A Sufficient Condition for the Liveness of Weighted Event
Graphs*

Olivier Marchetti and Alix Munier-Kordon
Laboratoire d’Informatique de Paris 6 - Péle ASIM
Université Pierre et Marie Curie
4 Place Jussieu, PARIS 75252 Cedex 05, FRANCE
olivier.marchetti@lip6.fr, alix.munier@lip6.fr

2nd November 2004

Abstract

The aim of this paper is to develop a sufficient condition of liveness of a weighted
event graph (in short WEG) computable in polynomial time. Many industrial prob-
lems may be modelled using WEG and a fast polynomial algorithm to decide if a
system is live may be interesting in an optimization context. We prove that any uni-
tary WEG may be transformed into a normalized WEG such that the values of the
arcs adjacent to any transition depend on the transition. A simple sufficient condition
of liveness can be expressed on this new WEG and polynomially computed. We also
proved that this condition is necessary for a circuit with two transitions.

Keywords : Petri-nets, Liveness, Sheduling, Manufacturing.

1 Introduction

Petri nets are a well known formalism for modelling complex systems [1]. Weighted
Petri nets, in which every arcs are valued by a number of tokens, have been few studied.
Most of the authors [2, 3, 4] are interested in general classes of Petri nets (i.e. with no
particular assumptions on the structure of the graph). Weighted event graphs are a very
simple class of Petri nets since there is no conflict between the firings of the transitions
and general tools usually give poor results.

In this paper, we are interested in a central decision problem : is a weighted event
graph G is live, which means that every transition may be fired infinitely often ? The
main practical interest of this work can be found in the design of industrial or embedded
systems.

Indeed, in the context of industrial systems, event graph and weighted event graph
may be used for modelling cyclic versions of classical scheduling problems. The model was
first introduced by Chrétienne [5]. The authors usually suppose that the graph is live and

“This research was partialy supported by a partnership CNRS-STMICROELECTRONICS

the problem consists in maximizing the throughput of the systems subject to ressource
constraints [6, 7].

However, another classical cyclic scheduling problem consists in minimizing the number
of work-in-process. For event graph, this corresponds to minimizing the number of tokens
in some circuits of the system. Tokens can be viewed as products simultaneously treated
in the production chain, and due to the storage cost, this number must be minimum.
Notice that, in this case, the graph is live iff there is at least one token in every circuit.
So, the minimization problem is in A/P, which allows many authors to develop efficient
optimization algorithms to solve it [8, 9, 10].

We prove in this paper that for an important class of weighted event graph called unitary
graph, we can polynomially transform the graph in a such way that the number of tokens
remains constant in every circuits. It means that the minimization of the work-in-process
may have a practical meaning even for this class of nets.

In the context of the design of embedded systems, the main model considered is Syn-
chronous Data-flow introduced by Lee and Messerschmitt [11, 12]. A set of processes com-
municates data using FIFO files (buffers). In fact, the constraints between the processes
can be modelled using a weighted event graph : transitions correspond to the processes
and the places to the buffers. Nowadays, the cost of the memories is very important for
the design of these systems, so the designers try to minimize the size of the buffers [13].
We observe that this problem is equivalent to minimize the overall number of tokens of a
weighted event graph. The decision problem associated is, also in this case, the liveness of
the graph for a given initial marking.

For both classes of applications, authors solve the liveness problem of a unitary graph
using a pseudo-polynomial algorithm [14, 15, 16] . Indeed, it is proved in [17] that any
unitary weighted event graph is equivalent to an event graph of pseudo-polynomial size.
The liveness is checked on this graph, which yields to a pseudo-polynomial algorithm. So,
if the values on the arcs are too important, these algorithms cannot be used.

In this paper, our purpose is to develop a polynomial algorithm to decide if G is live.
This algorithm must be fast (not pseudo-polynomial) to be used frequently in heuristics
or Branch and Bound methods. The complexity of the liveness of a unitary WEG is still
open, and we were not able to answer to this interesting fundamental question. However
we developed an original (to our knowledge) sufficient condition of liveness based on an
original property of unitary graphs which can be computed polynomially.

