Channel Synthesis for Finite Transducers

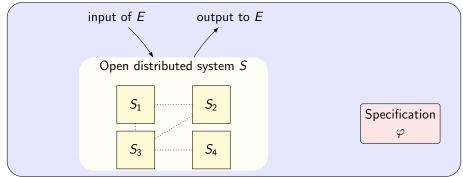
Gilles Benattar¹ <u>Béatrice Bérard</u>² Didier Lime¹ John Mullins³ Olivier H. Roux¹ Mathieu Sassolas²

¹École Centrale de Nantes, IRCCyN, CNRS UMR 6597
²Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606
³École Polytechnique de Montréal

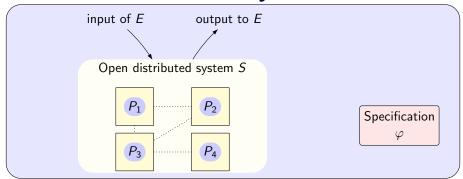
Work partially supported by projects DOTS (ANR-06-SETI-003), CoChaT (Digiteo-2009-HD27), NSERC discovery grant 13321-2007 (Govt of Canada)

13th International Conference on Automata and Formal Languages August 19th, 2011

Distributed synthesis



Distributed synthesis



Two problems

- Decide the existence of a distributed program such that the joint behavior P₁||P₂||P₃||P₄||E satisfies φ, for all E.
- Synthesis : If it exists, compute such a distributed program.

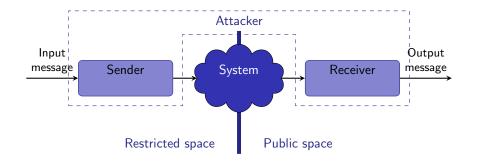
 \rightsquigarrow Undecidable for asynchronous communication with two processes and total LTL specifications [Schewe, Finkbeiner; 2006].

Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages : output message = input message (perfect data transmission)

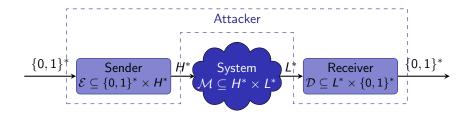
Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages : output message = input message (perfect data transmission)

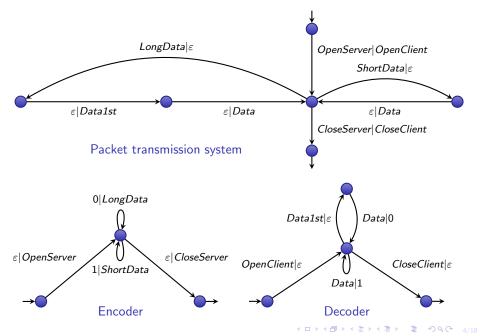


Channel synthesis

- Pipeline architecture with asynchronous transmission
- Simple external specification on finite binary messages : output message = input message (perfect data transmission)
- All processes are finite transducers



A small example of channel



Channels with transducers

- A transducer is a finite automaton with set of labels Lab ⊆ A* × B*, it implements a rational relation.
- The identity relation on A^* is $Id(A^*) = \{(w, w) | w \in A^*\}$.
- ► Rational relations can be composed: *M* · *M*'.

Definition

A channel for a transducer \mathcal{M} is a pair $(\mathcal{E}, \mathcal{D})$ of transducers such that $\mathcal{E} \cdot \mathcal{M} \cdot \mathcal{D} = \mathit{Id}(\{0, 1\}^*).$

The definition can be relaxed to take into account bounded delays or errors: existence of such a channel implies existence of a perfect channel.

Decision problems:

- ▶ Verification: Given M and the pair $(\mathcal{E}, \mathcal{D})$, is $(\mathcal{E}, \mathcal{D})$ a channel for M ?
- Synthesis: Given \mathcal{M} , does there exist a channel $(\mathcal{E}, \mathcal{D})$ for \mathcal{M} ?

Outline

Results and tools

Verification problem A necessary condition for synthesis

The synthesis problem

The general case The case of functional transducers

Conclusion

Results

Theorem

- The channel verification problem is decidable.
- The channel synthesis problem is undecidable.
- ► If *M* is a functional transducer, the synthesis problem is decidable in polynomial time. Moreover, if a channel exists, it can be computed.

Results

Theorem

- The channel verification problem is decidable.
- The channel synthesis problem is undecidable.
- ▶ If *M* is a functional transducer, the synthesis problem is decidable in polynomial time. Moreover, if a channel exists, it can be computed.

