A learning packet-based autonomic network
architecture

Zeinab Movahedi, Rami Langar, and Guy Pujolle

Abstract—Autonomic computing paradigm represents an emerging solution to deal with the ever-increasing size and
complexity of managing IT systems. When applied to the networking, it relates to the capability of the network to
operate and serve its objectives optimally by managing its own self without external intervention. We distinguish
between two levels of management: Intra-application level which consists in managing different parameters within
an application or service in order to optimize it; and inter-application level which is in charge of optimizing between
several different applications and services. In this paper, we propose a generic approach applicable to both area. Our
proposed architecture is based on random neural networks and uses the reinforcement learning. This enables the
network to continuously converge to optimal configurations when network conditions change. In addition, the random
neural network decision-making process is fed by normal transiting packets in the network, which significantly reduce
the amount of control traffic. To show the effectiveness or our architecture, a case study consisting in optimizing the
performance of mobile ad hoc network routing protocols is used. We proposed a dynamic routing protocol which interacts
continuously with the architecture in order to enhance the network operation. Simulations show that the architecture

improves significantly the QoS performance of ad hoc routing protocols.

Index Terms—Autonomic architecture, cognitive networking, learning mechanisms.

1 INTRODUCTION

He recent advances in computing and communi-
Tcation technologies have resulted in an explosive
growth in scale and complexity of computing envi-
ronments. This evolution overwhelms the capabilities
of current human-centric management approaches. To
overcome this ever-increasing size and complexity of
management, autonomic computing paradigm has been
proposed as a promising approach. By analogy with the
autonomous nervous system of the human body, which
checks blood sugar levels and maintains normal body
temperature without any conscious effort, the autonomic
computing aims at developing self-managing computing
systems that manage themselves optimally given high-
level objectives from administrators.

IBM proposed a generic reference model, called
MAPE-K model (Monitor, Analyze, Plan, Execute and
Knowledge) which provides a conceptual view of auto-
nomic management process. Following this model, the
self-management is achieved through monitoring com-
puting resources, analyzing the collected data, planing
adaptation tasks and executing the decided plans. This
process forms an autonomic control loop (ACL) around

o Authors are with the Department of Network and Computer
Engineering, Laboratoire d’Informatique de Paris 6, Paris, France.
E-mail: name.lastname@lip6.fr

computing resources which is guided by high-level ob-
jectives previously dictated by the administrator.

An immediate field of application of autonomic prin-
ciples is on network management where the complexity
becomes already an issue. Hence, a significant body
of work has been dedicated on applying autonomic
properties for managing network resources. The exist-
ing autonomic network architectures rely on monitoring
both local and network-wide views which enables the
optimization of the overall network operation. While
some of existing architectures provide all network el-
ements with network-wide knowledge, there are some
others defining a monitoring overlay composed of a set
of network elements. Whether approach is used, the
challenge between network awareness and monitoring
overhead should be considered.

In most of existing architectural solutions, the analyze
and plan components are based on policies [1] which
determine actions to be taken when an event occurs
or certain conditions are met. Although the straightfor-
wardness of policy-based approach, the need for low-
level configuration details does not meet the ultimate ob-
jective of autonomic computing. Moreover, policies are
prone to administrator errors which may be conflicted
or lead to non optimized resource usage.

In few other research work, goal policies [2] and util-
ity functions [3] are used as alternative approaches. Goal
policies divide the states of the system into desirable

and undesirable ones and specifies criteria that charac-
terize desirable network states. Although this approach
removes the limitations of the policy-based adaptation,
it only attempts to lead the system to a desirable state.
However, when the system reaches a desirable state,
it would not try to improve its performance anymore.
Moreover, when a desirable state cannot be reached, the
system does not know which among the undesirable
states is least bad.

Utility functions, on the other hand, consists in eval-
uating the usefulness of possible configurations of net-
work parameters. The adaptation engine bases its reac-
tion on the configuration which meets higher network
utility value. Comparing to policy and goal based rea-
soning, the utility function fits better the optimal solution
since the system selects the configuration which meets
higher network utility value according to the applied
utility function. However, the definition of the corre-
sponding utility function remains an issue.