This paper is organized as follow : section 2 is devoted to the description of the problem.
In section 3, we prove some basic preliminary results on weighted event graphs. Section 4
deals with the normalization of a weighted event graph : we prove that any unitary graph
may be transformed polynomially in such a way that all the values of the arcs adjacent to
a given transition are equal. Even if this transformation seems to be independent from the
expansion, we show that there is a strong relation between the number of duplicates and
the values on the arcs. In section 5, we prove a sufficient condition of liveness and we show
that it is necessary for any circuit with two transitions. Finaly, we conclude with some
perspectives in section 6.

2 Basic definitions and notations

Let us consider a weighted event graph G(P,T) (WEG in short) given by a set of
transitions 7' = {t1,...,t,} and a set of places P = {p1,...,pm}. Every place p € P is
defined between two transitions ¢; and ¢;, so we note p = (¢;,t;) (see figure 1). For any
transition t € T', we set :

Prt)={p=(t,t')e P,t' €T}

P-(t)={p=(t',t) e P,t' €T}

The arcs (t;,p) and (p,t;) are valued by two strictly positive integers denoted respec-
tively by w(p) and v(p) and called the marking functions. We also denote by My(p) the
initial marking of the place p.

tiD w(p) v(p) D .

Figure 1: A place p with two transitions ¢; and ¢;

For any firing of the transition ¢; (resp. t;), w(p) (resp. v(p)) tokens are placed to (resp.
removed from) the place p. So, if v; (resp. v;) is the number of firings of the transition ¢;
(resp. t;), the number of tokens in the place p is :

M (p) = Mo(p) + viw(p) — v;jo(p)

For any v € N* and for any ¢t € T, < t,v > denotes the vth firing of ¢.
If w(p) = v(p) = 1 for any place p € P, then G is an event graph. For a sake of
simplicity, we set for any place p € P :

1. ged(w(p),v(p)) = ged,, the great common divisor of the integers w(p) and v(p);
2. lem(w(p),v(p)) = lem,, the least common multiplier of the integers w(p) and v(p).

Let us consider a path p of G defined as a sequence of n places such that p = {p; =
(t1,t2),p2 = (t2,t3),...,pn = (tn—1,tn)}. The weight of v, denoted by W (), is defined

Wi = [42

peEPNu v (p)

Several authors [17, 2] noticed that a necessary condition of liveness of a WEG G is
that every circuit has a weight equal to or superior than 1. This condition is trivially not
sufficient : for instance, if we consider an event graph (i.e. w(p) = v(p) for every place
p € P), then this condition is always fulfilled and is not sufficient to decide about the
liveness.

In this paper, we reduce our study to strongly connected WEG such that every circuit
has a unitary weight. This class of WEG, called unitary graphs, was first introduced in [17]
and is usually sufficiently large to model the real-life problems. Indeed, any not unitary

strongly connected graph G will have unbounded places. Since tokens model products
(in an assembly line) or data (in a computer system), their number is necessary bounded
in practical applications. It means that if the graph obtained is not unitary, there was
certainly a problem in the design of the line or in the design of the system.

3 Preliminaries

We prove in this section some basic technical properties on the markings of the places.
Let p = (t;,t;) € P. We say that p induces a precedence constraint between < t;,v; >
and < tj,v; > iff :

Condition 1 < tj,v; > can be done after < t;,v; >;
Condition 2 < tj,v; —1 > can be done before < t;,; > but not < ¢;,v; >.

Lemma 3.1. A place p = (t;,t;) € P models a precedence constraint between the v;th firing
of t; and the v;th firing of t; iff :

w(p) > Mo(p) + w(p)v; — v(p)v; > max(w(p) — v(p),0)

Proof. A place p = (t;,t;) € P models a precedence constraint between < ¢;,; > and the
< tj,v; > iff Conditions 1 and 2 hold.