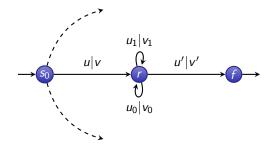
Decision for the verification problem: given ${\cal E}$, ${\cal M}$ and ${\cal D}$

- Decide whether *E* · *M* · *D* is functional [Schützenberger; 1975], [Béal, Carton, Prieur, Sakarovitch; 2000].
- 2. If not, it cannot be $Id(\{0,1\}^*)$ which is a functional relation.
- 3. Otherwise decide whether $\mathcal{E} \cdot \mathcal{M} \cdot \mathcal{D} = Id(\{0,1\}^*)$, which can be done since both relations are functional.

A necessary condition for the existence of a channel

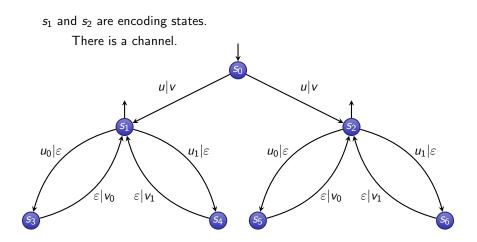
An encoding state in a transducer is a (useful) state r such that:

- there exist cycling pathes: $r \xrightarrow{u_0 | v_0} r$ and $r \xrightarrow{u_1 | v_1} r$,
- the labels form codes: $u_0u_1 \neq u_1u_0$ and $v_0v_1 \neq v_1v_0$.

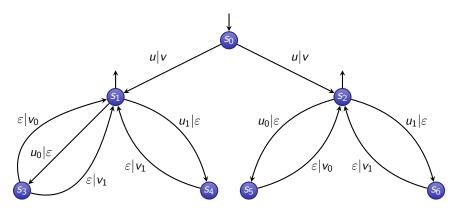


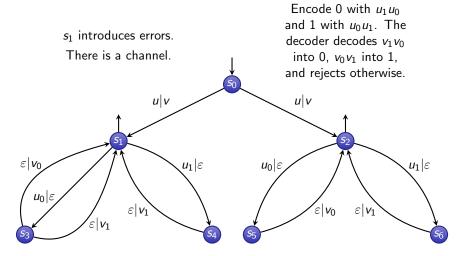
◆□▶◆□▶◆ミ▶◆ミ▶ ミークへで

If a transducer admits a channel, then it has an encoding state

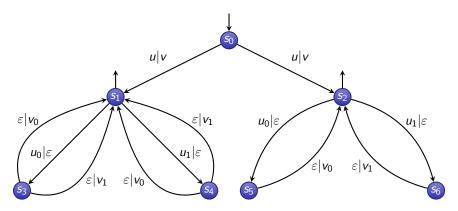


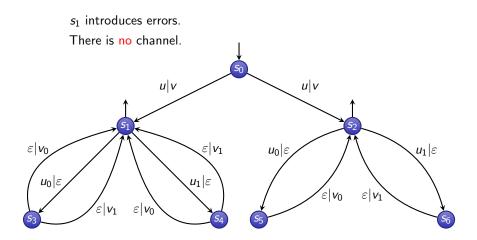
s₁ introduces errors.





s₁ introduces errors.





Outline

Results and tools

Verification problem A necessary condition for synthesis

The synthesis problem

The general case The case of functional transducers

Conclusion

Undecidability of the synthesis problem

Scheme of the proof: Encoding Post Correspondence Problem.

Given alphabet $\Sigma = \{1, \dots, n\}$ and instance $\mathcal{I} = (x, y)$ of PCP, with morphisms $x : \begin{vmatrix} \Sigma & \to & A^* \\ i & \mapsto & x_i \end{vmatrix}$ and $y : \begin{vmatrix} \Sigma & \to & A^* \\ i & \mapsto & y_i \end{vmatrix}$

a solution is a non empty word $\sigma \in \Sigma^+$ such that $x(\sigma) = y(\sigma)$.

From \mathcal{I} , build a transducer $\mathcal{M}_{\mathcal{I}}$ reading on $\{\top, \bot\} \uplus \Sigma$ and writing on $\{\top, \bot\} \uplus A$ such that:

 $\mathcal{M}_\mathcal{I}$ has a channel iff $\mathcal I$ has a solution

Undecidability of the synthesis problem

Scheme of the proof: Encoding Post Correspondence Problem.

Given alphabet $\Sigma = \{1, \dots, n\}$ and instance $\mathcal{I} = (x, y)$ of PCP, with morphisms $x : \begin{vmatrix} \Sigma & \to & A^* \\ i & \mapsto & x_i \end{vmatrix}$ and $y : \begin{vmatrix} \Sigma & \to & A^* \\ i & \mapsto & y_i \end{vmatrix}$

a solution is a non empty word $\sigma \in \Sigma^+$ such that $x(\sigma) = y(\sigma)$.