To address the aforementioned issues of current auto-
nomic solutions, we propose the Learning Packet-Based
Autonomic (LPBA) architecture which uses random neu-
ral network to model the decision-making process within
the autonomic architecture. The proposed adaptation
scheme is enriched with reinforcement learning mech-
anism which uses past experiences to enhance future
operations. Compared with existing autonomic archi-
tectures which rely on resource consuming monitoring
approaches, normal transiting packets in the network are
used to carry necessary global views.

The rest of this article is organized as follows. Sec-
tion 2 reports the related work carried out on autonomic
network management architectures. Section 3 describes
our proposal followed by some performance results
presented in section 4. Finally, section 5 concludes this

paper.

2 PROPOSED ARCHITECTURES

Several autonomic network architectures have been pro-
posed in the literature, each one based on different self-
adaptation and monitoring mechanisms.

In [4], Pavlou et al. proposed a hierarchical policy-
based management architecture for MANETSs, denoted
as DA-MANET. It consists in a two-level distributed
cluster-based architecture: the lower-level deals with
cluster-wide management. The high-level tier orches-
trates between lower-level clusters. Both levels of man-
ager nodes are dynamically selected using a hyper-
cluster formation algorithm inspired from the backbone
overlay networks. Context information is collected from
terminal nodes and reported hierarchically up to the cor-
responding highest management level. The main issue
of this architecture is the use of unique policy-based
adaptation. The convergence of the entire network op-
eration is also questionable since it does not encompass
any coordination mechanism among high-level manager
nodes.

Authors in [5] propose a hierarchical policy-based ar-
chitecture with a centralized highest management level,
called DRAMA. The architecture makes use of several
proprietary protocols to distribute policies from the high-
est level down to the lower levels and for reporting man-
agement information to the higher levels reciprocally.
However, this architecture is practicable only for small
networks.

Autonomic Internet (Autol) [6] proposed a two-level
distributed hierarchical architecture: The lower-level
deals with autonomic policy domain-wide management,
while the high-level tier orchestrates between different
autonomic management domains in order to accommo-
date the federation of networks. Both orchestration and
management levels use policy-based adaptation mecha-
nisms to face with network changes. The context infor-
mation is collected according to a dynamic monitoring
hierarchy and sent to a node that exploits this informa-
tion. The monitoring hierarchy is setup and optimized by
a centralized policy-based controller in accordance with
the optimization requirements of management applica-
tions (e.g. cpu/memory, network resources, or response
time). Although the Autol architecture presents inter-
esting features, its self-adaptation mechanism is limited
by inherent insufficiencies of policy-based adaptation.
Moreover, the centralized structure of its monitoring
approach presents an issue against its scalability.

Authors in [7] presents the ADMA architecture, which
is a distributed management architecture designed for
MANETs. All network elements are involved equally
to network management in a peer fashion. A policy
management protocol distributes the predefined policies
throughout the network with a minimum generated
overhead. While this architecture presents a scalable
policy distribution mechanism, the consistency and op-
timization of network operation are only based on the
first definition of predefined policies by the network ad-
ministrator, which is prone to human errors. Moreover, it
does not specify any global view monitoring mechanism
which may lead to an un-optimized network operation.

Authors in [8] uses several policy concepts to achieve
autonomic behaviors in the network. The management
guidelines are captured from human administrators and
then expressed into network utility functions. These
utility functions are then described in terms of the goal
policies achieving the previous utility functions. The
identified goal policies are forwarded to the coordinator
node within a domain which derives the related be-
havioral policies, describing the behaviors that should
be followed by network equipments to react to context
changes and to achieve the given goal policies. Finally,
these behavioral policies are sent to policy enforcement
points within the domain which represents a switch,
a router, etc. Although this architecture represents a
promising approach to enable network elements deriv-
ing low-level tasks satisfying high-level management
objectives, the effect of local decisions on the entire

network remains an issue.

