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An infinite transition system

for the set of words L = ab∗a = {abna | n ∈ N}
over alphabet Σ = {a, b}
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An infinite transition system

for the set of words L = ab∗a = {abna | n ∈ N}
over alphabet Σ = {a, b}
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Quotients

Σ alphabet, Σ∗ set of words over Σ, language : subset of Σ∗

For a language M ⊆ Σ∗ and a word u ∈ Σ∗

u−1M = {v ∈ Σ∗ | uv ∈ M}

u−1M , also noted M \ u, is a quotient of M .

For the example L = ab∗a

a−1L = b∗a b−1L = ∅ = (bu)−1L for any u

A partition of Σ∗ is obtained by quotient under ∼L:
u1 ∼L u2 if u−1

1 L = u−1
2 L.
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Quotients

Σ alphabet, Σ∗ set of words over Σ, language : subset of Σ∗

For a language M ⊆ Σ∗ and a word u ∈ Σ∗

u−1M = {v ∈ Σ∗ | uv ∈ M}

u−1M , also noted M \ u, is a quotient of M .

For the example L = ab∗a

a−1L = b∗a b−1L = ∅ = (bu)−1L for any u

A partition of Σ∗ is obtained by quotient under ∼L:
u1 ∼L u2 if u−1

1 L = u−1
2 L.

[Nerode, 1958]

A language is accepted by a finite automaton if and only if it has a finite number of
quotients.
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Quotients and finite automata

States = quotients, with transitions:

u−1L (ua)−1L
initial state: L = ε−1L

final states : those containing ε
a

L = ab∗a

a−1L = b∗a and b−1L = ∅
(ab)−1L = b−1(a−1L) = b−1(b∗a) = b∗a = a−1L

(aa)−1L = a−1(b∗a) = {ε}
a−1{ε} = b−1{ε} = ∅

L
a−1L

(aa)−1L

∅

a a

b

a, bb

a, b

(the completed version)
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Quotients for infinite transition systems

or the reductionist approach [Henzinger, Majumdar, Raskin, 2003]

A transition system

T = (S ,E ) with

◮ S set of configurations

◮ E ⊆ S × S set of transitions

An equivalence ∼ over S producing a quotient

T∼ = (S/∼,E∼) with

◮ S/∼ set of equivalence classes

◮ E∼ ⊆ Q/∼ ×Q/∼
such that P → P ′ if q → q′ in E for some q ∈ P and q′ ∈ P ′

Adding propositions on states or labels on transitions,
Goal: build finite quotients preserving specific classes of properties like accepted
language, reachability, LTL, CTL or µ-calculus model checking, ...
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Hybrid automata
A heating device controller

ON

θ̇ = Kaθa − Kθ

OFF

θ̇ = −Kθ

θ = θmin,
start

θ = θmax ,
stop

Configurations in S : (q, v(θ)), with q ∈ {ON, OFF} and v(θ) the temperature value.
Evolution: continuous for θ in a fixed q (following the differential equation),

discrete when firing a transition.

With n real variables, flows and invariants on control states Q, guards and updates
on transitions, configurations : Q × Rn.
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Hybrid automata
A heating device controller

ON

θ̇ = Kaθa − Kθ

OFF

θ̇ = −Kθ

θ = θmin,
start

θ = θmax ,
stop

Configurations in S : (q, v(θ)), with q ∈ {ON, OFF} and v(θ) the temperature value.
Evolution: continuous for θ in a fixed q (following the differential equation),

discrete when firing a transition.

With n real variables, flows and invariants on control states Q, guards and updates
on transitions, configurations : Q × Rn.

Verification problems are mostly undecidable

Decidability requires restricting either the flows [Henzinger, Kopke, Puri Varayia,
1998] or the jumps [Alur, Henzinger, Lafferrière, Pappas, 2000] for flows ẋ = Ax
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Outline

Timed Automata

Interrupt Timed Automata

Using Cylindrical Decomposition
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Timed automata

Variables: clocks with flow ẋ = 1 for each x ∈ X

Guards: conjunctions of x − c ⊲⊳ 0, with c ∈ Q and ⊲⊳ in {<,≤,=,≥, >}
Updates: conjunctions of reset x := 0
Clock valuation: v = (v(x1), . . . , v(xn)) ∈ Rn

