere et al.:
» o-minimal real theory = — any o-minimal theory

> trajectories partition R” — trajectories may overlap

Result
[BBJ 18]
Generalising Lafferriere et al.:
» o-minimal real theory = — any o-minimal theory

» trajectories partition R” — trajectories may overlap

Result
[BBJ 18]
Generalising Lafferriere et al.:
» o-minimal real theory = — any o-minimal theory

» trajectories partition R” — trajectories may overlap

X1~ X2
x1 74 x3
X2 ~ X3

X1 ~% X3

Result
[BBJ 18]
Generalising Lafferriere et al.:
» o-minimal real theory = — any o-minimal theory

> trajectories partition R” — trajectories may overlap

In an o-minimal dynamical system

if Vi(x) Qef {x" | x ~* x'} is finite for all x, (FINITE CROSSING)
the bisimulation relation is decidable; (if the theory is decidable)

X1~ X2
X1 % X3
X2 ~ X3

X1 ~* X3

Result
[BBJ 18]
Generalising Lafferriere et al.:

» o-minimal real theory = — any o-minimal theory
> trajectories partition R” — trajectories may overlap

In an o-minimal dynamical system

if Vi(x) Qef {x" | x ~* x'} is finite for all x, (FINITE CROSSING)
the bisimulation relation is decidable; (if the theory is decidable)
if the sizes |Vj(x)| are uniformly bounded, (UNIFORM CROSSING)

the bisimulation relation is definable and induces finite partition.

\fxl X1~ X2
x1 74 x3
. X2 ~ X3

X1 ~* X3

Idea of the proof

First step: decomposition
For all x € V4 with dynamics 7y:
Produce a classification of time intervals into x-static or x-adaptable intervals.

If Vi(x) ={x" € Vi | x ~ x'} is finite, then there is a finite definable partition
of the time set v into maximal x-static and x-adaptable intervals.

For those Z, all states in 74(Z) are bisimilar.

Idea of the proof

First step: decomposition
For all x € V4 with dynamics 7y:
Produce a classification of time intervals into x-static or x-adaptable intervals.

If Vi(x) ={x" € Vi | x ~ x'} is finite, then there is a finite definable partition
of the time set v into maximal x-static and x-adaptable intervals.

For those Z, all states in 74(Z) are bisimilar.

Second step: building a bisimulation graph
with nodes (x,Z) for the intervals above,
edges (x,Z) — (x,J) that represent time elapsing on 7y,
e-edges (x,Z) — (x’,Z') that represent jumps between trajectories.

-

to =1 Oftc 1152 3t

7(X17)

=3

Yo = 25

va=13

Y«

y3 = 0.5
t

WEX?M

Conclusion

Summary

» Reachability is decidable in two models without strong resets: Timed
Automata and Polynomial Interrupt Timed Automata.

» Bisimulation is decidable in a richer model of dynamical systems, which can
immediately be extended with modes and strong resets.

Going further

» Refine the crossing conditions,

» Add modes with weaker jump conditions.

Conclusion

Summary

» Reachability is decidable in two models without strong resets: Timed
Automata and Polynomial Interrupt Timed Automata.

» Bisimulation is decidable in a richer model of dynamical systems, which can
immediately be extended with modes and strong resets.

Going further

» Refine the crossing conditions,

» Add modes with weaker jump conditions.

Thank you

	Timed Automata from Alur, Dill (1990)
	Polynomial Interrupt Timed Automata
	Reachability using cylindrical decomposition
	Algorithmic issues

	A result on Dynamical Systems

