
Dynamical strategies using Discrete Stochastic
Arithmetic for approximation methods

Fabienne Jézéquel
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Abstract

Let us consider the converging sequence generated by successively di-
viding by two the step size used in an approximation method. With an
appropriate stopping criterion, we show that in the last approximation ob-
tained, the significant bits which are not affected by round-off errors are in
common with the exact result, up to one. This strategy has been success-
fully applied to several composite quadrature methods. Other strategies,
which are not based on “step halving”, are also proposed. For approxima-
tion methods of a relatively high order, these alternative strategies may
sometimes be less costly.

Key words: approximation methods, numerical validation, quadrature meth-
ods, trapezoidal rule, Simpson’s rule, Gauss-Legendre method, CESTAC method,
Discrete Stochastic Arithmetic.

1 Introduction

An approximation method, based on a discretization step, provides a numerical
result affected by a global error, which consists of both a truncation error and
a round-off error. If the discretization step decreases, the truncation error also
decreases, but the round-off error usually increases. The optimal step size,
for which the global error is minimal, can be computed dynamically [18]. In
this paper, we show how to determine in the corresponding result which digits
are affected neither by the truncation error, nor by the round-off error. In
section 2, we present theoretical results which enable one to determine, from
two approximations computed with step values h and h/2, the first digits of the
exact result. In section 3, we briefly recall the principles of Discrete Stochastic
Arithmetic (DSA) which enables one to estimate round-off error propagation
and we present a strategy based on “step halving” to compute the optimal
approximation. In section 4, we compare this strategy with other ones, where
step reduction is not necessarily regular. In section 5, we present numerical
experiments carried out using DSA.
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2 Theoretical results on approximation methods

2.1 Preliminary definition

The theoretical results presented in this section require the notion of significant
digits common to two real numbers. Therefore we need the following definition.

Definition 1 Let a and b be two real numbers, the number of significant digits
that are common to a and b can be defined in IR by

1. for a != b, Ca,b = log10

∣∣∣∣
a + b

2(a − b)

∣∣∣∣ ,

2. ∀a ∈ IR, Ca,a = +∞.

Then |a − b| =
∣∣a+b

2

∣∣ 10−Ca,b. For instance, if Ca,b = 3, the relative difference
between a et b is of the order of 10−3 which means that a and b have three
significant digits in common.

2.2 On approximation methods of order p

A numerical method which uses a discretization step h enables one to approx-
imate an exact value L by a value L(h) such that limh→0 L(h) = L. The
technique of “step halving” consists in computing a sequence of approximations
based on several successive divisions of the step by 2. Theorem 1 enables one to
determine the number of significant digits in common between two successive
approximations and the exact result L.

Theorem 1 Let us consider a numerical method which provides an approxima-
tion L(h) of order p to an exact value L, i.e. L(h) − L = Khp + O (hq) with
1 ≤ p < q, K ∈ IR. If Ln is the approximation computed with the step h0

2n , then

CLn,Ln+1 = CLn,L + log10

(
2p

2p − 1

)
+ O

(
2n(p−q)

)
.

Proof The truncation error on Ln is

Ln − L = K

(
h0

2n

)p

+ O
(

1
2qn

)
. (1)

Using the same formula for Ln+1, one obtains

Ln − Ln+1 = K

(
2p − 1

2p

) (
h0

2n

)p

+ O
(

1
2qn

)
. (2)

From equation (1), we deduce

Ln

Ln − L
=

Ln

K(h0
2n )p

(
1 + O(2n(p−q))

) . (3)

2



Ln

Ln − L
=

Ln

K(h0
2n )p

(
1 + O(2n(p−q))

)
. (4)

Therefore
Ln

Ln − L
=

Ln

K(h0
2n )p

+ O(2n(2p−q)). (5)

Then
Ln + L

2(Ln − L)
=

Ln

Ln − L
− 1

2
=

Ln

K(h0
2n )p

+ O(2n(2p−q)). (6)