+ if X = {x1, . . . , xn}

Examples (with two clocks x and y )

Ex. 1

y ≤ 2 x ≤ 1
y = 1, y := 0

x ≤ 2, x := 0

y ≥ 2, y := 0

x = 0, y = 2
x := 0
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Guards: conjunctions of x − c ⊲⊳ 0, with c ∈ Q and ⊲⊳ in {<,≤,=,≥, >}
Updates: conjunctions of reset x := 0
Clock valuation: v = (v(x1), . . . , v(xn)) ∈ Rn

+ if X = {x1, . . . , xn}

Examples (with two clocks x and y )
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Zones for timed automata

y ≤ 2 x ≤ 1
y = 1, y := 0

x ≤ 2, x := 0

y ≥ 2, y := 0

x = 0, y = 2
x := 0
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A finite quotient for timed automata
[Alur, Dill, 1990]

From A, build a finite automaton Reg(A) preserving reachability of a control state
and accepting the untimed part of the language (with labels).

Transition system TA

with clocks X = {x1, . . . , xn}, set of control states Q, set of transitions E :

◮ configurations S = Q × Rn
+

◮ time steps (q, v)
d
−→ (q, v + d)

◮ discrete steps (q, v)
e
−→ (q′, v ′) for a transition e = q

g ,u
−−→ q′ in E if clock

values v satisfy the guard g and v ′ = v [u]

Equivalence ∼ over Rn
+ producing a quotient Reg(A)

◮ Q ×R, for a set R of regions partitioning Rn
+,

◮ abstract time steps (q,R) −→ (q, succ(R))

◮ discrete steps (q,R)
e
−→ (q′,R ′)

both steps consistent with ∼
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Quotient construction

A geometric view with two clocks x and y , maximal constant m = 2
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region R defined by

0 < x < 1 and 1 < y < 2

and frac(x) > frac(y)
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Quotient construction

A geometric view with two clocks x and y , maximal constant m = 2

x

y

0
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• Equivalent valuations must be consistent with constraints x ⊲⊳ k

• Equivalent valuations must be consistent with time elapsing

region R defined by

0 < x < 1 and 1 < y < 2

and frac(x) > frac(y)

Time successor of R

x = 1 and 1 < y < 2
R

Discrete step from R

with y := 0

0 < x < 1 and y = 0



12/26

Example of quotient

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1, a, y := 0 x ≥ 1, y = 0, b
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Example of quotient

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1, a, y := 0 x ≥ 1, y = 0, b

0 1 x

y

1

q0

q0

q0

q1

q1

q1

a

a

a

q1 q1

q1 q1

q2 · · ·b
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Exemple from [Alur et Dill, 1990]

0 1 x

y

1
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Interrupt Timed Automata (ITA)

Control states on levels {1, . . . , n}, a single clock xk active on level k

level 1 x1 := 0

level 2

level 3

level 4

x3 := 0

x2 := 0

x4 := 0

. . .









x1

x2
x3
x4

















0
0
0
0









1.5
−−→









1.5
0
0
0









2.1
−−→









1.5
0
2.1
0









1.7
−−→









1.5
0
2.1
1.7









2.2
−−→









3.7
0
2.1
1.7








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ITA: syntax

◮ Variables: stopwatches with flow ẋ = 1 or ẋ = 0,
clock xk active at level k ∈ {1, . . . , n}

◮ Guards: conjunctions of linear constraints with rational coefficients
∑k

j=1 ajxj + b ⊲⊳ 0 at level k , with ⊲⊳ in {<,≤,=,≥, >}

◮ Clock valuation: v = (v(x1), . . . , v(xn)) ∈ Rn

◮ λ : Q → {1, . . . , n} state level, with xλ(q) the active clock in state q

◮ Transitions:
q, k q′, k ′

g , u

guard update

q, 3
2x3 −

1
3x2 + x1 + 1 > 0



16/26

ITA: updates
From level k to k ′

increasing level k ≤ k ′

Level higher than k ′: unchanged
Level from k + 1 to k ′: reset
Level i ≤ k : unchanged or linear update xi :=

∑

j<i ajxj + b.
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ITA: updates
From level k to k ′

increasing level k ≤ k ′

Level higher than k ′: unchanged
Level from k + 1 to k ′: reset
Level i ≤ k : unchanged or linear update xi :=

∑

j<i ajxj + b.

