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.. and its finite quotient



Quotients

> alphabet, X* set of words over ¥, language : subset of L*
For a language M C ¥* and a word u € ¥

UM ={vex|uecM}
u~1M, also noted M\ u, is a quotient of M.

For the example L = ab*a

a~lL=b*a b=L =0 = (bu)~1L for any u
A partition of £* is obtained by quotient under ~:
up ~p U if ul_l :uz_ll_.




Quotients

> alphabet, X* set of words over ¥, language : subset of L*

For a language M C ¥* and a word u € ¥

UM ={vex|uecM}

u~1M, also noted M\ u, is a quotient of M.

For the example L = ab*a
a~lL=b*a b=L =0 = (bu)~1L for any u

A partition of £* is obtained by quotient under ~:
uy ~y U if ul_l = u2_1L.

[Nerode, 1958]

A language is accepted by a finite automaton if and only if it has a finite number of
quotients.



Quotients and finite automata

States = quotients, with transitions:
-1 a = initial state: L =1L

B (u2) final states : those containing ¢

L = ab*a

alL=b*aand b7 1L=10

(ab)"1L = b~1(a"1L) = b~I(b*a) = b*a = a~ 'L

(33)*1L = ail(b*a) _ {6}

a e} =b"YHe} =10

(the completed version)



Quotients for infinite transition systems

or the reductionist approach [Henzinger, Majumdar, Raskin, 2003]
A transition system
T = (S, E) with
» S set of configurations
» E C S xS set of transitions
An equivalence ~ over S producing a quotient
T. = (S/~, E.) with
» S/~ set of equivalence classes
» E. C Q/~ xQ/~

such that P — P’ if g — ¢’ in E for some g € P and ¢’ € P’
Adding propositions on states or labels on transitions,

Goal: build finite quotients preserving specific classes of properties like accepted
language, reachability, LTL, CTL or u-calculus model checking, ...



Hybrid automata

A heating device controller

0= Hmam
stop

_ ON
0 =K,0,— K0

0= emim
start

Configurations in S: (g, v(#)), with g € {ON, OFF} and v(6) the temperature value.
Evolution: continuous for 8 in a fixed g (following the differential equation),
discrete when firing a transition.

With n real variables, flows and invariants on control states @, guards and updates
on transitions, configurations : @ x R".



Hybrid automata
A heating device controller

0= 0ma><7
stop

_ ON
0 =K,0,— K0

0= emina

start

Configurations in S: (g, v(#)), with g € {ON, OFF} and v(6) the temperature value.
Evolution: continuous for € in a fixed g (following the differential equation),
discrete when firing a transition.

With n real variables, flows and invariants on control states @, guards and updates
on transitions, configurations : @ x R".
Verification problems are mostly undecidable

Decidability requires restricting either the flows [Henzinger, Kopke, Puri Varayia,
1998] or the jumps [Alur, Henzinger, Lafferriere, Pappas, 2000] for flows x = Ax
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Timed Automata

Interrupt Timed Automata

Using Cylindrical Decomposition



Timed automata

Variables: clocks with flow x = 1 for each x € X

Guards: conjunctions of x — ¢ 10, with ¢ € Q and 1 in {<, <, =,>,>}
Updates: conjunctions of reset x := 0

Clock valuation: v = (v(x1),...,v(xa)) € R} if X = {x1,...,xp}

Examples (with two clocks x and y)

Ex. 1
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y Ex. 2: A geometric view of a trajectory
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Timed automata

Variables: clocks with flow x = 1 for each x € X

Guards: conjunctions of x — ¢ 10, with ¢ € Q and 1 in {<, <, =,>,>}
Updates: conjunctions of reset x := 0

Clock valuation: v = (v(x1),...,v(xa)) € R} if X = {x1,...,xp}

Examples (with two clocks x and y)

y Ex. 2: A geometric view of a trajectory
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A finite quotient for timed automata
[Alur, Dill, 1990]

From A, build a finite automaton Reg(.A) preserving reachability of a control state
and accepting the untimed part of the language (with labels).