Similarly, from equation (2), we deduce

Ln + Ln+1

2(Ln − Ln+1)
=

Ln

Ln − Ln+1
− 1

2
=

(
Ln

K(h0
2n )p

) (
2p

2p − 1

)
+ O(2n(2p−q)). (7)

From definition 1 and equation (6), we deduce

CLn,L = log10

∣∣∣∣∣
Ln

K(h0
2n )p

(
1 + O(2n(p−q))

)∣∣∣∣∣ . (8)

CLn,L = log10

∣∣∣∣∣
Ln

K(h0
2n )p

∣∣∣∣∣ + log10

∣∣∣1 + O(2n(p−q))
∣∣∣ . (9)

Therefore

CLn,L = log10

∣∣∣∣∣
Ln

K(h0
2n )p

∣∣∣∣∣ + O
(
2n(p−q)

)
. (10)

Similarly, from definition 1 and equation (7), we deduce

CLn,Ln+1 = log10

∣∣∣∣∣

(
Ln

K(h0
2n )p

) (
2p

2p − 1

)∣∣∣∣∣ + O
(
2n(p−q)

)
. (11)

Finally

CLn,Ln+1 = CLn,L + log10

(
2p

2p − 1

)
+ O

(
2n(p−q)

)
. (12)

!
If the convergence zone is reached, i.e. if the term O

(
2n(p−q)

)
becomes negli-

gible, the significant digits common to two successive approximations Ln and
Ln+1 are also in common with the exact result L, up to one bit. Indeed the term
log10

(
2p

2p−1

)
decreases as p increases and it corresponds to one bit for methods

of order 1.

Remark 1 This assertion can be related to previous works carried out on con-
verging sequences [11, 12]. The sequence (Ln) generated by the technique of
“step having” converges linearly to the exact result L. Indeed it satisfies Ln−L =
Kαn + o (αn) with K ∈ IR and 0 < |α| < 1. In [11, 12], it has been pointed out
that if 0 < α ≤ 1

2 (which is the case here), then in the convergence zone, the
significant bits common to two successive iterates are also in common with L,
up to one.
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2.3 On Newton-Cotes methods

Theorem 1 can apply to Newton-Cotes quadrature rules.
Let I(h) be the approximation to I =

∫ b
a f(x)dx by the trapezoidal rule with

step h. If f ∈ C4[a, b], the truncation error expansion on I(h) up to order 4
is [14]:

I(h) − I =
h2

12
[f ′(b) − f ′(a)] + O(h4). (13)

Let I(h) be the approximation to I =
∫ b

a f(x)dx by Simpson’s rule with step h.
If f ∈ C6[a, b], the truncation error expansion on I(h) up to order 6 is [14]:

I(h) − I =
h4

180
[f (3)(b) − f (3)(a)] + O(h6). (14)

Equations (13) and (14) are similar to equation (1) which characterizes approx-
imation methods, with p = 2 and q = 4 for the trapezoidal rule; p = 4 and q = 6
for Simpson’s rule. Therefore the following theoretical results, which had been
given in [7] with specific proofs, could have been established from theorem 1.

Corollary 1 Let In be the approximation to I =
∫ b

a f(x)dx by the trapezoidal
rule with step h = b−a

2n . If f ∈ C4[a, b] and f ′(b) != f ′(a), then

CIn,In+1 = CIn,I + log10

(
4
3

)
+ O

(
1
4n

)
. (15)

Corollary 2 Let In be the approximation to I =
∫ b

a f(x)dx by Simpson’s rule
with step h = b−a

2n . If f ∈ C6[a, b] and f (3)(b) != f (3)(a), then

CIn,In+1 = CIn,I + log10

(
16
15

)
+ O

(
1
4n

)
. (16)

The following error expansion for closed Newton-Cotes quadrature rules is given
in [1]. Let I(h) be the approximation to I =

∫ b
a f(x)dx by the composite closed

Newton-Cotes quadrature rule with ν points and step h. Let p = ν + 1 if ν is
odd and p = ν if ν is even. If f ∈ Cp+2[a, b], then

I(h) − I = Kνhp[f (p−1)(b) − f (p−1)(a)] + O
(
hp+2

)
, (17)

where Kν is a constant which depends on ν.
Corollary 3 can be established from theorem 1 and equation (17).