Authors in [9] [3] proposed an agent-based and ser-
vice oriented autonomic architecture, called Unity. It
consists in a set of application clusters communicating
to each other to optimize the overall system perfor-
mance and fulfill user requirements. Each cluster con-
sists in a set of application environments, each one
being managed by an application manager. Within a
cluster, a resource arbiter allocates resources to each
application manager based on utility functions and high-
level policies. The Unity architecture is more likely to
converge to an optimal network resources usage since
it relies on utility function. However, the architecture
did not specify how different resource arbiters interact,
which can become an issue regarding policy conflicts
and overall network optimization.

Another trend aiming at proposing a self-adapting
network architecture is addressed by cognitive net-
works [10]. It combines cognitive algorithms, coopera-
tive networking, and cross-layer design in order to pro-
vide real-time optimization of complex communication
systems. A cognitive network consists in a distributed ar-
chitecture composed of a set of cognitive nodes exchang-
ing cognitive information in order to enable a network-
wide management. The proposed cognitive architecture
allows dynamic reconfiguration of main protocol stack
parameters at different layers for achieving performance
goals driven by target quality metrics (e.g. overall packet
delivery, end-to-end delay, etc.). To achieve this, a his-
tory of network operations with different settings is
stored based on local and global views. Each protocol
parameter P is continuously adjusted to the mean of
the normal distribution of the value of P that provides
the best performance under current network conditions.
The main limitation of this approach is that it is only
applicable for adjusting parameters taking values in a
continuous interval.

To summarize, two main limitations can be identified
in current autonomic solutions: first, the self-adaptation
process is based on previous definition of either policies
or utility functions which may deviate from the opti-
mal solution specially when the network environment
changes. The cognitive solution, which is the only ar-
chitecture using a learning mechanism to enhance its
configuration, does not consider all types of config-
uration parameters. Second, the employed monitoring
approaches generate significant traffic overhead which
may decrease the gain of self-adaptation processes. The
proposed Learning Packet-Based Architecture tackles
these issues by considering the overall optimization of
network operation as its ultimate objective. This will be
discussed in the next section.

3 LPBA - LEARNING PACKET BASED
ARCHITECTURE

The autonomic LPBA architecture consists in a coop-
erative distributed management layer composed of a

Autonomic Manager <)

Objective
Base

Autonomic
Manager

Application
Layer

Autonomic
Manager

Autonomic
Transport
Manager |3 Layer

T

Network Layer

Knowledge Base
b

Knowledge Management Engine
Cognitive Engine

Link Layer

Physical Layer

Network resources

Fig. 1. LPBA architecture

set of network elements. Each network element repre-
sents an autonomic manager which manages directly
its resources and implicitly the resources of other net-
work elements. As depicted in figure 1, the distributed
management layer is composed of two management
entities implemented in each autonomic manager: The
Cognitive Engine and the Knowledge Management Engine.
The Cognitive Engine is responsible for reasoning based
on local and network-wide knowledge. It represents the
analyze and plan components of the MAPE-K model.
The Knowledge Management Engine, on the other hand,
is in charge of monitoring and processing the local and
network-wide knowledge. With respect to the MAPE-K
model, it represents the monitoring and knowledge com-
ponents. In next sections, we describe the architectural
details of each management entities.

3.1 Cognitive engine

The cognitive engine represents the decision making
point of the architecture. It consists in two components:
o The cognitive evaluation engine, which continuously
evaluates the performance of the underlying net-
work based on aggregated knowledge provided by

the knowledge management engine.

o The cognitive reasoning engine, which plans new
decisions based on the analysis carried out by the
cognitive evaluation engine.

