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Abstract. In this paper, we show how to verify CTL
properties, using symbolic methods, on systems written
in ProMeLa. Symbolic representation is based on Data
Decision Diagrams (DDDs) which are n-valued DAGs
designed to represent dynamic systems with integer do-
main variables. We describe principal components used
for the verification of ProMeLa systems (DDD, repre-
sentation of ProMeLa programs with DDD, the trans-
position of the execution of ProMeLa instructions into
DDD). Then we compare and contrast our method with
the model checker SPIN or classical BDD techniques, to
highlight what system classes whether SPIN or our tool
is more relevant for.

Key words: SPIN, CTL, Symbolic Verification Meth-
ods, BDDs, DDDs.

1 Introduction

1.1 Context

Model checking is a set of techniques intended to au-
tomatically decide if some property holds on a finite-
state system. If the system does not satisfy the property
checked, a counter-example may be expected to correct
the system’s (or the property’s) specification. To deter-
mine whether the system satisfies a property, all compu-
tation sequences have to be explored. This means that,
at least, all reachable states have to be stored to ensure
the ending of computation.

Unlike simulation methods that can handle huge sys-
tems (1015 states or more), without giving any formal
conclusion, exhaustive methods formaly ensures valid-
ity of conclusions, but cannot handle more than mod-
est sized systems (up to 109 states) in case of explicit

enumerative construction. Memory resources needed are
linked to the amount of states explored and the infor-
mation they hold. If we want to use exhaustive methods
on huge systems, we first have to reduce these param-
eters. The abstracted model must be specified regard-
ing the property that will be checked, which means that
system’s reduction (concerning variables’ domains and
computation abstraction) must be carefully expressed.

We chose an abstraction level which is the input for
high-level hardware synthesis [17] and its industrial ap-
plications [11]. The system to analyse is modelled by
a finite set of concurrent asynchronous processes. Com-
munications are performed using buffered channels or
shared variables. These systems are described in ProMe-
La, the input language of the SPIN model-checker [14]
which proposes verification of safety or liveness proper-
ties, expressed in linear temporal logic (LTL, [23]) or
with Büchi automata.

1.2 Explicit state-space construction

The model-checker SPIN has proven its efficiency for
communication protocols or C programs [14,13]. It per-
forms LTL properties validation by finding acceptance
cycles in the synchronous product of the system’s au-
tomaton and a Büchi automaton. This latest recognizes
any infinite sequence validating the negation of the prop-
erty to be checked. The synchronous product is also a
Büchi automaton, its size grows exponentially with the
systems’s size and the complexity of the checked prop-
erty. The states are explicitly stored using an efficient
compression algorithm [15] and methods limiting the
state-space exploration [16,21]. Nevertheless, the SPIN
model-checker cannot handle systems whose size exceeds
107 states, and a knowledge about the tool behaviour is
essential to deal with real systems [1].
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1.3 Symbolic Methods

As state-space representation is a crucial factor for these
verification methods, symbolic methods emerged for rep-
resenting systems with a greater size (1020 states) [5].
These methods deal with set of states contrary to ex-
plicit methods handling states one-by-one. Symbolic Meth-
ods usualy lend theirselves to Computation Tree Logic
[8] and led to the implementation of efficient validation
tools such as VIS [2] or SMV [19]. Symbolic represen-
tation used by these tools is based on Binary Decision
Diagrams [3] described in section 1.4.

An experimental comparison between the enumera-
tive method (performed by SPIN) and the symbolic one
(performed by VIS) was proposed on the ATM protocol
[22]. Unlike SPIN, VIS is a symbolic model-checker over
networks of synchronous processes using signal commu-
nications. For a better comparison, the most adapted
models were implemented for each tool. It emerges that
SPIN is more relevant for small-sized system but VIS
can handle huge systems.

Other comparative studies, such as [25] exhibit the
better performance of exhaustive methods over symbol-
ics ones in case of livelock analysis of a variant of the
sliding-window protocol (the GNU i-protocol).

Our approach consists in using symbolic methods on
ProMeLa systems, in order to verify safety and liveness
properties of some systems that cannot be handled by
SPIN. We chose Data Decision Diagrams (DDDs) [9]
that present the efficient properties of canonicity and
compacity of BDDs and are better suited to represent
dynamic systems and non boolean variables (but having
finite domains). Systematic comparison of verification of
systems described in ProMeLa exhibits some character-
istics of systems that are better suited for SPIN analysis,
while others give the advantage to symbolic techniques
(BDD or DDD). Moreover, for systems presenting a high
parallelism where a “natural” ordering of variables can
be found, DDD outperforms BDD for all (static or dy-
namic) ordering strategies of BDD.

Organisation of the paper follows : the rest of this sec-
tion describes DAG-based state-space representations.
section 2 briefly recalls preliminaries about CTL, and in
section 3 we describe the Data Decision Diagram struc-
ture and the way they are manipulated. In section 4 we
exhibit the links between a ProMeLa program and the
set of transformations to be applied to DDD. In sec-
tion 5 we compare, on systems described with the same
semantics (ProMeLa) the performances of explicit meth-
ods using SPIN and symbolic methods based on DDDs
and BDDs, and bring out some characteristics of systems
giving an advantage to one verification approach or to
the other one.

1.4 DAG-based state-space construction

A Binary Decision Diagram (BDD [3]) represents a boolean
function on a graph with each nonterminal node labelled
by a binary variable. Each node has two outgoing edges,
corresponding to the cases where the variable evaluates
to 1 or to 0. Terminal nodes are labelled with 0 or 1,
corresponding to the possible functions values.