Corollary 3 Let IN be the approximation to I =
∫ b

a f(x)dx by a composite
closed Newton-Cotes quadrature rule of order p with step h = b−a

N . If f ∈
Cp+2[a, b] and f (p−1)(b) != f (p−1)(a), then

CIN ,I2N = CIN ,I + log10

(
2p

2p − 1

)
+ O

(
1

N2

)
. (18)
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Assuming N = 2n, corollary 3 is in perfect agreement with corollary 1 (specific
to the trapezoidal rule) and with corollary 2 (specific to Simpson’s rule).
The theoretical result, similar to corollary 3, which has been established in [1]
is not correct. Indeed the following equation given in its proof

IN + I

2(IN − I)
=

INNm+1

Kν(b − a)m+1
+ O (1) , (19)

where m + 1 represents the order p of the method, should be replaced by

IN + I

2(IN − I)
=

INNm+1

Kν(b − a)m+1
+ O

(
Nm−1

)
. (20)

This change generates modifications in all relations of the proof deduced from
equation (19) in [1].

2.4 On the Gauss-Legendre method

Theorem 1 can also apply to the Gauss-Legendre method. First let us briefly re-
call the principles of this quadrature method. The approximation to

∫ 1
−1 f(x)dx

by the Gauss-Legendre method with ν points [9, 10] is
∑ν

i=1 Cif(xi), where for
i = 1, ..., ν, {xi} are the roots of the ν-degree Legendre polynomial Pν and

Ci =
2

(1 − x2
i )(P ′

ν(xi))2
. (21)

For the computation of an integral on another interval such as I =
∫ b

a g(t)dt,
the following change of variable is required.

I =
∫ b

a
g(t)dt =

b − a

2

∫ 1

−1
f(x)dx, (22)

with
∀x ∈ [−1, 1], f(x) = g

(
(b − a)x + b + a

2

)
. (23)

The Gauss-Legendre method with ν points is of order 2ν: it is exact if the
integrand is a polynomial of degree r with r ≤ 2ν − 1.
Let us assume that the integration domain is partitioned into 2n subintervals
and that the integral on each subinterval is evaluated using the Gauss-Legendre
method with ν points. Theorem 2 presents the truncation error on In, the sum
of the 2n approximations obtained.

Theorem 2 Let I =
∫ b

a g(t)dt and for i = 1, ..., ν, let {xi} be the roots of
the ν-degree Legendre polynomial and {Ci} the corresponding weights. Let us
assume that the integral on each subinterval [αk−1, αk] with αk = a + k b−a

2n , for
k = 1, ..., 2n, is evaluated using the Gauss-Legendre method with ν points. Let
In be the sum of the 2n approximations obtained. If g ∈ C2ν+1[a, b], then

In − I =
Kν

4nν
+ O

(
1

2n(2ν+1)

)
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with Kν = (b−a)2ν

22ν+1(2ν)!

(∑ν
i=1 Cix2ν

i − 2
2ν+1

) [
g(2ν−1)(b) − g(2ν−1)(a)

]
.

In [13], a more general form of theorem 2, where the integration interval is
partitioned into q subintervals, is given with its proof.
Corollary 4 can be established from theorems 1 and 2. The same notations and
assumptions as in theorem 2 are used.

Corollary 4

CIn,In+1 = CIn,I + log10

(
4ν

4ν − 1

)
+ O

(
1
2n

)
.

Therefore if the convergence zone is reached, i.e. if the term O
(

1
2n

)
becomes

negligible, the significant digits common to two successive approximations are
also in common with the exact value of the integral, up to one bit.

3 A stochastic approach of round-off errors

3.1 The CESTAC method

The CESTAC (Contrôle et Estimation Stochastique des Arrondis de Calculs)
method, which has been developed by La Porte and Vignes [16, 17, 20], is based
on a probabilistic approach of round-off errors and enables one to estimate the
number of exact significant digits of any computed result.
The implementation of the CESTAC method in a code providing a result R
consists in performing N times this code with the random rounding mode,
which is obtained by using randomly the rounding mode towards −∞ or +∞.
We then obtain N samples Ri of R. The computed result is chosen as being the
mean value R = 1

N

∑N
i=1 Ri.