Example

q1, 2 q2, 4

x2 > 2x1,
x1 := 1
x2 := 2x1
(x3 := 0, x4 := 0)
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ITA: updates
From level k to k ′

increasing level k ≤ k ′

Level higher than k ′: unchanged
Level from k + 1 to k ′: reset
Level i ≤ k : unchanged or linear update xi :=

∑

j<i ajxj + b.

Example

q1, 2 q2, 4

x2 > 2x1,
x1 := 1
x2 := 2x1
(x3 := 0, x4 := 0)

q3, 3

x4 = 3x1 + x2,
x1 := 0
x2 := x1 + 1,
x3 := 2x2

Decreasing level

Level higher than k ′: unchanged
Otherwise: linear update xi :=

∑

j<i ajxj + b.

In a state at level k , clocks from higher levels are irrelevant.
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ITA: semantics
A transition system TA

◮ configurations S = Q × Rn

◮ time steps from q at level k : only xk is active, (q, v)
d
−→ (q, v +k d), with all

clocks in v +k d unchanged except (v +k d)(xk ) = v(xk ) + d

◮ discrete steps (q, v)
e
−→ (q′, v ′) for a transition e : q

g ,u
−−→ q′ if v satisfies the

guard g and v ′ = v [u].

Example: trajectories

q0, 1 q1, 2 q2, 2
x1 < 1, a, (x2 := 0) x1 + 2x2 = 2, b

x1

x2

0 2

1

1a

b

grey zone for state q1:

0 < x1 < 1 and 0 < x2 < − 1
2x1 + 1





q0
0
0





0.6
−−→





q0
0.6
0





a
−→





q1
0.6
0





0.7
−−→





q1
0.6
0.7





b
−→





q2
0.6
0.7




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A finite quotient for ITA
[BH 2009]

From A, build a finite automaton Reg(A) preserving reachability of a control state
and accepting the untimed part of the language.
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A finite quotient for ITA
[BH 2009]

From A, build a finite automaton Reg(A) preserving reachability of a control state
and accepting the untimed part of the language.

Principle - 1

Build sets of linear expressions Ek for each level k , starting from {0, xk} iteratively
downward:

◮ adding the complements of xk in guards from level k ,

◮ saturating Ek by applying updates of appropriate transitions
to expressions of Ek ,

◮ saturating Ej (j < k) by applying updates of appropriate transitions
to differences of expressions of Ek .

q0, 1 q1, 2 q2, 2
x1 < 1, a, (x2 := 0) x1 + 2x2 = 2, b

Starting from E2 = {0, x2} and E1 = {0, x1}, first add − 1
2x1 +1 to E2 and 2 to E1.

Then add 1 to E1.



19/26

A finite quotient for ITA
Principle - 2

Two valuations are equivalent in state q at level k if they produce the same preorders
for linear expressions in each Ei , i ≤ k .

◮ a class is a pair C = (q, {�k}k≤λ(q)) where �k is a total preorder on Ek

◮ abstract time steps (q,R) −→ (q, succ(R)) and discrete steps (q,R)
a
−→ (q′,R ′)

consistent with preorders.

q0, 1 q1, 2 q2, 2
x1 < 1, a, (x2 := 0) x1 + 2x2 = 2, b

x1

x2

0 2

1

1a

b

Level 1: E1 = {x1, 0, 1, 2}

Initial class C0 = (q0, x1 = 0 < 1 < 2) = (q0,R0)

succ(C0) = C 1
0 = (q0, 0 < x1 < 1 < 2) = (q0,R

1
0 )

succ(C 1
0 ) = C 2

0 = (q0, 0 < x1 = 1 < 2)

. . .C 5
0 = (q0, 0 < 1 < 2 < x1)

Discrete transitions a from C0 and C 1
0
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Example (cont.)

q0, 1 q1, 2 q2, 2
x1 < 1, a, (x2 := 0) x1 + 2x2 = 2, b

x1

x2

0 2

1

1a

b

Level 2: E2 = {x2, 0,−
1
2x1 + 1}

C0
a
−→ C1 = (q1,R0, x2 = 0 < 1

2 ) with x1 = 0

C 1
0

a
−→ C 1

1 = (q1,R
1
0 , x2 = 0 < − 1

2x1 + 1)

with 0 < x1 < 1

Discrete transitions b : from classes such that x2 = − 1
2x1 + 1.
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Example: class automaton

C0

C 1
0

...