The cognitive reasoning engine is based on the Random
Neural Network (RNN) [11] and uses the reinforcement
learning process (as explained hereafter) in order to ad-
just adaptation plans. Indeed, the RNN is a biologically
inspired neural network model which is characterized
by the existence of positive (excitation) and negative
(inhabitation) signals defining the state of each neuron.
Each neuron j is connected to other neurons i and
sends to them excitation or inhabitation signals with
a certain rate. These rates, noted respectively w; and

wy;, represent the weight metric of each connection and
should be learned from input data. In a RNN, the state
g; is the probability that the neuron i is excited. It can
be calculated as follows:
iy
wi= O <1>
r(i) + A

where A\ (i) and A~ (i) are respectively the total excita-
tion and inhabitation signals that the neuron i receives
from other neurons j. (i) represents the total firing rate
from the neuron i. These parameters can be calculated
as follows:

M=), g @
J€E neurons,j# i
M=), gy (3)

JE€ neurons,j# i

D

JE neurons,j# i

[wyf + wy] @)

A decision corresponds to the selection of the most
excited neuron in the RNN, i.e. the neuron ¢ with high-
est value of ¢;. Based on feedbacks provided by the
cognitive evaluation engine, the Reinforcement Learning
process adjust the weights to reward or punish a pre-
vious decision: if it reasons that the previous decision
was successful, then the excitatory weights going into
that neuron are significantly increased and the inhibitory
weights leading to other neurons are slightly increased.
Otherwise, all excitatory weights leading to all neu-
rons except that corresponding to the previous decision
are moderately increased, and the inhibitory weights
lading to the previous wining neuron are significantly
increased.

In the context of our architecture, we correspond a
special RNN for each decision problem. Each neuron
within a RNN represents a potential choice (value) for
that decision problem. The RNN continuously seeks the
most appropriate choice for each network conditions. For
instance, we can consider a RNN for managing the key
length of the cryptography defense line, a RNN for man-
aging a particular parameter of the routing protocol, a
RNN for managing the evolution of congestion window
when a TCP application is running, etc.

As an example of neurons within a decision problem,
we can imagine a RNN with three neurons or more
for the case of cryptography security management: a
neuron for representing each of 128-bit, 256-bit, 512-bit
key lengths, etc. If the node detects that there were a lot
of successful attacks using the last key length, it means
that the last decision was not successful considering for
the current network conditions. If it reasons that the last
key length is good enough to counter potential attacks
in current situation and the Quality of Service (QoS)
performance is not significantly decreased, it enforces
that last decision. If it detects that there is not necessary

to have high key length which may decrease the QoS
performance, it should also react on that accordingly.

In order to manage the inter influence of decisions
made by inter dependant decision problems, we propose
to define only one RNN representing conjointly those
decision problems, where neurons corresponds to possi-
ble combination of choices among them. As an example,
we consider that the performance of a routing protocol
depends on the value of two protocol parameters, P1
and P2, which should be adjusted according to network
conditions. P1 can select a choice between vy, vo and v3
while P2 could be either w; or ws. The corresponding
RNN represents the combination set of these choices
which are (vi,w1), (vi,w2), (v1,ws), (ve,w1), (ve,ws),
(vg, w3).

The cognitive evaluation engine evaluates the net-
work operation based on the knowledge provided by
the knowledge management engine. The performance
of the last decision is evaluated based on objectives of
the executed RNN either regarding one application (e.g.
the optimization of TCP throughput) or regarding the
overall network performance (e.g. the performance of
the overall network regarding the packet delivery ratio,
mean delay of real-time applications, etc.). The evalua-
tion process compares the performance of the network
before and after applying the new decision, which will
guide the reinforcement learning process as described
earlier.

3.2 Knowledge management engine

The knowledge management engine represents the sec-
ond entity of the proposed LPBA architecture. Each node
implements an instance of the knowledge management
engine which performs monitoring and constructs a
correct network view according to the requirements of
the cognitive engine (decision-making RNNs). As most
of autonomic architectures, we consider two types of
knowledge: internal (local) view and external view. The
internal view is obtained from monitoring local resources
or/and cross-layer information. The external view rep-
resents the knowledge of a subset of network resources
required for decisions with a more global scope. Such a
metric could be energy level, load or neighbor degree,
just to mention a few. In order to avoid significant
overhead for acquiring the external view, any data or
signaling packet traveling in the network will be used.
For instance, a packet can carry information on metrics
such as energy level, load or lifetime of links, and update
it continually when visiting more nodes. The external
view of each intermediate node will be updated for the
region from where the packet arrived.