The number CR of exact significant digits of R, i.e. its number of significant
digits not affected by round-off errors, can be estimated by applying Student’s
test to the samples of R consisting of the different Ri (i = 1, ..., N):

CR = log10

(√
N

∣∣R
∣∣

στβ

)
, (24)

with

σ2 =
1

N − 1

N∑

i=1

(
Ri − R

)2
. (25)

τβ is the value of Student’s distribution for N − 1 degrees of freedom at a
probability level 1− β. In practice N = 2 or N = 3 and β = 0.05. Note that for
N = 2, then τβ = 12.706 and for N = 3, then τβ = 4.4303.
The reliability of the CESTAC method has been proved under some hypotheses
[4, 6]. Its validation requires a dynamic control of multiplications and divisions,
during the execution of the code. This leads to the synchronous implementation
of the method, i.e. to the parallel computation of the N samples Ri, and also
to the concept of computational zero [15].
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Definition 2 During the run of a code using the CESTAC method, an inter-
mediate or a final result R is a computational zero, denoted by @.0, if ∀i, Ri = 0
or CR ≤ 0.

Any computed result R is a computational zero if either R = 0, R being sig-
nificant, or R is insignificant. A computational zero is a value that cannot be
differentiated from the mathematical zero because of its round-off error.

3.2 Stochastic arithmetic

From the synchronous implementation of the CESTAC method and the concept
of computational zero, stochastic arithmetic [6, 8, 17] has been defined. Two
types of stochastic arithmetic actually exist: it can be either continuous or
discrete.
By using the implementation of the CESTAC method, so that the N runs of
a code take place in parallel, the N results of each arithmetical operation can
be considered as realizations of a Gaussian random variable centred on the ex-
act result. One can therefore define a new number, called stochastic number,
and a new arithmetic, called continuous stochastic arithmetic, applied to these
numbers. An equality concept and order relations, which take into account
the number of exact significant digits of stochastic operands, have also been
defined. Continuous stochastic arithmetic is a modelling of the synchronous
implementation of the CESTAC method. Properties established in its theoret-
ical framework can be applied on a computer via the practical use of Discrete
Stochastic Arithmetic (DSA) [19].
With DSA, a real number becomes an N -dimensional set and any operation on
these N -dimensional sets is performed element per element using the random
rounding mode. The number of exact significant digits of such an N -dimensional
set can be estimated from equation (24). From the concept of computational
zero previously introduced, an equality concept and order relations have been
defined for DSA.

Definition 3 Let X and Y be N -samples provided by the CESTAC method.

• Discrete stochastic equality denoted by ds= is defined as:
Xds= Y if and only if X − Y = @.0.

• Discrete stochastic inequalities denoted by ds> and ds≥ are defined as:
Xds> Y if and only if X > Y and Xds!= Y ,
Xds≥ Y if and only if X ≥ Y or Xds= Y .

Many problems due to branching statements (for example, unsatisfied stopping
criteria or infinite loops in algorithmic geometry) are partially solved in DSA,
where the numerical quality of the operands in order relations is taken into
account [5].
Therefore DSA enables to estimate the impact of round-off errors on any result
of a scientific code and also to check that no anomaly occurred during the
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run, especially in branching statements. DSA is implemented in the CADNA
library1.

3.3 A strategy for a dynamical control of approximation
methods

DSA enables one to estimate the number of exact significant digits of any com-
puted result, i.e. its significant digits which are not affected by round-off error
propagation. Adopting the same notations as in 2.2, let (Ln) be a sequence
computed in DSA with an approximation method using the step value h0

2n . and
let us assume that the convergence zone is reached. If discrete stochastic equal-
ity is achieved for two successive iterates, i.e. Ln − Ln+1 = @.0, the difference
between Ln and Ln+1 is only due to round-off errors and further iterations are
useless. The optimal iterate Ln+1 can therefore be dynamically determined at
run time. Furthermore, from theorem 1, the exact significant bits of Ln+1 are
in common with the exact result L, up to one.
Therefore one can dynamically determine the optimal approximation by per-
forming computations until the difference Ln − Ln+1 has no exact significant
digit. If the convergence zone has been reached, then the exact significant bits
of the last approximation are in common with L, up to one.

