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Context: Information Flow

Goal: Detect/measure/compare/remove information leaks

Opacity: In a partially observed transition system, it is achieved when an
external observer can never be sure if a secret behaviour has occurred.
[Bryans, Koutny, Mazaré, Ryan 2008]

A:
Secret: visiting a red state
hidden from observer

observing ad* dicloses the secret ?
acd* is ambiguous

Opacity is used to express a large variety of information flow properties,
for instance: anonymity, non interference, conditional declassification.



QOutline

A brief overview on opacity

Probabilistic disclosure for Markov Chains

Disclosing a secret under strategies

Opacity and refinement



Opacity framework

Problems
» A transition system A with pathes Path(A),
» Some pathes are secret: Sec C Path(.A),

» An external agent knows the system and observes its executions via a
function O on Path(.A),

Qualitative problem

Does there exist a path p disclosing the secret: O~1(O(p)) C Sec ?
i.e. all pathes with the same observation as p are secret.

If no, all secret pathes are ambiguous and the system is opaque.

Quantitative problem
What is the “measure” of disclosing pathes ?



lllustration

“ Sec

07 (o)

Classes leaking
their inclusion

into Sec
With Sec = Path(A) \ Sec:

No disclosing path iff

V = Sec \ O~1}(O(Sec)) is empty

Measuring the disclosure set V



Verification and control of qualitative
opacity with regular secrets

On transition systems
checking opacity is undecidable in general [BKMRO0g],

PSPACE-complete for finite automata [Cassez, Dubreil, Marchand 09],
also with opacity variants [Saboori, Hadjicostis 13], and for any
functional transducer as observation [B., Mullins 14].

Enforcement of opacity [Wu, Lafortune 12], [Marchand 11-15, with
many co-authors], [Tong, Ma, Li, Seatzu, Giua 16].

On Petri nets
undecidable in general [BKMRO8][B., Haar, Schmitz, Schwoon 17],

ESPACE-complete for safe PNs, even when weak-fairness conditions
are added. (ESPACE is the class of problems that can be solved in
deterministic space 29(")) [BHSS17]



Strong anonymity

Actions of participants: P

For any path p € Path(.A), replacing an action in P by any other one produces
a path still in Path(A).

Translates as opacity [BKMRO8]

O is the morphism into (X U {#})* defined by:
O(a) =t if a€ P and O(a) = a otherwise

wp the projection on P*

A is strongly anonymous w.r.t. P iff for any u € P*,
Sec, = {p € Path(A) | mp(p) # u A |mp(p)| = |ul}
is opaque for A and O.



Strong anonymity

Actions of participants: P

For any path p € Path(.A), replacing an action in P by any other one produces
a path still in Path(A).

Translates as opacity [BKMRO8]

O is the morphism into (X U {#})* defined by:
O(a) =t if a€ P and O(a) = a otherwise

wp the projection on P*

A is strongly anonymous w.r.t. P iff for any u € P*,
Sec, = {p € Path(A) | mp(p) # u A |mp(p)| = |ul}
is opaque for A and O.

But also as another inclusion problem [BM14]

Op(Path(A)) C Path(.A) for the substitution defined by:
Op(a) = P if a€ P and Op(a) = {a} otherwise



Quantitative aspects

Several sources of uncertainty:

» Partial observation of executions

» Probabilities

< based on randomness, resolved on the fly by the environment.

» Nondeterministic choice

< resolved on the fly by an internal agent.

» Underspecification

<> resolved later on in the modeling process by refinement.



Opacity under uncertainty

Attacker

» Probabilistic choice: Markov Chains
[B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]



Opacity under uncertainty

Resolution
by strategies

System

» Probabilistic choice: Markov Chains
[B., Mullins, Sassolas 10,15] [Saboori, Hadjicostis 14]

» Combined with nondeterministic choice:
[B., Chatterjee, Sznajder 15] for MDPs and POMDPs,
[B., Haddad, Lefaucheux 17] for MDPs,

» Underspecification: [B., Kouchnarenko, Mullins, Sassolas 16| for IMCs.



A toy example

Access control to a database inspired from [Biondi et al. 13]

Ml .
[0, 1]

[0.2,1]

[0.2,1]
az 1 qa

0: input user name, 1: input password, 3: access granted if correct
2: not on the list of authorized users, 4: reject
Sec = {0.1.3“}; All states except 1 and 1’ are observable.
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Observable Markov chains

A Markov Chain A = (S, A, O) over ¥:
» countable set S of states,
» A:S — Dist(S),
» O:S — X U{e} observation function.

equipped with an initial distribution pyg.



Opacity on MCs

w-Disclosure of Sec in (A, 1o):

Disc,,(A, po, Sec) = P4 ,5(V) for V = Sec \ O~} O(Sec)).