1. Condition 1 is equivalent to
Mo(p) + w(p)vi — v(p)v; =0
2. Condition 2 is equivalent to
v(p) > Mo(p) +w(p)(vi —1) —v(p)(v; —1) =0
Combining these two inequalities, we get the inequality required. O

One can observe that the deadlock freeness of a strongly connected weighted event
graph is equivalent to the liveness : indeed, the liveness is equivalent to the non existence
of a circuit in the developed graph (i.e the infinite graph modelling all the precedence
constraints on the firings of the transitions). These circuits correspond exactly to deadlocks.

3.1 Useful tokens

Lemma 3.2. The initial marking Mo(p) of any place p = (t;,t;) may be replaced by

Mg (p) = Vgg—ng .ged, without any influence on the precedence constraints induced by p.

Proof. Let p = (t;,t;) be a place of G. We set A (resp. B) to the set of precedence
constraints induced by an initial marking of My(p) (resp. M;(p)). We prove that A = B.
Using the Euclidian division of My(p) by ged), we get :

MO(p) = Mék (p) + Rgcd(MO(p))
where Ry.q(Mo(p)) € {0, ..., ged, — 1}.

p P
1w v(p) Dtj = w(p) | v(p) Dtj

Figure 2: Notion of useful tokens

A C B Let us consider a precedence constraint of A between < ¢;,v; > and < t;,v; >. By
lemma 3.1,

w(p) > Mo(p) + w(p)v; — v(p)v; > max(w(p) — v(p),0)
So, we get :
w(p) > Mg (p) + Ryea(Mo(p)) + w(p)vi — v(p)v; > max(w(p) — v(p),0)

Clearly,
w(p) > My (p) + w(p)vi — v(p)v;

Now, since M (p) + w(p)v; — v(p)v; = 0(gcdy), max(w(p) — v(p),0) = 0(ged,) and
Ryca(Mo(p)) € {0, ..., ged, — 1}, we get :

Mg (p) +w(p)vi — v(p)v; = max(w(p) — v(p),0)
and the precedence constraint between < ¢;,7; > and < t;,v; > belongs also to B.

B C A Let us consider now a precedence constraint of B between < ¢;,1; > and < t;,v; >.
By lemma 3.1,

w(p) > M (p) + w(p)vi — v(p)v; > max(w(p) —v(p),0)
Clearly,
Mg (p) + Ryea(Mo(p)) + w(p)vi — v(p)vj = max(w(p) — v(p),0)
Now, since M (p) + v;.w(p) — v;.v(p) = 0(ged,), we get
w(p) — gedy = Mg (p) + w(p)vi — v(p)y;
As Rgea(Mo(p)) < gedy,
w(p) > Mg (p) + Rgea(Mo(p)) + w(p)vi — v(p)v; = max(w(p) — v(p),0)
and the precedence constraint between < ¢;,1; > and < t;,v; > belongs also to A.
O

In the rest of the paper, we assume that the initial marking of any place p is a multiple
of ged,.

3.2 Equivalent places

Two places p1 = (t;,t;) and p2 = (t;,t;) are said equivalent if they induce the same
precedence constraints between the firings of their adjacent transitions.

wp2) _ v(p2) _
wp) — vlp)

Lemma 3.3. Two places p1 = (t;,t;) and po = (t;,t;) such that for

% = A € N* are equivalent.

Proof. Let us denote by A; (resp. Az) the set of precedence relations between the firings
of t; and t; induced by p1 (resp. p2). Let us consider a precedence relation a € A; defined
between < t;,1; > and < t;,v; >. Then, by lemma 3.1, we get :

w(p1) > Mo(p1) + w(p1)-vi — v(p1).v; = max(w(pr) — v(p1),0)
I xA
Aw(pr) > A [Mo(pr) + w(p1).vs —v(p1).v;] = A.max(w(pi) — v(p1),0)

(3
w(p2) > Mo(p2) + w(p2).vi — v(p2).v; = max(w(pz2) — v(pz2),0)

These latter inqualities are equivalent to a € B, which completes the proof. O

4 Normalization of a weigthed event graph

We prove in this section that any unitary WEG G may be transformed into an equivalent
normalized graph, i.e. a WEG such that, for every transition ¢;, the marking functions
of its adjacent arcs are equal. Firstly, we define formally the notion of normalized graph
and we show that the computation of the values of an equivalent normalized graph may
be solved using a shortest path algorithm of a simple valued graph G. Then, we prove
that the value of any circuit of G is null, so that every unitary graph may be normalized.
Finaly, we study the relation between expansion and normalization of a unitary graph.