4 Alternative strategies

What results are obtained if one does not strictly apply the strategies described
in section 2 which are based on step halving ? In this section, other step
reductions, which are not necessarily regular, are proposed.
Theorem 3 applies when an approximation method of order p is used with a step
h0
n . From two approximations, which are not necessarily consecutive, it enables
one to determine the first digits of the exact result.

Theorem 3 Let us consider a numerical method which provides an approxima-
tion L(h) of order p to an exact value L, i.e. L(h) − L = Khp + O (hq) with
1 ≤ p < q, K ∈ IR.
If Ln is the approximation computed with the step h0

n and r ∈ IN∗, then

CLn,Ln+r = CLn,L + log10

(
1

1 − ( n
n+r )p

)
+ O

(
np−q

)
.

Proof The truncation error on Ln is

Ln − L = K

(
h0

n

)p

+ O
(

1
nq

)
. (26)

1URL address: http://www.lip6.fr/cadna/
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Using the same formula for Ln+r, one obtains

Ln − Ln+r = K

(
1 −

(
n

n + r

)p) (
h0

n

)p

+ O
(

1
nq

)
. (27)

From equation (26), we deduce

Ln

Ln − L
=

Ln

K(h0
n )p

+ O(n2p−q). (28)

Then
Ln + L

2(Ln − L)
=

Ln

Ln − L
− 1

2
=

Ln

K(h0
n )p

+ O(n2p−q). (29)

Similarly, from equation (27), we deduce

Ln + Ln+r

2(Ln − Ln+r)
=

Ln

Ln − Ln+r
− 1

2
=

(
Ln

K(h0
n )p

) (
1

1 − ( n
n+r )p

)
+ O(n2p−q).

(30)
From definition 1 and equation (29), we deduce

CLn,L = log10

∣∣∣∣∣
Ln

K(h0
n )p

∣∣∣∣∣ + O
(
np−q

)
. (31)

Similarly, from definition 1 and equation (30), we deduce

CLn,Ln+r = log10

∣∣∣∣∣

(
Ln

K(h0
n )p

) (
1

1 − ( n
n+r )p

)∣∣∣∣∣ + O
(
np−q

)
. (32)

Finally

CLn,Ln+r = CLn,L + log10

(
1

1 − ( n
n+r )p

)
+ O

(
np−q

)
. (33)

!

Theorem 3 is equivalent to theorem 1 if n = r = 2m.
If the convergence zone is reached, i.e. if O (np−q) ) 1, the significant dig-
its common to Ln and Ln+r are also common to the exact value L, up to
log10

(
1

1−( n
n+r )p

)
.

1
1−( n

n+r )p ≤ 2 if and only if n ≤ Mp,r with Mp,r = r

2
1
p −1

. Then the term

log10

(
1

1−( n
n+r )p

)
represents at most one bit. More the order p of the method is

high and more the increment r is high, more the value Mp,r is high too. It is
noticeable that if r = n, log2

(
1

1−( n
n+r )p

)
represents at most one bit, whatever

the order p of the method is.
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Consequently, in case that the condition n ≤ Mp,r is satisfied, if computations
are carried out until, in the convergence zone, the difference between two approx-
imations Ln and Ln+r has no exact significant digit, then the exact significant
bits of the last approximation are in common with the exact value L, up to one.
The condition on the number of iterations performed is too restrictive for the
composite trapezoidal rule, of order 2. Indeed, in this case, Mp,1 ≈ 2.4.
Since the composite Simpson’s rule requires an even number of partitions of the
integration interval [a, b], a sequence of approximations (In) cannot be generated
with a step of the form b−a

n , but b−a
2n . Then the term log10( 2p

2p−1 ), with p = 4,
appears in equation (33). This term was already in theorem 1 and represents
at most one bit.
It is actually not advisable to apply to the trapezoidal rule or to Simpson’s rule
a strategy which is not based on step halving. Indeed the strategy described in
section 2 is preferable since points previously computed are always reused.
Theorem 3 can be interesting for methods of a relatively high order, such as the
Gauss-Legendre method. Let us consider the case when r = 1.