4 CASE STUDY: ROUTING IN MOBILE

AD HOC NETWORKS

As a proof of concept, we have applied the LPBA
architecture for optimizing the performance of mobile

ad hoc routing protocols. The target objective of the
management decision problem is the optimization of
data delivery within the network. To do so, we im-
plemented the cognitive and knowledge management
engines under the network simulator ns-2 and provided
necessary interfaces to link them to the routing agent. For
ease of application, the Cognitive Packet Network (CPN)
protocol [12] is selected as routing protocol which uses
inherently the RNN in the route discovery process of
fixed networks. This similarity simplifies the adaptation
of the protocol to be linked to the cognitive engine
component of our architecture. To do so, all decision
process within the routing protocol is leaved to the cog-
nitive engine. Moreover, the protocol is assisted by the
knowledge management engine which feeds the decision
process. Evidently, any other routing protocol can be
adapted to use the features of the LPBA architecture
following a similar process.

Each node of the ad hoc network is equipped with
an instance of cognitive and knowledge management
engines. The objective is to select routes offering a
better solution for a given metric, such as route life-
time, delay, etc. To do so, each node has to select the
more appropriate next hop for route request packets.
This phase is ensured by the cognitive engine based
on RNN when sufficient information exist in a node.
Otherwise, broadcasting is used until the destination or
a next hop with sufficient information to execute the
RNN algorithm is reached. Within the cognitive engine
of each node, a RNN is defined/updated by any route
request packet for each pair of destination and QoS
metric request. Each RNN is composed of N neurons,
each one representing a neighbor (a potential next hop).
The neighbor representing the most excited neuron is
selected as the next hop. The knowledge is updated
regarding the metric of choice based on the knowledge
management process. For instance, the hop count, route
lifetime and delay are used in our simulations. A packet
updates the metric in all intermediate nodes towards
its destination (which can be the destination of a flow
for route request and data packets and the source for
ACK packets). To illustrate this, let us consider the route
lifetime as the metric of choice. When a node has a
packet to send to a destination for which it has no
fresh route in its cache, it generates a route request
packet with the lifetime metric initiated. If a RNN exists
already for that destination in the cognitive engine of
the corresponding node, that RNN will be executed to
find the more appropriate next hop. Otherwise, the route
request packet will be broadcasted. In the next hop, the
local node will be added to the route carrying by the
route request packet. In addition, it updates the partial
route lifetime considering its distance with the last hop,
its transmission range and their relative speeds. Then,
it runs again the RNN to find the next hop and so on.
When the route request is received by the destination,
an ACK is generated back to the source. This ACK

updates the view of the intermediate nodes regarding
the success of the last destination. If the QoS metric
corresponding to the same pair of destination and QoS
metric request is enhanced based on the last decision, the
neuron corresponding to that decision will be rewarded,
otherwise, that neuron will be punished according to
the reinforcement learning process. The ACK packet is
used as well to update the cache of intermediate node
regarding a route towards the same destination with a
same QoS metric. Note that the knowledge about route
lifetime stored in the knowledge base can also be used
to temporize the route in the cache.

4.1 simulation environment

Simulation experiments were performed using the net-
work simulator ns2. Table 1 summarizes some simula-
tion parameters. The scenario consists of 50 nodes with
a transmission range of 250m in a 1300m x 500m area.
Nodes are moving in random directions according to the
Random Waypoint Model with maximum speed varying
from 5 m/s to 30 m/s. The pause time is varied from
0Os to 250s in order to show the impact of mobility on
the network performance. We considered 20 CBR data
flows in the network, each one generating 4 packets/sec
with a packet size of 512 bytes. The performance of the
CPN protocol using our architecture (denoted as LPBA)
is compared with AODV, DSR protocols which are based
on normal IP architecture. Simulations are repeated 20
times.