Transition system T4

with clocks X = {xi,...,x,}, set of control states Q, set of transitions E:
configurations S = Q x R/
time steps (g, v) 4, (gq,v+d)

discrete steps (g, v) = (g’, V') for a transition e = g £% ¢ in E if clock
values v satisfy the guard g and v/ = v[u]

Equivalence ~ over R’ producing a quotient Reg(.A)
Q@ x R, for a set R of regions partitioning R/,
abstract time steps (g, R) — (q, succ(R))
discrete steps (g, R) = (', R')

both steps consistent with ~



Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2
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Quotient construction

A geometric view with two clocks x and y, maximal constant m = 2

y - region R defined by
O<x<landl<y<?2
2 and frac(x) > frac(y)

R - Time successor of R
1 x=landl<y<?2

- Discrete step from R
with y :==0
0O<x<landy=0

e Equivalent valuations must be consistent with constraints x > k

e Equivalent valuations must be consistent with time elapsing



Example of quotient
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Example of quotient

D O s

x<1lay:=0 (a1 ) x>1y=0,b
x <1 <



Example of quotient

9o X<lay—0 q1 x>1y=0,b
x <1 k< P

[Y)



Example of quotient

9o X<lay—0fq11)<21,y:0,b
x <1 k< P




Exemple from [Alur et Dill, 1990]

4, (x>1)?

a, (y<1)?,y:=0

s
J—— o 0 1
x=y=0
a a a b
—  ~_——
b
s, 5 5, b s
O=y<x<l y=0,x=1 y=0,x>1 1l=y<x
) //
o
5 d S, 5, d S, Od
O<y<x<l O<y<l<x d l=y<x x>1,y>1




Interrupt Timed Automata (ITA)

Control states on levels {1,..., n}, a single clock x, active on level k
level 4 x4 =0 —
|
|
X3 1= :
level 3 '

I
|
I
level 2 :
|
|
I
level 1  x;:=0 __ |} | I
X1 0 1.5 15 15 3.7
e IR =
X3 0 2.1



ITA: syntax

» Variables: stopwatches with flow x =1 or x =0,
clock x active at level k € {1,...,n}

v

Guards: conjunctions of linear constraints with rational coefficients

Soi1ax + b0 at level k, with e in {<, <, =,>,>}

» Clock valuation: v = (v(x1),...,v(x,)) € R"
» A1 Q@ — {1,..., n} state level, with x,(4) the active clock in state g
» Transitions: u
q, k L (d, )
7 T~ a
guard update

@ 2X3—%X2+X1+1>0 Q



ITA: updates

From level k to k'

increasing level k < k’

Level higher than k’: unchanged
Level from k + 1 to k’: reset

Level i < k: unchanged or linear update x; := >, _; a;x; + b.




ITA: updates

From level k to k'

increasing level k < k’

Level higher than k’: unchanged
Level from k + 1 to k’: reset
Level i < k: unchanged or linear update x; := >, _; a;x; + b.

Example

xp:=1
Xo > 2X1, X 1= 2xq

@ (x3 :=0,x4 :=0) @




ITA: updates

From level k to k'

increasing level k < k’

Level higher than k’: unchanged
Level from k + 1 to k’: reset
Level i < k: unchanged or linear update x; := >, _; a;x; + b.

Example

x3:=1 x1:=0
Xp > 2x1, Xp = 2Xxy X4 = 3x1 + X2, X0 :=x1+1,

(x3:=0,x:=0) —— X3 1= 2x»
(qla 2) 142, 4/ (q37 3)

Decreasing level

Level higher than k’: unchanged
Otherwise: linear update x; := Zj<i ajxj + b.

In a state at level k, clocks from higher levels are irrelevant.
[} = =

DA



ITA: semantics
A transition system T4

» configurations S = Q x R”

> time steps from q at level k: only xk is active, (g, V) LN (g, v +« d), with all
clocks in v 4 d unchanged except (v +x d)(xx) = v(xk) + d

~ discrete steps (q,v) = (¢', V') for a transition e : ¢ £ ¢’ if v satisfies the
guard g and v/ = v[u].

Example: trajectories

x1 <1, a, (x2:=0) x1+2x%0=2,b

X2
o q0 q q q2
[0]H[Oﬁ]i[O.G]%[O.G]i[O.G]
0 0 0 0.7 0.7
L b
grey zone for state gi:
0 a1 2 X1 O<xi<land0<x <—1ix+1



A finite quotient for ITA
[BH 2009]

From A, build a finite automaton Reg(.A) preserving reachability of a control state
and accepting the untimed part of the language.



A finite quotient for ITA
[BH 2009]

From A, build a finite automaton Reg(.A) preserving reachability of a control state
and accepting the untimed part of the language.