• Using the Gauss-Legendre method with 6 points, if less than 18 iterations
are performed with the stopping criterion previously described, on can
obtain an approximation in which the exact significant bits are in common
with the exact value of the integral, up to one.

• The approximation obtained using the Gauss-Legendre method with 12
points may have the same property if less than 36 iterations are performed.

Let In be the approximation obtained with n partitions of the integration do-
main into subintervals on which the classical Gauss-Legendre method with ν
points is applied. As the number n of partitions increases, it is usually not
possible to reuse points previously computed. If a dynamical control of the
computations is performed, some run time may be saved by increasing by a low
value of r the number of partitions of the integration interval. In a numerical
experiment described in section 5, using the Gauss-Legendre method with 12
points, in the case when r = 1, the result has been obtained with 3 partitions of
the integration interval. Using the strategy based on step halving, 4 partitions
had to be performed for the stopping criterion to be satisfied.

5 Numerical experiments

First let us consider the integral

I =
∫ 1

0

arctan(
√

2 + t2)
(1 + t2)

√
2 + t2

dt.

The evaluation of this integral is a problem which has been posed in [2]. D.H. Bai-
ley and X.S. Li have indicated in [3] its exact value: I = 5π2

96 . Therefore its 16
first exact digits are: I ≈ 0.5140418958900708.
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This integral has been evaluated using the different strategies described in sec-
tion 2. Let In be the approximation to I computed :

• using the composite trapezoidal rule or the composite Simpson’s rule with
the step 1

2n ,

• by partitioning the interval [0, 1] into 2n subintervals on which the Gauss-
Legendre method with 12 points is applied.

Approximations In have been computed in DSA, using the CADNA library, until
the difference In−In+1 has no exact significant digit. From theorem 1, the exact
significant bits (i.e. not affected by round-off errors) of the last approximation
IN are in common with I, up to one.
Table 1 presents the approximations to I obtained in single and in double pre-
cision. In every sequence, only the exact significant digits of the last iterate,
estimated using DSA, are reported.

method in single precision in double precision
trapezoidal I8 = 0.51404E + 00 I19 = 0.5140418958899E + 000
Simpson I8 = 0.514041E + 00 I10 = 0.51404189589007E + 000
Gauss-Legendre I1 = 0.5140419E + 00 I1 = 0.514041895890070E + 000

Table 1: Approximations to I ≈ 0.5140418958900708

It is noticeable that the exact significant digits of each approximation IN ob-
tained are in common with I, up to one. The error IN − I is always a compu-
tational zero. Because of round-off errors, the computer cannot distinguish the
approximation obtained from the exact value of the integral.
The number of iterations required for the stopping criterion to be satisfied may
depend on the precision chosen, but also on the quadrature method used. Indeed
the convergence speed of the computed sequence and the numerical quality of
the result obtained vary according to the quadrature method. Starting from I0

(the approximation obtained with no partition of the integration interval), the
sequence generated by the Gauss-Legendre method with 12 points converges
particularly quickly: in two iterations, a result with an excellent numerical
quality is obtained whatever the precision chosen is.

Let us now consider the integral

J =
∫ 20

0
sin(t)dt.

J = 1 − cos(20). Its 16 first exact digits are: J ≈ 0.5919179381866080.
This integral has been evaluated using strategies described in sections 2 and 4.
Let Jn be the approximation to J computed :

• using the composite trapezoidal rule or the composite Simpson’s rule with
the step 20

2n ,
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• by partitioning the integration domain into 2n subintervals on which the
Gauss-Legendre method with 12 points is applied,

• by partitioning the integration domain into n subintervals on which the
Gauss-Legendre method with 12 points is applied.