Binary Decision Diagrams (BDDs [3] represent Boolean
functions in a both canonical and (often) compact form.
Most logical operation can be efficiently implemented us-
ing OBDDs and constant assignment can be performed
in linear time (regarding the size of modified BDD).
These diagrams allow state space construction when con-
sidered as characteristic function of a set of states. The
success of OBDDs inspired researchs to improve their
efficiency. Main members of the BDD family are shown
on figure 1. Two parts of this figure are separated with
a dashed line. The left side contains decision diagrams
used to represent functions over boolean variables. Reader
may find more details in [4].

The right side of the figure shows recent improve-
ments of DAGs made for state-space representation pur-
pose. They all deal with variables that are not necessary
boolean.

Functions over numeric variables avoid bit-to-bit con-
struction. They propose an easier way to manipulate
transitions in case of state generation. “Multi-valued De-
cision Diagrams” (MDDs) where developped by [20] for
set of states generation and storage. “Additive Edge-
Valued MDD” (EV+MDD [6]) where proposed to rep-
resent numeric valued function over numeric values and
set generation of shortest paths.

At least two topics in MDDs caught our attention:
First, avoiding bit-to-bit construction is a simple way
to deal with high level design; There is no need, for
instance, to built a complete (bit-level) adder to per-
form an integer addition; Second, DAG based represen-
tation conserves sharing properties, but it needs knowl-
edge about the range of each variable to be constructed.
And third, the use of event locality that accelerates treat-
ments during states generation [7] gives excellents results
on Petri nets analysis. Event locality consists in reaching
directly selected nodes in the middle of paths in DAGs
rather than traversing the DAGs variable node by vari-
able node from root to leaf. This is applyable only if
few and close layers have to be modified by particulariz-
ing each transition with each enabling precondition. Un-
fortunately ProMeLa systems do not have this locality
property.

Data Decision Diagrams (DDDs)[9] are very close
to MDDs, but they have significant differences: They
use the same principle of multivalued variables but only
reached values have corresponding outgoing edge. Any
variable can be instanciated as often as necessary, which
allows representation of dynamic systems. DDDs are en-
dowed with a formalism of inductive methods that are
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Fig. 1. Graph-based function representation

particularized traversal mechanisms expressing opera-
tors and transitions in canonical form. This last differ-
ence led us to use DDDs (rather than MDDs) to handle
ProMeLa systems as we will see in section 3. Set Deci-
sion Diagrams (SDDs [27]) is the last evolution of DDDs.
Edges of a SDD are labelled with a set of values (a DDD,
for instance), which increases the sharing of sub struc-
tures.

2 The CTL Temporal Logic

2.1 Syntax and Semantics

Computation Tree Logic (CTL) is a propositional, bran-
ching-time, temporal logic, which was proposed to spec-
ify temporal properties on finite concurrent systems [8].
It enlarges classical propositional logics with temporal
operators associated with path quantifiers.

The semantic of a CTL formula is defined on a Kripke
structure.

Definition 1 (Kripke Structure). A Kripke struc-
ture M = (AP, S, L, R, S0) is defined as follows:

– AP is a finite set of atomic propositions.
– S is a finite set of states.
– L : S −→ 2P is a function labelling each state with a

set of atomic propositions.
– R ⊆ S × S is a total transition relation: ∀s ∈ S,
∃s′/(s, s′) ∈ R.

– S0 is the set of initial states.

A path is an infinite sequence of states π = s0, s1, s2 . . .
such as ∀i ≥ 0, (si, si+1) ∈ R. We denote πi the suffix
of π starting at si.

Definition 2 (CTL Properties [8]). CTL properties
are built on atomic propositions. The syntax and se-
mantics of CTL properties are defined, given a Kripke
structure, as follows:

– Each atomic property p ∈ AP is a CTL formula.

s |= p ⇐⇒ p ∈ L(s)

– Let f and g be to CTL formulas, then ¬f , f ∧ g,
EXf , EGf et EfUg are CTL formulas.

s0 |= ¬f ⇐⇒ s0 /|= f

s0 |= f ∧ g ⇐⇒ s0 |= f and s0 |= g

s0 |= EXf ⇐⇒ there exists a path π

such as π1 |= f

s0 |= EGf ⇐⇒ there exists a path π

such as ∀i ≥ 0, πi |= f

s0 |= EfUg ⇐⇒ there exists a path π

such as ∃k ≥ 0
such as πk |= g and
∀0 ≤ i < k, πi |= f

2.2 Verifying CTL properties

The use on an efficient abstract data type to represent
and operate on sets is a key issue to perform symbolic
model checking. In most cases, for finite systems, charac-
teristic functions of sets of states are considered and en-
coded into BDD as introduced by [19] and implemented
into VIS and SMV. But other representations of sets
might be considered, provided they are equipped with
efficient set operations computation, and two set trans-
formers post and pre [26]. Some examples of alterna-
tive set representations are predicate structures applied
to algebraic Petri Nets [24] or convex union of (convex)
polyhedra, used in various verification tools for hybrid
systems [10] [12].

The post transformer computes the set of states that
are reachable from states grouped into a set X:

post(X) =
⊔

s⊂X

s′/R(s, s′)
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The pre transformer computes the set of predecessor
states of states that are grouped into a set X. This cor-
responds to the computation of all states that verify the
CTL formula s |= EX(X).

pre(X) =
⊔

s⊂X

s′/R(s′, s)

EG and EU CTL operators are computed as fix-
points based on the pre (or EX) operator, due to their
recurrent definition:

M, s |= EGf ⇐⇒ M, s |= f ∧EX(EGf)

M, s |= EfUg ⇐⇒

M, s |= g
∨
M, s |= (f ∧EX(EfUg))

In section 3 we describe the abstract data type we use
to represent set of states and the associated formalism
to construct post and pre operators.