Definition 4.1. A transition t; is called normalized iff there exists Z; € N* such that :

V(pi,p2) € PHt) x P (), wlp)) = v(p2) =
V(pi,p2) € PHt) x PT(ti) w(p) w(pa)
t

V(pi,p2) € P (i) x P (i) v(p) = v(p2) =

Z;
Z;
Z,

)

A graph G is said normalized iff all its transitions are normalized.

By lemma 3.3, each place p, € P can be replaced by a place p], obtained by multiplying
w(pa), v(pg) and My(p,) by an integer . The idea is to build, for any unitary WEG
G = (T, P), another unitary WEG G’ = (T, P’) using this last property and such that
every transition is normalized.

Let us consider a transition ¢; € T. Then, by definition 4.1, this transition can be
normalized iff there exists a vector o € {N**}1”l such that :

vw For any couple (pa,py) € (P~ (t:), P™ (t:)),

Qg
aq.0(pa) = apw(py) < { ;

Qg

NN
c <

kst

SN

ww For any couple (pa,pp) € (P*(t:), P* (t:)),

Qa w(pb)

Qy, < W(Pa
aq.w(pa) = apw(py) < a, wgpa;

2 <

Qg w(py)

vv For any couple (pa,ps) € (P~ (i), P~ (t:)),

Qg

aq.v(pe) = apv(py) < { 2
Qq

VANV/AN
S e
Ss

In order to modelize this set of constraints, we build a valued directed graph G =
(VU{s}, E) as follows :

e Any vertex a € V corresponds to a place p, € P;

e Every arc e = (a,b) € E is associated with a couple of adjacent places (pg,pp). Let
t. be their common transition. If we set

[un) € pe P
B(te,pa) = { v(p,) otherwise

then, we can associate to e the following constraint :

log o, — log ag < Bigp)

with B,) = log %. Arc (a,b) € E is then valued by B(q);
e Va € V, we add the arcs (s, a) valued by 0.

For any path u of G, we defined the value of the path as :

Bp)= > B

ecunNk

Using Bellman-Ford algorithm [18], a € {N**}I”| can be polynomially computed iff G has
no circuit of strictly negative value.

Lemma 4.1. Every circuit of G with ¢ = 2 vertices has a null value.

Proof. We can distinguish three cases which can lead to a circuit of size ¢ =2in G :

Figure 3: A normalized graph with two places

1. Two places p, = (t1,t2) and p, = (t2,¢1) form a circuit in G (as shown on figure 3).

In G, there are two arcs (a, b) valued by respectively log w((p “)) and by log (()) Since

G is unitary,

w(pa) w(pp)
v(pa) v(py)

so, these two arcs have the same value. On the same way, the two arcs (b,a) are

v(py)

valued by log wipe)? 5O the value of the corresponding circuits of G is null.

=1

2. Two places p, = (t1,t2) and pp, = (t1,t2) in G share the same initial and final

transition (as shown on figure 4). In G, there are two arcs (a, b) valued by respectively

w(pa) v(Pa)
w(ps) v(py) ”

Now, since (G is a strongly connected unitary graph, there is a path v from ¢ to t;
such that

log and by log ~

o) oy T

So, the two arcs (a,b) of G have the same value. On the same way, the arcs (b, a) are

valued by log wép b)) so the value of the corresponding circuits of G is null.

W(y).w(p“) W),) _

Pa Pa

Figure 4: A normalized graph with two places

3. Two places p, and pp, in G share the same initial transition or the same final transition
(as shown on figure 5).

If they share the same final transition, then we get in G the arcs (a,b) and (b,a)

v(pa) v(py)

valued respectively by log 2 w(o) and log ~)" So, the value of the corresponding

circuit of G’ is null.