Approximations Jn have been computed until the difference Jn − Jn+1 has no
exact significant digit. From theorems 1 and 3, the exact significant bits of the
last approximation JN are in common with J , up to one.
Table 2 presents the approximations to J obtained in double precision. In every
sequence, only the exact significant digits of the last iterate, estimated using
DSA, are reported.

method approximation in double precision
trapezoidal J23 = 0.591917938186E + 000
Simpson J15 = 0.5919179381866E + 000
Gauss-Legendre (2n partitions) J2 = 0.59191793818660E + 000
Gauss-Legendre (n partitions) J3 = 0.59191793818660E + 000

Table 2: Approximations to J ≈ 0.5919179381866080

Like in the first experiment, the exact significant digits of each approximation
JN obtained are in common with J , up to one and the error JN − J is always
a computational zero.
The number of iterations performed for the stopping criterion to be satisfied
and the numerical quality of the result obtained depend on the quadrature
method used. Using the Gauss-Legendre method with 12 points and the strat-
egy based on step halving described in section 2, the last approximation J2 has
been obtained with 4 partitions of the integration interval. Applying the same
quadrature method to n partitions of the integration domain, the last approx-
imation J3 has been obtained with 3 partitions. The results obtained with the
two strategies have the same numerical quality.
Therefore run time may be saved by applying the Gauss-Legendre method to n
partitions rather than 2n partitions, as long as n remains relatively low. Since
the sequence of approximations generated with 2n partitions converges faster
than the one obtained with n partitions, when relatively high values of n are
reached, a strategy based on step halving is less costly. It is actually advisable
to use an hybrid strategy:

• the strategy based on n partitions of the integration domain for relatively
low values of n,

• and then the strategy based on step halving.

Such a hybrid strategy has been used in [13] for the evaluation of three-dimensional
integrals involved in the neutron star theory. The multiple integrals were de-
composed into one-dimensional integrals which were computed using a hybrid
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strategy based on the Gauss-Legendre method with 12 points. As more than
5000 three-dimensional integrals had to be computed, saving run time was an
important issue.

6 Conclusion and perspectives

Using an approximation method, a converging sequence can be generated by
halving the step size at each iteration. If computations are carried out until, in
the convergence zone, the difference between two successive approximations has
no exact significant digit, then the last approximation is the optimal iterate.
Furthermore its significant bits which are not affected by round-off errors are
in common with the exact result, up to one. Under some assumptions, one can
obtain with other step reductions an approximation with the same property.
These alternative strategies may sometimes be less costly than the strategy
based on “step halving”.
All the strategies proposed in this paper are based on the computation of a
sequence of approximations, each iterate corresponding to a constant step size.
In the case of the approximation to an integral, the integration domain is parti-
tioned into subintervals of the same length. An adaptive strategy can sometimes
save run time. With a quadrature method, it consists in increasing the step size
where the integrand does no vary much. It would be interesting to propose an
adaptive strategy in DSA and to guarantee the result obtained.
Similar theoretical results as corollary 4 for the Gauss-Legendre method could
be established for other Gaussian quadrature methods. In this paper, the dy-
namical control of the Gauss-Legendre method is based on successive partitions
of the integration domain on which the classical Gauss-Legendre method is ap-
plied. A drawback of this method lies in the fact that, from one iteration to
another, the sets of abscissas to consider have no points in common. With the
Gauss-Kronrod method [14], a sequence of approximations can be computed
where previous function evaluations can be reused. The dynamical control of
this method would be an interesting perspective.
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[7] J.-M. Chesneaux and F. Jézéquel. Dynamical control of computations using
the trapezoidal and Simpson’s rules. J. of Universal Computer Science,
4(1):2–10, 1998.

[8] J.-M. Chesneaux and J. Vignes. Les fondements de l’arithmétique stochas-
tique. C. R. Acad. Sci. Paris Sér. I Math., 315:1435–1440, 1992.

[9] S.D. Conte and C. de Boor. Elementary numerical analysis. McGraw-Hill,
International Student edition, 1980.

[10] H. Engels. Numerical quadrature and cubature. Academic Press, 1980.
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