3 Data Decision Diagrams

3.1 Presentation

Data Decision Diagrams (DDDs,[9]) are data structures
for representing sets of sequences of assignments. DDDs
are encoded as DAGs. Each node is labeled with a vari-
able and each outgoing edge with an integer value. A
path leading from the root of the DDD to the terminal
node 1 represents an accepted sequence of assignments.
All paths leading to the default terminal node 0 are not
represented and undefined sequences are represented on
paths leading to the node >. Each variable may occur
any times along a path. Canonicity is insured by impos-
ing a total order on variables.

In the following, E denotes a set of variables, and for
any e ∈ E, Dom(e) represents the domain of e.

Definition 3 (DDD [9]). The set D of DDD is defined
by d ∈ D if

– d ∈ {0, 1,>} or
– d = (e, α) with :

– e ∈ E
– α : Dom(e) −→ D, such that {x ∈ Dom(e)|α(x) 6=

0} is finite.

We denote e
a−→ d, the DDD (e, α) with α(a) = d and

∀x 6= a, α(x) = 0.

A DDD is well-defined if all paths starting from the
root of the DAG lead to the unique terminal node 1.

Figure 2 shows the DDDs representing the following
sets of sequences of assignments:

– { a = 1, b = 2}, {a = 2, b = 1}, {a = 2 ,b = 2 ,b = 3}
for the left-hand side.

a

b b

b

1

a

b b

1

1 2

2 2 1

3

21

3 2

Fig. 2. Two well-defined DDD

– { a = 1, b = 3}, {a = 2 ,b = 2} for the right-hand
side.

Two well-defined DDDs are equals if

– d = d′ = 1 or
– d = (e, α) 6= 0 and d′ = (e, α′) 6= 0 and ∀x ∈

Dom(e), α(x) = α′(x).

Set operators (union +, intersection ∗, set-difference
\) are defined inductively on DDD [9]. They are ob-
tained by a recursive evaluation on DDDs representing
the operand sets. Concatenation operator is also defined:
(a x−→ 1).(b

y
−→ 1) = a

x−→ b
y
−→ 1.

3.2 Homomorphisms

Our purpose is to represent states of a ProMeLa sys-
tem on DDDs and use the properties of canonicity and
compacity of this structure. Given an initial state, we
have to construct a set of operators that satisfies the
system’s transition rules. DDD allows the use of a class
of operators, called homomorphisms, for coding transi-
tion rules [9]. Let Φ be an homomorphism and two well-
defined DDD d and d′, then Φ(d + d′) = Φ(d) + Φ(d′).
We deal with a special kind of homomorphisms called
inductive homomorphisms which are locally defined. Un-
like for BDD, only accepted sequences are represented on
the DAG thus, it is not necessary to explore the entire
DDD.

Definition 4 (Inductive Homomorphism [9]). Let
c be a DDD and φ(e, x)e∈E,x∈Dom(e) be an homomor-
phism family.

Φ(d) =


0 if d = 0
> if d = >
c if d = 1∑

x∈Dom(e) φ(e, x)(α(x)) if d = (e, α)

is an homomorphism.

This last expression (
∑

x∈Dom(e) φ(e, x)(α(x))) is only
applied on DDD nodes. In such cases the homomorphism
uses only local information: The variable e and its pos-
sible values x ∈ Dom(e). For each of these values, and
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its associated outgoing edge α(x), a function φ(e, x) is
applied. Then a union of obtained DDD is performed.

Evaluation of set operators in DDD and computation
of homomorphisms are stored in an operation cache.

3.2.1 Elementary homomorphisms to compute post

In our context, we consider that no homomorphism can
be applied on terminal node 1 because it means that the
treatment may not be applied correctly (it would refer
to used but undeclared variable):

φ(1) = >,∀ homomorphism φ

Thus, we just have to deal with homomorphism on non-
terminal node, which means that we only have to define
a local treatment for a couple (variable, edge).

Proposition 1 (Constant Assignments). Let d be a
well defined DDD, var be a variable of E appearing in
d, and cst ∈ Dom(var). The homomorphism
〈 setCst (var, cst) 〉 that performs the assignement var =
cst is defined as below:

〈 setCst (var, cst) 〉(e, x) =
if var = e

e
cst−−→ 〈 id 〉

else
e

x−→ 〈 this 〉

Term cst e
cst−−→ means that any encountered outgoing

edge of nodes labelled with e receives the unique label
cst and 〈 id 〉 reproduces the original suffixes reached by
the edges. Term 〈 this 〉 means that the homomorphism
propagates itself along any outgoing edge if the node is
not labelled with var.

Proposition 2 (Expression Assignments). Let d be
a well defined DDD, var be a variable of d, and expr be
an arithmetic expression such as any parameter of expr
is defined on d. The homomorphism 〈 setExpr (var, expr) 〉
that performs the assignment var = expr is defined as

below:

〈 setExpr (var, expr) 〉(e, x) =

if var = e

if e ∈ expr
if ||expr{e:=x}|| = 0

e
eval(expr{e:=x})
−−−−−−−−−−−−−→ 〈 id 〉

else
〈 down (var, expr{e:=x}) 〉

else
〈 down (var, expr{e:=x}) 〉

else

if e ∈ expr
if ||expr{e:=x}|| = 0

e
x−→ 〈 setCst (var, eval(expr{e:=x}) 〉

else
e

x−→ 〈 setExpr (var, expr{e:=x}) 〉
else

e
x−→ 〈 this 〉

With:

〈 up (var, val) 〉(e, x) = e
x−→ var

val−−→ 〈 id 〉

And:

〈 down (var, expr) 〉(e, x)

=



if e /∈ expr
〈 up (e, x) 〉 ◦ 〈 down (var, expr) 〉

else

if |expr{e:=x}‖ > 0
〈 up (e, x) 〉
◦〈 down (var, expr{e:=x}) 〉

else

var
eval(expr{e:=x}
−−−−−−−−−−−−−→ e

x−→ 〈 id 〉

The second part of the expression (if e 6= var) in
〈 setexpr () 〉 is immediate, the homomorphism propa-
gates itself with (if necessary) a completed expression.
Then if the expression is assessable (||expr{e:=x} = 0||)
the propagated homomorphism becomes 〈 setCst () 〉.
The first part of the expression deals with cases where
the assigned variable var is reached before the expres-
sion expr is assessable. In such cases the treatment has
to complete the expression, store the result in a tem-
porary node that will be replaced at the var level. The
composition of 〈 up () 〉 and 〈 down () 〉 homomorphisms
computes these (complete, store, and replace) operations
in a unique traversal.

Example 1 (〈 up () 〉 and 〈 down () 〉 usage). We aim at
performing the assignment b = a + b + d on the DDD
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a
1−→ b

2−→ c
3−→ d

4−→ e
5−→ 1.

〈 setExpr (b, a + b + d) 〉(a 1−→ b
2−→ c

3−→ d
4−→ e

5−→ 1)

= a
1−→ 〈 setExpr (b, 1 + b + d) 〉(b 2−→ c

3−→ d
4−→ e

5−→ 1)

= a
1−→ 〈 down (b, 1 + 2 + d) 〉(c 3−→ d

4−→ e
5−→ 1)

= a
1−→ 〈 up (c, 3) 〉 ◦ 〈 down (b, 3 + d) 〉(d 4−→ e

5−→ 1)

= a
1−→ 〈 up (c, 3) 〉(b 7−→ d

4−→ e
5−→ 1)

= a
1−→ b

7−→ c
3−→ d

4−→ e
5−→ 1

3.2.2 Elementary homomorphisms to compute pre

The main difficulty for evaluating the pre operator is
the non-reversibility of some kinds of instruction such
as reading a variable in a FIFO, or some assignments:
What can be, for a given context, the value(s) taken by
the assigned variable before the assignement (or FIFO’s
reading) occured?

The set of states that preceeds the var = cst instruc-
tion’s execution cannot be computed without a priori
knowledge about var’s range, or better, about knowledge
of the effective values taken in the execution context of
the instruction var = cst.

For a given constant assignment, two sets of states
are used to compute the pre operator.

– The set of states that we want to know the set of
predecessors states: TO,

– and a set of candidates states C, that approximates
the execution context of the instruction var = cst. It
is a subset of reachable states.

We use the following assumptions:

– Initial value of assigned variable is arbitrary.
– Only var is modified.

The solution is a composition of three treatments:

1. Selecting in TO states that satisfies var = cst. As var
is the only modified variable, we obtain the execution
context of instruction var = cst.

2. Extending, in this last DDD, the domain of var to
all possible values given by candidates states C (we
use C because var’s range is unknown).

3. Intersect the obtained DDD with the set of candidate
states: It gives all candidates respecting the execution
context by abstracting var.

The homomorphism sweet computes these three treat-
ments in a unique traversal of C coupled with the traver-
sal of TO. Its parameters are var, cst and states whom
we want to compute predecessors TO. It is applied on
candidates states C:

〈 preSetCst (var, cst, C 〉(TO)
= 〈 sweet (var, cst, TO) 〉(C)

We detail local treatment of the homomorphism
〈 sweet (v, c, To) 〉 on an arbitrary node (e, x).

1. There is no predecessor (nor successor) for the empty
set:

〈 sweet (v, c, To) 〉 = ∅ (1)

if To = ∅.
2. Before encountering var, a local intersection is made:

〈 sweet (v, c, To) 〉(e, x)
= e

x−→ 〈 sweet (v, c, To|x) 〉 (2)

if e 6= v where To|x is the node reached by outgoing
edge of To, labelled with x.

3. After reaching var, its domain is extended to the
values taken in candidate states (the values of each
outgoing edges of current node, as 〈 sweet () 〉 works
on candidate states represented on C). After this an
intersection on remaining variables is obtained with
a classical product of DDDs.

〈 sweet (v, c, To) 〉(e, x)
= e

x−→ (〈 id 〉 ∩ To|c)i (3)

A computation of 〈 sweet () 〉 operator is given on figure
3. We are applying the homomorphism 〈 sweet (b, 3, TO) 〉
on the DDD C (see first and second schemes). The DDD
TO does not accept a = 2, thus application of 〈 sweet () 〉
on a

2−→ ... leads to the empty set (according to formula
1), and the homomorphism propagates in C on the edge
a

1−→ Cb after restricting TO to the suffix of a = 1 (the
outgoing edge of TO labelled by 1 according to the for-
mula 2, see third scheme). By definition, each value la-
belling outgoing edge of the node Cb is allowable. The
set of states they handle (b 2−→ Cc1) + (b 3−→ Cc2) is inter-
sected with states of TO that represents the execution
context b = 2 (b 2−→ d2) given lower layers (according to
formula 3, see fourth scheme).

The result is given in the fifth and last scheme. Pre-
decessors of TO were selected in C, respecting the exe-
cution context of the instruction b = 2.