From \mathcal{I} , build a transducer $\mathcal{M}_{\mathcal{I}}$ reading on $\{\top, \bot\} \uplus \Sigma$ and writing on $\{\top, \bot\} \uplus A$ such that:

$$\mathcal{M}_\mathcal{I}$$
 has a channel iff $\mathcal I$ has a solution

Definition of $\mathcal{M}_{\mathcal{I}}$:

$$\mathcal{M}_{\mathcal{I}}(b\sigma) = (A^+b) \cup ((A^+ \setminus \{x(\sigma)\})\overline{b}) \cup ((A^+ \setminus \{y(\sigma)\})\overline{b})$$

On input $b\sigma$, $\mathcal{M}_{\mathcal{I}}$ returns an arbitrary (non empty) word on A followed by the input bit b, or its opposite except for $x(\sigma) \cap y(\sigma)$. On input $b_1\sigma_1 \dots b_p\sigma_p$, $\mathcal{M}_{\mathcal{I}}$ returns $\mathcal{M}_{\mathcal{I}}(b_1\sigma_1) \dots \mathcal{M}_{\mathcal{I}}(b_p\sigma_p)$, with $\mathcal{M}_{\mathcal{I}}(\varepsilon) = \varepsilon$, and $\mathcal{M}_{\mathcal{I}}(w) = \emptyset$ otherwise.

Undecidability (continued)

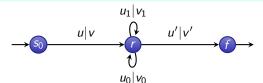
- ▶ The relation $\mathcal{M}_{\mathcal{I}}$ can be realized by a transducer;
- If x(σ) ≠ y(σ) for all σ ≠ ε, then M_I outputs A⁺ · {⊤, ⊥} for any bσ and there can be no channel;
- If x(σ) = y(σ) = w for some σ, the bit b can be transmitted by detecting w. For example, to transmit 0:
 - 1. the encoder sends $\perp \cdot \sigma$,
 - 2. it will be transformed by $\mathcal{M}_{\mathcal{I}}$ into $(A^+ \cdot \bot) \cup ((A^+ \setminus \{w\}) \cdot \top);$
 - the decoder rejects what does not start by w, then reads the bit; in this case, it is ⊥, which is transformed into 0.

◆□▶◆□▶◆ミ▶◆ミ▶ ミ のへで 12/18

The case of functional transducers

Proposition

If a functional transducer has an encoding state, then it has a channel.



The encoder is $\mathcal{E} = (\varepsilon, u) \cdot \{(0, u_0), (1, u_1)\}^* \cdot (\varepsilon, u')$, the decoder is $\mathcal{D} = (v, \varepsilon) \cdot \{(v_0, 0), (v_1, 1)\}^* \cdot (v', \varepsilon)$.

 \rightsquigarrow The decision procedure consists in finding an encoding state.

Detecting encoding states

Let \mathcal{M} be a functional transducer and s a (useful) state of \mathcal{M}

- 1. Consider \mathcal{M}_s , similar to \mathcal{M} , with s as initial and final state.
- 2. Find $u_0 \in A^+$ such that $\mathcal{M}_s(u_0) \neq \varepsilon$, *i.e.* a cycle on s labeled by $u_0|v_0$ with $v_0 \neq \varepsilon$. If all cycles have output ε , s is not an encoding state.
- 3. Otherwise compute the (rational) set of words $N(v_0) \subseteq Im(\mathcal{M}_s)$ that do not commute with v_0 . If $N(v_0)$ is empty, s is not an encoding state.
- Otherwise compute P the preimage of N(v₀) by M_s, pick u₁ ∈ P and let v₁ = M_s(u₁): State s is encoding with cycles u₀|v₀ and u₁|v₁.

Outline

Results and tools

Verification problem A necessary condition for synthesis

The synthesis problem

The general case The case of functional transducers

Conclusion

Conclusion

- The case of synthesis under study is very simple:
 - a simple model: transducers;
 - a simple specification: input = output.

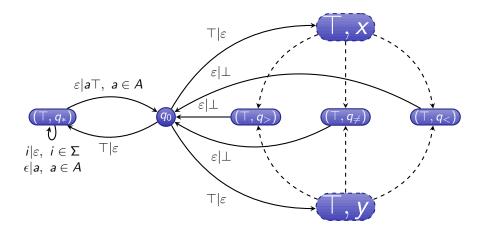
But the problem is already undecidable !

- An even simpler case, namely functional transducers, is decidable, with polynomial complexity.
- It can nonetheless be used to detect covert communication in systems with limited nondeterminism.
- > The complexity gap gives hope for finding intermediate decidable classes:
 - of transducers;
 - of specification.

Thank you

< □ > < □ > < □ > < ≧ > < ≧ > = うへで 17/18

$\top\text{-half of }\mathcal{M}_\mathcal{I}$



◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへで 18/18