Principle - 1
Build sets of linear expressions Ej for each level k, starting from {0, xx} iteratively
downward:

adding the complements of xj in guards from level k,

saturating Ex by applying updates of appropriate transitions

to expressions of Ej,

saturating Ej (j < k) by applying updates of appropriate transitions

to differences of expressions of Ej.

x1 <1, a (x:=0) x1+2x% =2, b

Starting from E; = {0,x} and E; = {0, x }, first add —%Xl +1to E> and 2 to E;.
Then add 1 to E;.




A finite quotient for ITA
Principle - 2

Two valuations are equivalent in state g at level k if they produce the same preorders
for linear expressions in each E;, i < k.

a class is a pair C = (g, {2k }k<r(q)) Where =y is a total preorder on Ej

abstract time steps (g, R) — (g, succ(R)) and discrete steps (q, R) = (¢', R')
consistent with preorders.

x1 <1, a (x:=0) X1 +2x% =2, b

X2
Level 1: E; = {x,0,1,2}

Initial class Gy = (g0, x1 = 0 < 1 < 2) = (qo, Ro)

6 succ(Gy) = G = (0,0 < x1 <1< 2)=(qo, R3)
succ(Cl) = C3 =(qo,0 < x1 =1 < 2)
X

0 1 5 1 B =(90,0<1 <2< x)

—_

Discrete transitions a from Co and G}



Example (cont.)

x1<1, a (xx:=0 x1+2x =2, b
.1 ) L LN Y

Level 2: E» = {x,0, —3x + 1}
Go 3 G = (ql,Ro,Xz =0< %) with x; =0

b
\h\ Coli>Cllz(ql,R&,X2:0<—%X1+1)
X1 with 0 < x; <1

0 a 1 2

X2

[y

Discrete transitions b : from classes such that xo = —%xl + 1.



Example: class automaton

a o g, R | q1, Ro
|
: b
Cl a Cl _ qla’l'?(:)L Q27Ro
v u 0<X2<—%X1+1 O<xn=1

T
|
1
¥
q1, R} G2, Ro
0<X2:—%X1+1 0<l<x

b

C5 q2aR(% _ q2aR(%
g 0<xo=-1ix+1 0<—3x+1<x

- - — —




Cylindrical decomposition

Example for polynomial P; = X7 + X3 + X2 — 1
Elimination phase produces the polynomials P, = XZ + X2 — 1 and
PL=X?—1
Lifting phase produces partitions of R, R? and R3 organized in a tree
of cells where the signs of these polynomials (in {—1,0,1}) are constant.
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Cylindrical decomposition

Example for polynomial P; = X7 + X3 + X2 — 1
Elimination phase produces the polynomials P, = XZ + X2 — 1 and
PL=X?—1
Lifting phase produces partitions of R, R? and R3 organized in a tree
of cells where the signs of these polynomials (in {—1,0,1}) are constant.

Level 2 : partition of R?

Above C_,: a single cell C_ xR

Above C_1: three cells

{=1}x] = 00,0[ {(=1,0)}, {-1}x]0, +-oc]

Level 1 : partition of R in 5 cells
C*OO :] — 00, _1[7 C,]. = {_1}7 CO :] - 17 1[7
G ={1}, Cioo =]1, 400




Level 2 above (

\\\\\\\\\\\\\\\\\\




- — - —

-1

Level 2 above (

A
|
|
|
|
/v\ —1<x <1
Co,0

—V1-xX <x < /1—x3




- — - —

-1

Level 2 above (

-

&

Co,1 {
. @t
Co,—1 {

-1<x<1

x2 = /1 —x2

—1<x <1

—V1-xX <x < /1—x3

-1l<x<1

xo = —y/1 — x2



Level 2 above (

—l<x <1

o> V1=K

C —l<x <1

0.1 x2 = /1 —x2

—1l<x<1

b Cop “VI-xd <xe<y1-x

C -1l<x<l1

R

—l<x<1

Co,—o0 X < —y/1—x2




The tree of cells

RO
7
c_oo/ C., G G \c+oo
{—1}><]—oo,0[\ \/ ¥ ¥ \ ¥
C_oo xR {(=1,0} Cioo xR
{—1}x]0, +o0o[
C—oo X Rz {_1}X]Ov "_OO[X]R C+oo X Rz




Polynomial ITA

An extension using cylindrical decomposition (work in progress)

Principle
» Replacing linear expressions on clocks by polynomials
» Replacing the saturation procedure by the elimination step
» Using the lifting step to build the class automaton

A PollTA

0<xg <1, x:=0




Conclusion

When computer algebra meets model checking... new decidability questions can be
solved.

Complexity questions are next!

Thank you
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