We found that for any non-reversible instruction, the
pre operator can be computed using the evaluation of
constant assignment’s one. In case of expression assign-
ment, it is defined as below:

Proposition 3 (pre operator for Expression As-
signement). Let d be a well defined DDD, var be a
variable of d, expr be an arithmetic expression such as
any parameter of expr is defined on d, and C the sate
of reachable states. The homomorphism
〈 setExpr (var, expr) 〉 that performs the pre operator (ac-
cording to C) of assignment var = expr is defined as
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Fig. 3. Computation of the 〈 sweet () 〉 operator

below:

〈 preSetExpr (var, expr, C) 〉(e, x) =

if var = e
〈 selectCond (x = expr) 〉
◦〈 preSetCst (e, x, c) 〉(e x−→ 〈 id 〉)

else

if e ∈ expr

if ||expr{e:=x}|| = 0
e

x−→

〈 preSetCst (var, eval(expr{e:=x}, C|x) 〉
else

e
x−→

〈 preSetExpr (var, expr{e:=x}C|x) 〉
else

e
x−→ 〈 preSetExp (var, expr, C|x) 〉

3.3 Differences with BDDs and MDDs

Save the range of the variables, there are crucial differ-
ences between BDDs and DDDs: On a BDD, each path
leading to a terminal (1 or 0) is represented on the DAG
but some variable may not occur along a path leading
from root to leaf, in case it is not a decision node. On
a DDD only paths leading to the terminal 1 are repre-
sented, hence along each path from root to terminal 1,
each variable appears at least once.

On BDDs, It is possible to represent the transition of
a static ProMeLa system using the “Apply” procedure
proposed by [3]. The “Apply” procedure recursively tra-
verses the two BDD operands from root to leaves (either
0 or 1). On the opposite, homomorphisms do not have
to traverse the whole DDD down to leaf.

On a BDD, assignment of a variable is performed
while considering the variable’s and the expression’s bit-
to-bit decomposition. This decomposition supposes an a
priori knowledge of the domain of each ProMeLa vari-
able (oftenly given by the type of the variable), and some
type-conversion or bit-expension facilities. For instance,
considering three variables x, y and z of byte type, and
the assignment x = y + z, each bit xi of x will be modi-
fied with the ith boolean function of an 8-bits adder. The

bit-to-bit assignment is performed using bi-implication
(boolean function xnor). For example, the assignment
operator a = b ∨ c for a set of states represented on the
boolean function f is performed in three steps:

1. Abstracting the assigned variable: f ′ = ∃af .
2. Constructing the bi-implication operator between a

and b ∨ c: x = ā⊕ b ∨ c.
3. Constructing the new function g = f ′ ∧ x.

A performances comparison of BDDs and DDDs on
ProMeLa systems is given in section 5.

On the other hand, MDDs represent boolean (or even-
tualy arithmetic) function over integer variables. Each
internal node represent an integer variable, pointing out
the nodes representing another variable. The arity of
each node is a priori bounded (contrary to DDD). Vari-
ables have to be ordered, and MDD nodes representing
a given variable are said to belong to a given layer, that
can be reached directly (without traversing the MDD
from its root to this layer). This implementation is well-
suited to perform local modifications of the MDD, with-
out having to traverse it (from root to leaves as in BDD
or from root to the concerned variable as in DDD). In
MDD, representing the firing of transitions is performed
using event locality [7]. In case of transitions using few
variables represented on close layerss on the DAG, [7]
proposes to modify these only layers, considering the
independence of the others. First, each transition is de-
composed into an enumerative set of particularized tran-
sitions regarding variables’ domains. These transitions
are represented on a couple of states: Enabling states
and new states. These states are represented on MDDs
corresponding to a set of layers containing all concerned
variables. A union is performed between paths contain-
ing enabling states and new states generated.

An example is given on figure 4. The central MDD
represents a set of states made of variables (a, b, c, d).
Variables’ domain is {0, 1, 2}, each node is assimilate to
an array of three edges implicitly labelled by one of these
three values and leading to a node to the following layer.
For instance, in current state space, there is a unique
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1 1

a

b

c

d

a

b

c

d

Event e enabled by <b0>:

(*, 1, 1, *) (*, 2, 1, *)
e

Event e enabled by <b1>:

(*, 1, 1, *) (*, 2, 1, *)
e

Current states space

<b0> <b1>

New state space

<d0> <d1>

Union Union

<a0>

<b2>

<c2> <c0> <c1> <c3>

<a0>

<b1><b0>

<c0>

<b3>

<c1>

<d0> <d1>

<c2>

Fig. 4. Example of an MDD-modification in response to firing an event

node (〈a0〉), labelled by the variable a, whith two out-
going edges corresponding to the first and the last value
of the variables’ domain: 0 and 2. There is no state that
satisfies a = 1. Considering the assignment b = b + c,
concerned variables are b and c and modifications only
occur on these two consecutive layers. In the figure, the
assignement is performed if b = c = 1 (other cases have
to be handled). The corresponding enabling set of states
is (∗, 1, 1, ∗) (wich means that b and c are set to 1, a
and d don’t matter) and the result after transition is
(∗, 2, 1, ∗). As variable a is not concerned, the prefixes
〈a〉 0−→ and 〈a〉 2−→ are preserved the computation starts on
layer b. Corresponding pathes are: 〈b0〉 1−→ 〈c0〉 1−→ [〈d0〉]
and 〈b1〉 1−→ 〈c1〉 1−→ [〈d1〉]. The square brackets denotes
suffixes of the pathes that are not modified by the treat-
ment. We denote the event e: (∗, 1, 1, ∗) e−→ (∗, 2, 1, ∗) they
are respectively united with result pattern joint to she
same suffixes of enabling patterns 〈b2〉 2−→ 〈c2〉 1−→ [〈d0〉]
and (〈b3〉 2−→ 〈c3〉) 1−→ [〈d1〉].