If they share the same initial transition, then we get in G’ the arcs (a,b) and (b, a)
w(pa) wpy)
w(py) w(pa)

valued respectively by log and log So, the value of the corresponding
circuit of G’ is also null.

U%§7—U Uié%%ﬂ

7 Ea.

Figure 5: A normalized graph with two places

0

Lemma 4.2. Let be a vertex i of the circuit C = (1,...,q,1) with ¢ > 2 such that arcs
e; = (i—1,1) and e;11 = (4,7 + 1) correspond to the same transition of G (i.e. te;, =t).
Then, C' = (1,2,...,i—1,i+1,...,q,1) is also a circuit of G and B(C') = B(C).

Proof. Following the assumption of the lemma, let us denote by p;_1, p; and p;+1 the places
associated respectively with the vertices ¢ — 1, ¢ and 7 + 1 of G. By construction of G and
since te; = te,, ,, we get :

/B(telwpi*) ﬁ(teivpi)
Bei + Bei“ = log ﬁ(te“pi)l +log B(te; s Pi+1)
— log Blte; s Pi—1)

B(te;»pit1)
Since p;—1 and p;4+1 are adjacent to t.,, there exists an arc (i — 1,4+ 1) in G valued by

Blte,piz1) (see figure 6). So, the sub-circuit ¢’ = (1,2,...,i —1,i+1,...,¢,1) exists

log B(te; > pit1)

i+1

Figure 6: Illustration of a special case.
and has the same value as C. O
Theorem 4.1. Every circuit of G has a null value.

Proof. Let C = (1,...,q,1) be a circuit of G. Applying lemma 4.2, we can suppose without
loss of generality that C fulfills one of the following properties :

Property 1 ¢ = 2;

Property 2 ¢ > 2 and two consecutive edges of C are associated with different transitions :
te, # te, and Vi € {1,...,q — 1}, te, # te,.,.

By lemma 4.1, if Property 1 holds, then C is null valued. So, we suppose now that C
verifies Property 2. We denote by e; = (i — 1,i) for i € {2,...,q} and e; = (¢,1). By

B(te;pi) Blte;y1,Pit1)
85t py 8 Bl
o @ meg — g

€; €i+1

1—1 1+1

Figure 7: Two weighted arcs of graph G

definition of G,

d Bte; i) Bte;, p1)
B(C) = Z% log Blte, pi 1) + log ﬁ(t;’p;)

q—1
_ Bte;, pi) B(teq,pq)
- Z; log ﬁ(t€i+1 7p2) - log /B(tel »Pq)

Now, if p; is the place associated with ¢, then p; is adjacent to t., and t., , and t., # t.,, .

Then, we build a circuit C' of G as follows :

e The transitions t,, ..., ., belong to C;

le;s Di i
o If p; = (le;,le,,,) We get Bltes, pi) = w(ps) = W (p;). Here, we add to C' the place

Bte, s pi) v(ps)
Pi;

Blter, p) _ v(p)
5(t€i+17 pi) w(pi)

o If p; = (te;,, te;) then . Since G is a stongly connected unitary

—

graph, there is a path y; from t., to transition ¢, such that W(u;) = 1;)((57)- We
add u; to C.
Hi
te, t5i+1
/
.- 2

Figure 8: Construction of a ciruit of G

Now, setting

Ul = {Z c {1, ...,q}/pi = (tei,teiJrl)} and U2 = {1,...,(]} — Ul

10

we get :

W(C) = ZU log 23 4 2 log W (114)
i€
_ ,B(tel,pz IB(tel’pl)
- ZGZ[:JI log Bller s p0) + Z log W)
= B(C)
As G is unitary, W(C) =0 so 3(C) = 0. O

Surprisingly, there is a strong relation between the normalization and the expansion of a
unitary WEG. This relation is another way to prove that any unitary graph is normalizable.
Let us recall the definition of an expansible WEG [17] :

Definition 4.2. Let G be a WEG. G is expansible iff there exists (Ny,...,Ny) € {N*}"
such that :

N; v(p)
Vp = (t;,t;) € P,— =

Theorem 4.2. Let G be a WEG. G is expansible iff G is normalizable.
Proof. A = B If G is expansible, then there exists (Ny, ..., N,;) € {N*}" such that Vp =