C 5
0

C1
q1,R0

0 < x2 < 1
q1,R0

0 < x2 = 1

q2,R0

0 < x2 = 1

q2,R0

0 < 1 < x2

C 1
1

q1,R
1
0

0 < x2 < − 1
2x1 + 1

q1,R
1
0

0 < x2 = − 1
2x1 + 1

q2,R
1
0

0 < x2 = − 1
2x1 + 1

q2,R
1
0

0 < − 1
2x1 + 1 < x2

a

a

b

b
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Cylindrical decomposition

Example for polynomial P3 = X 2
1 + X 2

2 + X 2
3 − 1

◮ Elimination phase produces the polynomials P2 = X 2
1 + X 2

2 − 1 and
P1 = X 2

1 − 1

◮ Lifting phase produces partitions of R, R2 and R3 organized in a tree
of cells where the signs of these polynomials (in {−1, 0, 1}) are constant.
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Cylindrical decomposition

Example for polynomial P3 = X 2
1 + X 2

2 + X 2
3 − 1

◮ Elimination phase produces the polynomials P2 = X 2
1 + X 2

2 − 1 and
P1 = X 2

1 − 1

◮ Lifting phase produces partitions of R, R2 and R3 organized in a tree
of cells where the signs of these polynomials (in {−1, 0, 1}) are constant.

Level 1 : partition of R in 5 cells

C−∞ =]−∞,−1[,C−1 = {−1},C0 =]− 1, 1[,

C1 = {1},C+∞ =]1,+∞[
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Cylindrical decomposition

Example for polynomial P3 = X 2
1 + X 2

2 + X 2
3 − 1

◮ Elimination phase produces the polynomials P2 = X 2
1 + X 2

2 − 1 and
P1 = X 2

1 − 1

◮ Lifting phase produces partitions of R, R2 and R3 organized in a tree
of cells where the signs of these polynomials (in {−1, 0, 1}) are constant.

Level 1 : partition of R in 5 cells

C−∞ =]−∞,−1[,C−1 = {−1},C0 =]− 1, 1[,

C1 = {1},C+∞ =]1,+∞[

Level 2 : partition of R2

Above C−∞: a single cell C−∞ × R

Above C−1: three cells

{−1}×]−∞, 0[, {(−1, 0)}, {−1}×]0,+∞[
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Level 2 above C0

−1 1
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Level 2 above C0

−1 1
C0,0

{

−1 < x1 < 1

−
√

1− x2
1 < x2 <

√

1− x2
1
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Level 2 above C0

−1 1
C0,0

{

−1 < x1 < 1

−
√

1− x2
1 < x2 <

√

1− x2
1

C0,1

{

−1 < x1 < 1

x2 =
√

1− x2
1

C0,−1

{

−1 < x1 < 1

x2 = −
√

1− x2
1
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Level 2 above C0

−1 1
C0,0

{

−1 < x1 < 1

−
√

1− x2
1 < x2 <

√

1− x2
1

C0,1

{

−1 < x1 < 1

x2 =
√

1− x2
1

C0,−1

{

−1 < x1 < 1

x2 = −
√

1− x2
1

C0,+∞

{

−1 < x1 < 1

x2 >
√

1− x2
1

C0,−∞

{

−1 < x1 < 1

x2 < −
√

1− x2
1
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The tree of cells

R0

C−∞ C−1 C0 C1 C+∞

C−∞ × R C+∞ × R

{−1}×]−∞, 0[

{−1}×]0,+∞[

{(−1, 0)}

{−1}×]0,+∞[×RC−∞ × R2 C+∞ × R2

...
...
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Polynomial ITA
An extension using cylindrical decomposition (work in progress)

Principle
◮ Replacing linear expressions on clocks by polynomials

◮ Replacing the saturation procedure by the elimination step

◮ Using the lifting step to build the class automaton

A PolITA

q1, 1

q2, 2

q3, 3

0 < x1 < 1, x1 := 0

x21 + x22 + x23 ≥ 1

0 < x1 < 1 x21 + x22 < 1
x2 := 1− x21
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Conclusion

When computer algebra meets model checking... new decidability questions can be
solved.

Complexity questions are next!

Thank you
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