Enumerative particularization of a transition T is
necessary and increases the computation complexity. How-
ever, this method prove its efficiency for representing
huge state-space on Petri nets whith strong locality, con-
troled (and small) variables’ domains (places’ capacity),
and an ad-hoc variable ordering.

Representing reachable state space for ProMeLa sys-
tems on MDDs presents three major difficulties. First,
practitioner may have no idea about variables’range save
the C type used for its encoding, which means, for in-
stance, creating nodes of 256 outgoing edges for a vari-
able encoded on a byte, even if its effective set of values
is much smaller. Second, some variables are shared be-
tween many processes and transitions may concern many
of them, thus the locality factor is not as preeminent as
in Petri nets. Third, the enumerative particularization
of transitions may become the main factor of combina-
torial explosion (notably when dealing with arithmetic

expressions), all the more since variables’ domains are
too great.

Data Decision Diagrams solve the first problem: They
handle effectively only reached values. Homomorphisms
on DDDs solve the two last problems: Even if reaching
concerned layers is faster on MDDs (but only appliable
when locality is present), representing transition does
not depend on variable ordering and has a canonical form
whatever the reached values are.

4 ProMeLa systems components

We show how DDDs are used to represent a state of a
ProMeLa system. Then we define homomorphisms corre-
sponding to pre and post operators that match ProMeLa
semantics.

4.1 Object Model of a ProMeLa program

Figure 5 shows our object construction of a ProMeLa
program. The program class possesses global variables,
communication channels and ProMeLa program’s pro-
cesses. Each process class possesses local variables of a
process and its program counter.

There are two main instruction’s type in ProMeLa:
Elementary instructions (labelled, guarded) and blocks
separators (selects, loops, etc.). These latests contain
specialised structured sets of instructions but they are
built on the same homomorphisms as elementary in-
structions are.

4.2 State representation

A ProMeLa program describes a dynamic collection of
processes which communicate with channels or shared
variables. We consider a static subset of ProMeLa, no
process nor variable can be dynamically instanciated.



Vincent Beaudenon, Emmanuelle Encrenaz, Sami Taktak: Data Decision Diagrams for ProMeLa Systems Analysis 9
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0..*
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1..*
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Instruction

_pcIndex

_pcVal

_npcVal

_process

_program

Fig. 5. Object model of a ProMeLa program

This assumption allow us to represent state-space as a
collection of variables described as follows. Each integer
variable is represented by a DDD :

variable
value−−−−→ 1

A process is obtained by the concatenation of DDDs that
represent its local variables and program counter:

program counter
pc
−→ local var1

val1−−−→ ...
...−→ 1

Each static structured type is flattened without changing
the system’s behaviour. For example, an n sized array t
is represented with n variables:

t[0] −→ t[1] −→ ... −→ t[n− 1] −→ 1

There are two types of communication using chan-
nels: Rendez-vous that are replaced with guarded as-
signments; and FIFOs that are represented on a DDD
by using the encoding proposed by [9]: We use the same
variable for each place of the FIFO. All the nodes are
represented successively on the DDD framed with two
nodes labelled with the same variable: The first one in-
dicates the channel’s size and the last one indicates that
there is no other occupied place in the FIFO. This last
one, has a unique outgoing edge labelled with a value
that cannot be hold in the FIFO (#). Thus, FIFO are
constructed using the following way:

f
size−−−→ f

1stelt−−−−→ ...f
ithelt−−−−→ f

#
−→ 1 (4)

The state of a ProMeLa program is obtained by the
concatenation of all global variables, channels and pro-
cesses.

4.3 Instructions

Each elementary instruction is guarded by a given pro-
gram counter value. Another condition may be added
(like non-emptyness of a FIFO, for instance). Each in-
struction proceeds to the program counter evolution and
modifications described in ProMeLa.

In static ProMeLa systems (no dynamic process cre-
ation), each instruction can be constructed using these
following elementary treatments:

1. Selection of states satisfying a given boolean formula.
2. Integer expression assignment.
3. Expression’s writing in FIFO.
4. Variable’s reading in FIFO.
5. Catching information on a FIFO (full, non-full, empty

and non-empty).

Elementary instructions and corresponding homomor-
phisms are given in table 4.3 the last column gives ad-
ditional homomorphisms that may be called when us-
ing the homomorphism in previous column. Given the
promela code a = b+c;, which assigns the expression
b + c to the variable a and sets the program counter pc
from an arbitrary value m to another arbitrary value n,
the treatment can be performed by applying the follow-
ing homomorphism:

〈 setCst (pc, n) 〉
◦ 〈 setExpr (a, b + c) 〉
◦ 〈 selectCond (pc = m) 〉

= 〈 selectAndSet (pc,m, n) 〉
◦ 〈 setExpr (a, b + c) 〉

More complex homomorphims were built using these
elementary ones to perform a complete instruction (in-
cluding the evolution of the program counter) on a unique
traversal.

5 Results

5.1 performances

In this section we compare the performances of SPIN
versus our tool using DDDs or BDDs concerning static
systems. As checking LTL properties using Büchi au-
tomaton is an additional source of complexity, we chose
to compare SPIN and our tool only on the reachable
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Table 1. Elementary homomorphisms for ProMeLa instructions

Instruction ProMeLa code Main Homomorphism Sub-Homomorphisms

Jump goto label; 〈 selectAndSet (pc, pcV al, npcV al) 〉
Guard (a==b); 〈 selectCond (Expression) 〉

Constant Assignment x=2; 〈 setCst (var, val) 〉
Expression Assignment x=a+b; 〈 setExpr (var, Expression) 〉 〈 setCst () 〉

〈 up () 〉
〈 down () 〉

Fifo not Full f![ ]; 〈 notFull (fifo) 〉 〈 checknotFull (n) 〉
(Compares the size of the Fifo
and the number (n) of used places.