N v(p)
ti,t;) e P,— = .
Weset N = lcmié{l,...,n}(Ni)J A= lcmaé{l,...,m}(w(pa)a ’U(pa)) and Vi € {]—7 ey n}v ZZ =
N. Zi
)\. For every place p, = (t;,t;), we set o, = ———. We prove that the vector «
Nz’ w(pa)
is a solution to the previous system :
1. By definition of Z;, a, € N*.
2. For any couple (pa,ps) € P~ (t;) x PT(t;),
N
apw(pp) N,

Setting pq = (tj,1:), we get :

NA _ NAv(pa) Zj
Nz’ B Nj w(pa

3. For any couple (pa,ps) € PT(t;) x P (t;),
aqw(pa) = Z; = apw(py)
4. For any couple (pq,pp) € P~ (ti) x P~ (t;) with p, = (¢5,t:),

NXv(pa) NA

70 = R) — ™,

4 -7
w(pa

QU (pa) =

So,
@ 0(pa) = Zi = v (pp)

11

B = A Conversely, let us suppose that « is a solution to the previous system. Then,
V(pa,ps) € P~ (t;) x PT(t;), aqv(pa) = apw(py). Let Z; denotes this value.

Now, setting Z = lemeqq,.. n}(Z;), we prove that Vi € {1,...,n}, N; = Zl verifies the
equations of the expansion. Indeed, for any place p, = (;,t;) € P,

Ni N Zj _ 'U(pa)

Nj Zz w(pa)

which completes the proof.
O

Corollary 4.1. Let G be a strongly connected WEG. G is normalized iff G is unitary.
Moreover, there erists K € N* such that, Vi € {1,...,n},

N;.Z; =K

Proof. Let G be a strongly connected WEG. It is proved in [17] that G is a unitary iff
G is expansible. By theorem 4.2, we get the first part of the corollary. The relationship
between vectors (Z;)ic{1,. n} and (Ni)ie(i,..n) is in the proof of this last theorem. O

We illustrate by an example the normalization’s method and the strong link between
normalization and expansion (see figure 9). One can check that Vi € {1,...,5}, N;.Z; = 2520
with the following expansion vector N = (84,70, 35, 70, 40).

tq

Figure 9: On the left, graph G is non-normalized. Let us denote that the number of tokens
on each place p is a multiple of ged,. We show the associated normalized graph on the
right side.

5 Sufficient condition for the liveness of a normalized WEG

We consider here a normalized WEG G. Firstly, we prove a sufficient condition on the
liveness of G. Then, we show that this is a necessary condition for any circuit with two
transitions. Finaly, we give an example to show that this condition is not necessary.

Lemma 5.1. Let G be a normalized WEG. Then, the number of tokens of every circuit
remains constant.

12

Proof. Let C = (t1,...,tq,t1) be a circuit of G and let v;, i € {1,..., ¢}, be the number of
firings of the transition t;. We set p; = (t;,ti41) for i € {1,...,¢ — 1} and p; = (t4,t1).

Then,
a

q
> M(pi) =Y (Mo(pi) + viw(pi) = vigro(pi)
i=1 i=1
Now, since G is normalized, v(p;) = w(p;i+1) for i € {1,..,¢ — 1} and v(pq) = w(p1). So,
S1_ (viw(pi) — vig1v(pi)) = 0 and we proved the lemma. O

Theorem 5.1 (Sufficient condition). Let G be a normalized WEG. G is live if for all

circuit C of G :
Y Mo(p)> Y (v(p) — gedy)

peCNP peCNP

Proof. By contradiction, let us suppose that G is not live and such that for all circuit C' of
G, the inequality is true. Since G is not live, every possible sequence of firings leads to a
deadlock. It means that there is a circuit Cp; in G such that it is not possible to fire any
transition because of a lack of tokens on every place of this circuit, so :

Vp € Cpi NP, M(p) < v(p)

As the number of tokens present in a place p can be considered as a multiple of ged), (cf.
lemma 3.2), we get :
Vp e CpiNP,M(p) <v(p) — gcd,

Summing these inequalities, we obtain that :

Y. M) < Y (v(p) - gedy)

peCpNP peCp,NP
Since G is normalized, by lemma 5.1, > M(p)= >, Mp(p) and we get a contra-
peCpNP peCpNP
diction. N
b1

Figure 10: A normalized graph with two places.