Example with Sec: presence of s; or s,, hidden by O

Path(A) | O Sec? | V7 | Py
S0S258 ad¥ v v | 1/3
S0S35¢ acd” X X | 4/9
sosisase | acd® v X 12/9

Disc,,(A, 14, Sec) = 3



Finite disclosure

Restricting Sec to the set of pathes visiting states from a given subset

assuming a path remains secret once a secret state has been visited.

Observation sequence w in X* is:
disclosing if all pathes in O~1(w) are secret,
minimal disclosing if disclosing with no strict disclosing prefix.
» Disc(A, uo, Sec): probability of minimal disclosing observations,

» Discn(A, po, Sec): probability of disclosing observations of length n.

10—

S 1sol % S11

. 1
Disc, = 5
Disc = Disc, =0

Disc < Disc,, equality if A is convergent and finitely branching.
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Interactions with the system

Resolution

by strategies
System

Active attacker
The attacker consists of two components:

» The passive external observer,

» Some piece of code inside the system.

Worst case corresponds to maximal disclosure.

System designer

The designer has provided a first version with the required functionalities.
He must develop the access policy...

... to obtain minimal disclosure.



Constraint Markov Chains
Ml == (S, Tl,O) :

T1(so) subset of:
0<x,x,x3<1
X1+ X2+ X3 = 1

T1(s4) subset of:
0<yiynys <1
yi+ty+ys=1

A CMC over X: [Jonsson, Larsen 1991] [Caillaud et al., 2011]
M= (S5,T,0) is like an OMC with

» finite set of states S,

» T:S — 2Dst(S),




Subclasses of CMCs

MDP: Markov Decision Processes

For each s € S, T(s) is a finite set.

LCMC: Linear CMCs

For each s € S, T(s) is the set of distributions that are solutions of a linear
system.

IMC: Interval MC

For each s, T(s) is described by a family of intervals (/(s,s’))ses-

Relations
IMC is a strict subclass of LCMC,
Any LCMC can be transformed in an exponentially larger MDP.

12584



Examples

LCMC My IMC M3

1
" [>1]

S1
[0, 3]

52
0.
S3 76 53
0 §X1>X2>X3 <1

Xo > 2X3 x1+xo+x3=1 %legl

X +x3 < 3 Oﬁxzéé

0<x3<3

,111:(1,0,0) ; )
H2 = (%7%7?) Ha = (6’0’6) S T3(50)

u3 = (55576) M4¢ T2(50)



From LCMCs to MDPs

X3
X2
1
2
1
6 M3
2
1
2 H1
1 x
p1 = (1,0,0)
p2 = (3,3,0)
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Strategies on CMCs

—Q@<=10,1]
t



Strategies on CMCs

r ro1_ rr
_ 10,1] _ P1
10, 1] p1
O-! O-!
S rs

A strategy for M = (S, T, O) with initial distribution po:

o : FRuns(M) — Dist(S)
For p = so LT . NP a(p) € T(sn).

Scheduling M with ¢ produces a (possibly infinite) MC M,,.
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A strategy for M = (S, T, O) with initial distribution po:

o : FRuns(M) — Dist(S)
For p = so LT . NP a(p) € T(sn).

Scheduling M with ¢ produces a (possibly infinite) MC M,,.



Randomized strategies on MDPs

An MDP with distributions y; and p; for sy and secret states {s,, s3}

Disc = % with the two strategies choosing 11 or o in sy
if they are known by the observer.
S3 S1
12,1 GO, o, 3 DO 1,1

But Disc = 0 with randomized strategies o, such that
op(s0) = pp1 + (1 — p)p2 with 0 < p < 1. Necessary for minimisation.

A randomized strategy associates o(p) € Dist(T(s,))

with p =59 25 s1... 25 s, (instead of o(p) in T(sp)).



Modal edges
An edge (s, s’) is modal

if a strategy can block it completely.

Example on an IMC with Sec : presence of red, hidden by O.
[0;1] 10 1]
1 1
[0;1] 1 10;1] 1
o o




Modal edges

An edge (s, s’) is modal

if a strategy can block it completely.

Example on an IMC with Sec : presence of red, hidden by O.

[0; 1] 10;1]

1 1
0;1 0;1
[ ]e 1 el ]e 1

strategy /‘Kstrategy
strategy
5
1 1

1 1 1-— 1
—© ® 3 — .0



Maximal and minimal disclosure

For Sec in M with initial distribution f:

> Discmax(M, po, Sec) = supgestrat(m) Disc(Mo, 1o, Sec)
> Discmin(M, po, Sec) = infyestrat(am) Disc(Mo, 1o, Sec)

Several disclosure problems for a given M

» Value problem: compute the disclosure Discmax or DisCmin.
» Quantitative decision problems: Given a threshold 6 € [0, 1],
is DisCmax > 0 7 is DisCmin < 0 7
» Qualitative decision problems:
Limit-sure disclosure: the quantitative problem
with # = 1 for maximisation and # = 0 for minimisation.