TABLE 1
Simulation parameters

Value

11 Mbps

TwoRay Ground
Random waypoint
1300m x 500m
250m

Parameter

Transmission Rate
Radio Proagation Model
Mobility Model
Network area
Transmission Range
Interface queue size 64 packets

CBR rate 4 packets/seconds
CBR sources 20

Data packet size 512 bytes
Maximum speed 1,2, 10, 20, 30 m/s
Pause time 0, 50, 100, 250s
Simulation time 500s

4.2 Simulation results

We first evaluate the QoS performance of our architec-
ture compared to the AODV and DSR routing protocols.
We considered two QoS metrics: the Average End to
End Delay (AE2ED) which represents the transmission
delay of data packets that are delivered successfully, and
the Packet Delivery Ratio (PDR) which is the ratio of
the delivered data packets to the total number of data
packets sent.

Average E2E delay vs. Maximum speed
6.000

AODV '+ -
5.500 f DSR 1
5.000 LPBA = |

4.500 | 1
4,000 F .
3.500 | 1
3.000 | E
2.500 | 1
2.000 | 1
1.500 | 1
0.500 L% e e

12 10 20 30

Maximum Speed

AE2ED (sec)

Fig. 2. End-to-End Delay vs. Maximum Speed

PDR vs. pause time

90
85 |

AODV + -

DSR
LPBA i
80 |

75 F

*
L

70 | b

PDR(%)

65 | 1
60 1
55+ 1
50 1

45 : :
0 50 100 250

pause time(s)

Fig. 3. PDR vs. Pause time

Figure 2 plots the average end-to-end delay of LPBA
architecture compared to AODV and DSR protocols for
different mobility speeds. The results are shown for a
pause time of 250s. Other tested scenarios yield similar
results. As depicted in this figure, the LPBA architecture
presents a better delay for all maximum speeds. Indeed,
the average end-to-end delay is reduced by around 650
ms compared to AODV which represents an enhance-
ment up to 76%. Compared to the DSR protocol, the
average end-to-end delay is enhanced up to 96%. In
addition, we can see from that figure that the impact
of the LPBA architecture becomes more relevant as the
nodes’ mobility increases.

In figure 3, the packet delivery ratio is analyzed for
different pause times with the maximum speed fixed to
30 m/s. The results show that the LPBA architecture
outperforms AODV and DSR protocols for all scenarios
up to 10% and 37%, respectively.

In order to show the effectiveness of the packet-based
knowledge management engine, we also evaluated the
quality of the external (global) view using the correct-

External view, correctness

LPBA mmmm

Correctness (%)

10 20

Maximum Speed

Fig. 4. Global view correctness

ness metric. This latter metric consists in calculating the
fraction of nodes which have a correct view about the
network when their external view is compared against
the reality of the underlying network. In our case, the
disseminated information used to construct the external
view is the route lifetime. Hence, the correctness metric
represents the ratio of nodes having a correct view
about their links towards different destinations in the
network. Figure 4 shows the correctness of the external
view for different simulation parameters. As we can see,
the correctness slightly decreases for higher dynamic
scenarios but always remains higher than 83%. This
degree of correctness can sufficiently be used for the
decision process, as shown in QoS performance results
depicted previously in figures 2 and 3.

5 CONCLUSION

In this paper, we presented LPBA, a learning Packet-
based Autonomic architecture which uses a random
neural network based on a cognitive engine with a
reinforcement learning mechanism. The use of random
neural networks enables the network to converge to
the optimal configuration by enabling to learn from the
past experiences to enhance its future operation. The
proposed cognitive engine is fed by internal and external
views which are provided by the knowledge manage-
ment engine. The latter uses the normal transiting pack-
ets in the network to disseminate the necessary global
views. As a case study for the proposed architecture, a
modified version of the Cognitive Packet Network pro-
tocol was proposed which uses the proposed cognitive
and knowledge management engines.