Theorem 5.2 (Special case). Let C' be a normalized circuit composed by two places py
and pe and two different transitions (see figure 10). Then, C' is live iff

Mo(p1) + Mo(p2) > v(p1) + v(p2) — 2.9cdy,

13

Proof. Since C'is normalized, w(p1) = v(p2) and v(p1) = w(p2).

o If w(p1) = w(p2) = w, then, ged,, = gedp, = w. In this case, by lemma 3.3, the
circuit C is equivalent to an event graph with an initial marking for place p; and po

M, M,
o(p1) and 0(p2)
w w

M,
o(p1) N My(p2) o
w w

respectively equal to . This circuit is live iff

0

Since My(p1) and My(p2) are multiple of w, this is the condition of the theorem.

e We suppose here that w(p1) # w(p2). In order to lighten our notations we set p = p;
for the rest of our proof.

We prove by contradiction that this condition is necessary : we suppose that the
inequality is false and that C is live. Let us consider that a state of the graph C
is given by the couple of values (M(p1), M(p2)). Let A be the number of different
reachable states of C.

— (C is assumed to be live. Since the number of states is bounded, a sequence of
firings containing at least one state twice can be built. So there are two integers
vy and v such that :

{ M(p1) + i.w(p) —vew(p) = M(p1) = viw(p) = ve.0(p)
M(p2) +v2.0(p) —viw(p) = M(p2) = ww(p) = viw(p)
lemy

The smallest values verifying this previous condition are v = o) and v; =

lemy

o) So, the number A is bounded by :

lemy, ~ lemy,

A>w@) v(p)

— The global number of intial tokens is lower to or equal than o = w(p) + v(p) —
2.gcd,. By lemma, 3.2, the number of tokens held by a place p is a multiple of
gcdy. Moreover, the number of couples of integers (X, Y) multiples of gcd,, and

such that X +Y = o is exactly ﬁ + 1.

0 ged, 2.gcd), .| o—gedy, | o

o|o—ged, | o—2.gcdy,| ... gcd, 0

Couple (X,Y) with X+Y=c¢

This yields to 7 + 1 couples
ged,
However, this number takes into consideration the values M (p1) = v(p) — ged,,
and M (p2) = v(p2) — ged, = w(p) — gedy, which generates a deadlock. So, we
deduce that the number A of different live-state that we can build with o tokens
verifies :
A< 0 _wb) v

= -2
~ ged, ged, gedy

14

Nevertheless, we know that

So we derive that :

w(p) lemy, v(p) lem,
gedy — v(p) gedy — w(p)
So, we have :
wp) o) 5 p o wp) vp)
ged, ged, ged, ged,

which is the contradiction.

O

In the general case, the condition of the theorem 5.1 is not necessary : indeed, let us
consider the normalized WEG G presented by figure 11. One can verify that this graph
is live : the sequences of firings s defined below can be repeated infinitely. However, the
condition of the theorem is not true.

ty 2 3 4

2 y2 3

b3 p1

3 p2)%/2
tsg\@ 2 2

Figure 11: G is live in spite of the fact that the sufficient condition of theorem 5.1 is not
checked

ts 2.ty t t t3 ta t 2.t

M(py) : 0 0 0 3 1 1 1 4 0
M(ps) : 4 1 1 1 3 0 0 0 4
M(ps) : 1 4 0 0 0 3 1 1 1
M(py) : 0 0 4 1 1 1 3 0 0

The graph is live whereas the sufficient condition is not checked Y3, My(pi) < S, (v(pi)—
gedy,) (here :5<6).

We can check that the computation of the sufficient condition of liveness is in O(nm).
Here, we consider again the example depicted on figure 9 on page 12.

e The normalization of a unitary graph is in O(nm).