Maximal Disclosure
[BCS15] On MDPs, if observer ignores the strategies:

The value can be computed in polynomial time;

All problems are decidable.

[BKMS16]: For a non modal LCMC, the value can be computed in
EXPTIME.

[BHL17] On MDPs, if observer knows the strategies:
Deterministic strategies are sufficient;

The problem asking whether there exists a strategy producing value 1
is EXPTIME-complete;

But the quantitative and limit-sure problems are undecidable.

Consequence:
The quantitative problem is undecidable for general LCMCs.



Minimal Disclosure

[BHL17] On MDPs, if observer knows the strategies:
Families of randomized strategies are necessary;
The value can be computed in EXPTIME;

All problems are decidable.
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Refinement for CMCs
Refinement of M, by M;:

[0, 1] 1 )
[0,1]
o G
o "~ r
1
Strong refinement [Jonsson, Larsen, 1991]

is a relation R C S; x So compatible with labeling, containing (1, init, S2,init)
and if s3Rs, there is a mapping d : S; — Dist(S,) such that:

e all distributions in Ti(s;) translate to Sy in a way compatible with Tx(s2)
o if 5(s1)(sh) > 0 then s{Rsb.



Monotonicity of maximal disclosure
No inclusion between sat(M;1) = { M1, | o1 € Strat(M;)} and
sat(My) = { Mo, | 02 € Strat(M>)}.

Disclosure is monotonic for LCMCs:
If My weakly refines M with initial states s; jnir and s jnjr then for a secret
Sec, Discmax(M1, 1s, ., Sec) < Discmax(Ma, 1, ., Sec).

Construction of the relation

/\/l2 Ml

saty

Mo,
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Monotonicity of maximal disclosure

No inclusion between sat(M;1) = { M1, | o1 € Strat(M;)} and
sat(My) = { Mo, | 02 € Strat(M>)}.

Disclosure is monotonic for LCMCs:
If My weakly refines M with initial states s; jnir and s jnjr then for a secret
Sec, Discmax(M1, 1s, ., Sec) < Discmax(Ma, 1, ., Sec).

Construction of the relation

M, My
A ¥..
) R o satq
satp | sat;
M2 op <ommmm o= mm - Ml,al



Monotonicity of maximal disclosure
No inclusion between sat(M;y) = {M1,, | 01 € Strat(My)} and
sat(Myz) = { Mo, | 02 € Strat(M3)}.

Disclosure is monotonic for LCMCs:

If M1 weakly refines My with initial states s j»ir and sp jnir then for a secret
Sec, Discmax(M1, 1, ., Sec) < Discmax(Ma, 1s, ., Sec).

Construction of the relation

R
Mo My
A T
. ... Rosaty
sato | satq
M2 (o)) Cm=mmmmmmmmm - Ml,al
R/

If M1 weakly refines My then for any strategy o1 of M, there is a strategy
o9 of My such that My 4, refines Ms,,.



[0, 1]

a2 aa

Mo is refined by My,
Discmax(M2,1,,, Sec) = 0.8 and Discmax(M1, 1¢,, Sec) = 0.



A consequence for modeling

IMCs are not closed under conjunction but:

The conjunction of two IMCs M; and M, is an LCMC

Using results from [Caillaud et al, 2011]:

For LCMCs Ml, Mz and M3
M1 N\ My weakly refines both M7 and Ms, hence:

Discmax(M1 A M) < min(Discmax(M1), Discmax(M2)).

If M3 refines both M; and Mo then it also weakly refines M1 A My,
hence:

Discmax(M3) < Discmax(M1 A Ma).



Conclusion
Opacity is a flexible way to express information flow properties
not necessarily preserved under arbitrary refinement.
Linear CMCs form a good class for compact specifications of
probabilistic systems with:
» nice closure properties;
» an increased security criterion with schedulers as adversaries;

» monotonicity of maximal disclosure;

» But the quantitative problem is undecidable in general, like for MDPs,
unless the structure is fixed.

Minimisation on MDPs

» require randomized strategies;

» and all quantitative problems are decidable.



Conclusion
Opacity is a flexible way to express information flow properties
not necessarily preserved under arbitrary refinement.
Linear CMCs form a good class for compact specifications of
probabilistic systems with:
» nice closure properties;
» an increased security criterion with schedulers as adversaries;

» monotonicity of maximal disclosure;

» But the quantitative problem is undecidable in general, like for MDPs,
unless the structure is fixed.

Minimisation on MDPs

» require randomized strategies;

» and all quantitative problems are decidable. Thank you



Strict inclusion of sat(M) in sat(M)

An implementation not obtained by strategies

[3,1] 3
S1 q1
1 1
S0 1 qo 1
[3,1] 3
S2 qz

Specification M Ao with single strategy A1 implementation of M
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