Fifo not Empty f?[ ]; 〈 notEmpty (fifo) 〉
Write Constant in Fifo f!2; 〈 writeCst (fifo, cst) 〉 〈 addTailCst (cst) 〉

(“Tail” means encounter of a ])

Write Expression in Fifo f!(a+b); 〈 writeExpr (fifo, expression) 〉 〈 writeCst () 〉
〈 up () 〉
〈 downFifoExpr () 〉

Read variable in Fifo f?v; 〈 readVar (fifo, var) 〉 〈 setCst () 〉
〈 up () 〉
〈 downVarFifo () 〉

state-space construction. Futhermore, reachable state-
space doesn’t depend on the property to check and it
can be computed and stored before checking all proper-
ties we want. As the properties checked may be not rele-
vant, it is useful to check new properties without having
to restart reachable state-space build-up.

The relevance of DDD is also compared to a BDD
implementation. The experiment compares the time and
memory needed to compute the set of reachable states
(based on the post operator) and the verification of a
CTL property (based on the pre operator). The BDD
and DDD-based tools starts from the same internal rep-
resention of the ProMeLa program, and are based on the
same verification algorithms save the library used : Our
own DDD library or the Buddy package [18]. Buddy of-
fers a set of functions to manage finite sets and finite
integers, represented as BDD vectors, and also supports
dynamic reordering (that DDD does not handle).

Comparison results are given on table 5.1, we used
a 3,2GHz Intel Pentium IV, calculus were automatically
aborted after a day or 1GB of used memory. The columns
SPIN, BDD, DDD and DDD-O contains performances of
a given tool. DDD-O is obtained by forcing a “natural”
order on the tree inspired by the system’s topology. For
each tool, column reach means the user time needed to
build-up the reachable state-space; column check gives
the tuser time needed to compute the set of states sat-
isfying the CTL property; column mem indicates the
memory used to perform the computation of the reach-
able state-space (once the reachable state-space is built,
no additional memory is needed to check the CTL prop-
erty).

The systems we checked are:

– A massively parallel system using very simple com-
ponents on a ring: The dining philosophers problem.

– Systems with less (but more complex) components:
The leader election on a ring and sliding window pro-
tocol.

– Systems dealing with complex arithmetic expression
without possibility to force a “natural” order (Bak-
ery’s and Peterson’s Algorithms).

Results on DDDs (with or without static ordering)
were obtained without any optimization (dynamic re-
order, state-space compression, partial order reduction,
saturation etc.) save the use of a computation cache.
Results on BDDs were obtained using the more rele-
vant optimization (particulary Sift or Win2ite reorder
algorithms). SPIN results were obtained using a poste-
riori suggested parameters by the SPIN model checker,
which led us to recompute some calculus to obtain the
best performances.

The column S in table 5.1 gives the number of states
generated.

5.2 Discussion

5.2.1 Symbolic vs Enumerative

We only consider the computation of the reachable state-
space.

For small sized systems, and systems whose behaviour
is highly sequential, SPIN presents better performances
in both time and memory than BDD and DDD ap-
proaches. As soon as the systems’size grows, BDD and
DDD manage better the combinatorial explosion than
SPIN.

We can bring out this property by comparing din-
ing philosophers, leader election and sliding window sys-
tems. The topology of these examples is the same (a
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Table 2. Stats on SPIN, DDDs or BDDs

SPIN BDD DDD DDD-O
|S| reach mem reach check mem. reach check mem reach check mem

N (sec.) MB (sec.) (sec.) MB (sec.) (sec.) MB (sec.) (sec.) MB

Dining Philosophers AG(AF(eating philosopher))

5 244 < 1 2.3 < 1 < 1 93 < 1 < 1 4.3 < 1 < 1 5.5
10 5.9e4 2.3 36.7 4 6 94 31 170 17.6 9 2 11
11 1.7e5 7.6 41.6 9 15 94 82 935 30 14 2 12.8
12 5.3e5 29.1 90.1 23 42 94 277 6652 57 21 3 16.6
13 1.6e6 193 114.8 55 117 94 1021 3.7e4 105 30 3 19.6
14 4.8e6 660 737 137 337 95 4534 > 24h 203 41 4 24.4
15 1.4e7 2251 1067 380 1231 96 18375 > 24h 397 54 5 29.6
20 3.5e9 * > 1GB * * * * * > 1GB 182 9 64.1
50 7.2e23 * > 1GB * * * * * > 1GB 8006 67 994

Leader Election AF(best candidate elected)

5 5.4e3 10 23 510 191 94 8 1 6.3 11 1 6.2
6 3.2e4 262 144 5056 5394 144 34 5 11 37 3 11
7 1.8e5 * > 1GB * * * 127 22 28 95 13 19
10 3.3e7 * > 1GB * * * 4533 * 663 716 * 77

Sliding Window AG(AF(new message sent))

2 4.0e5 < 1 8.1 552 221 102 486 142 17.8 662 206 17
3 3.5e7 29 450 65429 63216 332 4.8e5 565 4.8e5 475
4 * * > 1GB * * * * * > 1GB * * > 1GB

Peterson AF(queryi satisfied) and AG(queryi ⇒ AF(criticali))

2 208 < 1 5.5 < 1 1 94 < 1 < 1 3.6
3 2.5e4 < 1 5.8 17 39 93 7 4 5.9
4 6.4e6 20 402 1674 1093 400 1278 216 113
5 * * > 1GB 4.7e5 > 24h 900 * * > 1GB