15

Figure 12: The graph G’ does not hold a circuit of negative weight so we can claim that G
is live.

e In the second step, we build a valued graph G’ = (T, V') such any place p’ = (t;,¢;) €
P’ corresponds to an arc (¢, j) € V valued by My(p') —v(p’) + ged,y (see figure 12 for
the sequel of our example descibed on page 12).

Then, using BELLMAN-FORD algorithm, we can check if G’ has a circuit of strictly
negative value. The complexity is also in O(nm).

If there exists in G’ a circuit of strictly negative value, then the condition of theorem
5.1 is false and we cannot conclude if the graph G is live or not. Else, we build a
partial subgraph G” of G’ by removing all the non critical edges from V. Then we
applied the dept search algorithm in order to determine if G” holds a circuit. This
can be done in O(m).

= If G” contains a null valued circuit then we can not state anything for the liveness

of G.
= Else, we can claim that the graph G is live.

6 Conclusion

In this paper, we proved that any unitary weigthed event graph may be polynomially
transformed into a normalized event graph, and we derived a sufficient condition of liveness.
The normalization of a unitary weigthed event graph is, to our knowledge, a new concept
and allows to reconsider the definition of work-in-process in a weighted Petri net. On the
other hand, the main interest of the sufficient condition will be the possibility to speed-
up future heuristics and branch-and-bound methods for the minimization function of the
initial markings and the consideration of large size problems.

References

[1] J-L Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
1981.

16

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. Teruel, P. Chrzastowski-Wachtel, J. M. Colom, and M. Silva. On weighted t-
systems. pages 348-367.

L. Recalde, E. Teruel, and M. Silva. On linear algebraic techniques for liveness analysis
of pt systems. Journal of Circuits Systems and Computers, 8(1):223-265, 1998.

Bruno Gaujal. Liveness in weighted routed nets. Technical report.

P Chrétienne. Les réseaur de Petri temporisés. PhD thesis, Theses d’état, Université
P. et M. Curie, 1983.

C Hanen. Study of an np-hard scheduling problem : the recurrent job-shop. Furopean
Journal of Operational Research, 72:82-101, 1994.

C Hanen and A Munier. A study of the cyclic scheduling problem on parallel proces-
sors. Discrete Applied Mathematics, 57:167-192, 1995.

H Hillion and J-M Proth. Performance evaluation of a job-shop system using timed
event graph. IEEE transactions on automatic control, 34(1):3-9, 1989.

S Gaubert. An algebraic method for optimizing resources in timed event graphs. In
9th conference on Analysis and Optimization of Systems, Lecture Notes in Computer
Sciences, volume 144, pages 957-966, 1990.

S Laftit, J-M Proth, and X Xie. Optimization of invariant criteria for event graphs.
IEEE Transactions on Automatic Control, 37(5):547-555, 1992.

Edward A. Lee and David G. Messerschmitt. Synchronous data flow. IEEE Proceedings
of the IEEE, 75(9), 1987.

Edward A. Lee and David G. Messerschmitt. Static scheduling of synchronous data

flow programs for digital signal processing. IEEE Transaction on Computers, C-
36(1):24-35, 1987.

M Adé. Data memory minimization for synchronous data flow graphs emulated on
DSP-FPGA targets. PhD thesis, Université Catholique de Louvain, 1997.

N Sauer. Marking optimization of weighted marked graphs. In 7th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’99), pages 719—
725, Barcelone, Espagne, 1999.

R. Govindarajan and Guang R. Gao. Rate-optimal shcedule for multi-rate dsp com-
putations. Journal of VLSI Signal Processing, (9):211-235, 1995.

G Cavory, R Dupas, and G Goncalves. A genetic approach to solving the problem of
cyclic job shop scheduling with linear constraints. European Journal of Operational
Research, 161:73-85, 2005.

A Munier. Régime asymptotique optimal d’un graphe d’événements temporisé : ap-
plication & un probléme d’assemblage. RAIRO, 1993.

T Cormen, C Leiserson, and R Rivest. Introduction to Algorithms. MIT Press, 1990.

17