Simulations carried on the ns-2 simulator under dif-
ferent mobility scenarios show that the results are im-
proved significantly for the end-to-end delay and for
the packet delivery ratio when comparing with the
AODV and DSR protocols. In addition, the high quality
of the external view was evaluated which shows that

TABLE 2
Overview of some proposed architectures
DRAMA CA-MANET | Autol ADMA ANEMA Unity Cog-Prot LPBA

Decision process | Policy-based | Policy-based | Policy-based | Policy-based Goal Utility a Primary | RNN + re-
policy- function + | cognitive inforcement
based Policy-based | process learning

Learning NO NO NO NO NO NO YES YES

Cost of | Medium Medium Medium Not specified Medium Medium Not Low

autonomicity specified

(overhead)

Optimal reason- | NO NO NO NO NO YES YES YES

ing

the proposed knowledge management engine based on

(8]

packets in the network can give a sufficient good image
about the network as they represent the most mobile

element in the network. The characteristics of existing
autonomic network architectures as well as the proposed

LPBA architecture are summarized in table 2.

As future work, we intend to model other manage-

ment decision problems using the LPBA architecture. For

instance, we will focus on the security related configura-

(10]

tion management. Moreover, we will define a reference

application with several inter-dependent management
problems and study the effectiveness of our architecture

(11]

to optimize the overall solution. We will also examine
the performance of the LPBA architecture comparing to
other autonomic architectures.

(12]

ACKNOWLEDGMENTS

REFERENCES

(1]

(2]

S. Calo and M. Sloman, “Guest editorial: Policy-based
management of networks and services,” Journal of Network
System Management, vol. 11, no. 3, pp. 249-252, 2003.

A. K. Bandara, E. Lupu, J. D. Moffett, and A. Russo, “A
goal-based approach to policy refinement,” in POLICY,
2004, pp. 229-239.

J. O. Kephart and R. Das, “Achieving self-management
via utility functions,” IEEE Internet Computing, vol. 11,
no. 1, pp. 40-48, 2007.

Z. Movahedi, M. Abid, D. Fernandes Macedo, and G. Pu-
jolle, “A policy-based orchestration plane for the auto-
nomic management of future networks,” in 6th Interna-
tional Workshop on Next-Generation Networking Middleware
(NGNM) as part of Manweek 2009, October 2009.

R. Chadha, Y.-H. Cheng, J. Chiang, G. Levin, S.-W. Li,
and A. Poylisher, “Policy-based mobile ad hoc network
management for drama,” MILCOM Journal, vol. 3, pp.
1317-1323, December 2004.

“Autonomic Internet (Autol) FP7 project.” [Online].
Available: http://ist-autoi.eu/

M. Ayari, Z. Movahedi, F. Kamoun, and G. Pujolle,
“Adma: Autonomous decentralized management archi-
tecture for manets - a simple self-configuring case study,”
in Prodeedings of the International Wireless Communications
and Mobile Computing Conference (IWCMC), Autonomic
Wireless Networking Workshop. Leipzig, Germany, June
2000, pp. Leipzig, Germany.

H. Derbel, N. Agoulmine, and M. Salaiin, “Anema: Au-
tonomic network management architecture to support
self-configuration and self-optimization in ip networks,”
Computer Networks, vol. 53, no. 3, pp. 418-430, 2009.

D. M. Chess, A. Segal, and 1. Whalley, “Unity: Experiences
with a prototype autonomic computing system,” in ICAC
'04: Proceedings of the First International Conference on Auto-
nomic Computing. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 140-147.

R. W. Thomas, L. A. Dasilva, and A. B. Mackenzie, “Cog-
nitive networks,” in Proceedings of IEEE DySPAN 2005,
November 2005, pp. 352-360.

E. Gelenbe, “Random neural networks with
negative and positive signals and product
form solution,” Neural —Comput.,, vol. 1, pp.
502-510, December 1989. [Online]. Available:

http:/ /portal.acm.org/ citation.cfm?id=1351079.1351086
G. Sakellari, “The cognitive packet network: A survey,”
Comput. J., vol. 53, no. 3, pp. 268-279, 2010.