Bakery AF(clienti satisfied)

4 1.8e5 < 1 5.2 50 < 1 94 17 < 1 8.9
5 1.6e7 1385 6.4 1231 < 1 93 379 5 46
6 2.2e9 > 24h * * * * 61901 47 455

ring) but the complexity of the nodes differs. Figure 6
shows (on a logarithmic scale) the number of new states
generated at each iteration, by applying the post opera-
tor. The sliding-window protocol does not produce more
than 5000 states at each iteration, and in this case the
use of symbolic methods is counter-productive. On the
other hand, for systems producing a huge number of new
states at each step, (as leaders or philosophers, growing
up to 108 states), symbolic technics are relevant, but
variables’ ordering strategies have to be used to outper-
form significantly enumerative state-space construction.

The sequencial aspect of Sliding Window is not the
only reason why symbolic methods are outperformed by
SPIN: It uses buffered channels containing structured
data that have been flattened to be represented on a
DDD. First, each assignement or reading/writing opera-
tion needs to compose as many homomorphisms as there
is fields in the concerned structure. Second, this unex-
pected growth of the tree’s depth increases the number
of nodes and homomorphisms to store (and the memory
needed), and slow down the computation cache.
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Fig. 6. New states generated by applying post

5.2.2 DDDs vs BDDs

In the examples, all variables’domains can be a priori de-
fined, hence are representable either with DDD or with
BDD (for BDD, all the values of the type domain are en-
coded). DDDs shows more flexibility when using arith-
metic expression using arrays (Bakery and Peterson). In
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fact, expressions concerning arrays cannot be computed
with an orthogonal product (t[n] =

∑n−1
i=0 t[i] × (i =

n)) on BDDs because of the necessity two operands of
the same domain to build operators (this is a Buddy
limitation). DDDs doesn’t suffer this particularity as
they don’t care about variables’s domains. Thus, without
changing global behavior of processes, we had to modify
some instruction in the ProMeLa code to simulates the
orthogonal product to fit with Buddy’s interface.

Handling expression with many operands made BDDs
a little more efficient than DDDs when checking the Pe-
terson’s algorithm (one step beyond).

When any static ordering is imposed, DDDs show
comparable performances with BDDs using the best or-
dering configuration. When using a “natural” order, DDDs
overcomes BDDs, but applying this good DDD-order on
BDD does not improve BDD performance (it is just the
opposite !). Considering speed, DDDs proove the effi-
ciency of inductive methods as computation time gets
lower for DDDs than BDDs as the system’s complexity
grows.

Concerning CTL formulas and computing pre opera-
tor, the structural differences inclined in favour of DDDs.
Even if abstracting a variable on a BDD is more efficient
than using reachable states, the principle of a unique
coupled traversal in DDD avoids to compute other treat-
ments (selection and intersection) on the whole BDD.
The locality evaluation due to homomorphism is the
main factor explaining the gain of DDD over BDD.

5.2.3 Future Works

As stats shown on table 5.1 were given without any op-
timization on DDDs (save ordering variables manualy
in the last column), DDDs’formalism (Shared tree and
inductive methods) prove its efficiency for state-space
construction, and its ability to contain state-space ex-
plosion. Without variables’ ordering, DDDs present com-
parable performances with explicit and compressed rep-
resentation in SPIN or with symbolic representation on
ordered BDDs. Save variable’s order that improves shar-
ing quality, two DDDs disfavourable parameters were
not minimized:
– variables’ number that increases the tree’s depth and
– sequencial procedures that makes too thin the new

states frontier.
The last evolution of DDDs, the Set Decision Dia-

grams (SDDs [27]) that labels the edges of the tree with
data sets (DDDs or SDDs) allows best sharing prop-
erties on hierarchical modelled systems and decreases
the depth of the tree on hierarchicaly modeled systems.
Concerning sequencial aspect of some kind of systems,
a saturation algorithm may help to produce more states
by applying the post operator for a unique process until
a fixpoint is reached. After saturating a process, some
pattern are outlined and the saturation of other pro-
cesses will take into account more execution contexts.

This method can be implemented on homomorphism
that launchs the saturation after having reached a vari-
able that concerns the saturated process. For instance,
on DDDs with “natural” order, saturating processes in
increasing then decreasing order allow us to construct
the state-space of 50 dining philosophers in 11 seconds
with “only” 7MB of memory. These first results encour-
age us to pursue our investigation of DDDs and the de-
rived structures to build verification tools.

6 Conclusion and future works

We developped a CTL symbolic model checker for static
ProMeLa systems that can verify safety and liveness
properties when SPIN is ineficient. This tool is based on
Data Decision Diagrams that reproduces shared and tree
based canonical representation of OBDDs. This struc-
ture, and the associated formalism of homomorphisms,
helps to handle numeric values and allows complex tran-
sitions representation. As with BDDs, variables’ order-
ing is critical. We indentify the main characteristics that
makes symbolics methods more efficient than explicits
methods (SPIN gives best results only on strongly se-
quential systems). Comparison with OBDDs prove the
relevance to work with non boolean variables for state-
space representation and inductive methods for state-
space construction (rather than all-BDD construction).
Mains lacks are linked to the depth of the tree, specially
when many structured types are flattened. As DDDs and
homomorphisms’ formalism prove their efficiency, our fu-
ture works resides in build a Model-Checker that exploits
hierarchical properties of the checked systems by the way
of Set Decision Diagrams that will overcome variable’s
multiplicity problem and will limit needed material re-
sources by reducing the size of computation cache.
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