
CTL-property transformations along an

incremental design process

Cécile Braunstein and Emmanuelle Encrenaz

LIP6, Université Pierre et Marie Curie, Paris, France
<cecile.braunstein> <emmanuelle.encrenaz> @lip6.fr

Abstract. This paper formalizes an incremental approach to design
VCI to PI protocol converters (VCI-PI wrappers) and presents a hierar-
chy of wrappers ranking from the simplest one up to the most complex
one. In order to formally verify the correctness of a wrapper, a set of CTL
properties is assigned to it. The purpose of the paper is to explore how,
given a property that is true in a simple model, a new property, satisfied
in a more complex model, can be derived from the first one, and recip-
rocaly. We propose some transformation rules to build new properties
satisfied on more complex models. The properties transformation have
been automated and applied in the context of non-regression analysis of
VCI-PI wrappers.
Topics. System Design and Verification, Simulation Relation, Compu-

tational Tree Logic.

1 Introduction

The present paper stems from the observation of the way some hardware de-
signers achieve the design of the device they have to build. They adopt an in-
cremental strategy : after having defined the information flows of the design, the
rough structure of the data-path and the control part, they proceed from the
implementation of the simplest cases up to the most complex ones, by adding
new functionalities to already existing ones, building a more and more complex
device.
This design process is different from those applying a refining strategy as [4].
In refining strategies, the global information flows are initially defined, and all
cases, according to their complexity, are obtained by incremental refinements of
the initial model. The strength of these approches resides in the preservation of
global properties along the refinement process : if a property is true on a given
model, then, if the refinement conforms to a well-definition, the refined model
will preserve the initial property. But this strategy excludes the addition of new
functionalities during the design process : a refinement is a specialization of a
pre-defined set of behaviours.
The incremental approach lacks of these good verification principles : once a
behaviour is added to an initial model, a global property which was true on the
initial model may be wrong on the extended one, due to this new behaviour.
In the incremental design process, a different set of property has to be assigned

2 Cécile Braunstein and Emmanuelle Encrenaz

to the component for each step of the design. Moreover, global properties (about
the component plugged in a complex environment made of other components)
have to be re-adapted for each step of the design. Often, the verification is
performed by simulation of test cases, that have to produce the same results on
the initial and extended models.

Alternative hardware verification methods include symbolic model checking [1]
that is efficiently used to verify medium size hardware components (up to 10
Kgates). Classical results, concerning CTL property preservation, state that any
CTL property that is true on an initial model may be either true or false on the
extended one, (depending on the added behaviour), thus one cannot say much
if one tries to preserve any property.

Focusing on the verification of CTL properties, we are interested in exploring
the links between properties that are true on an initial model and these that are
true on the extended one. If we can perform this, we can insure the extended
model does not introduce regression with respect to the initial one.
We show that such a transformation is possible once the set of admissible ex-
tensions between an initial model and the extended one has been defined. The
transformed CTL formulae obtained, applied to the extended model, restrict the
verification state-space traversals to a sub-graph isomorphic to the one derived
from the initial model.

The paper is organized as follows : In a first section we present how a new be-
haviour is added to an existing model. The difference between the initial and the
extended model is named the increment. The increment is formally described.
It is shown that given an initial model and an increment, the derived extended
model simulates the initial one. The second section presents the Kripke struc-
tures derived from an initial model and the extended model (according to the
increment), and characterizes the main properties of the latest, mainly that it
includes the formest, tagged with a particular value. From these considerations,
the subsequent section presents a set of transformations of CTL formulae, re-
stricting the verification of CTL formulae in the Kripke structure of the extended
model to the Kripke structure of the initial one it includes. Sketches of the proofs
are given in this section while the complete proofs are given in annex. Then we
briefly present the way these transformations were applied during the incremen-
tal design process of protocol converters (between VCI and Pi-bus), and conclude
sketching some directions for future work.

2 Increment formalization

In this section, we formalize the component being designed and the increment.
Then we characterize the extended component.

A component is viewed as a control part driving a data-path. Its state-
space is modelled by a deterministic synchonous Moore Machine. The component
presents an interface composed of typed signals.

CTL-property transformations along an incremental design process 3

2.1 Definitions of a signal and a configuration

Definition 1. Each signal is defined by a name s and a definition domain
Dom(s).

Definition 2. Let E be a set of signals. A configuration c(E) is a vector that
associates to each signal in E one value of its definition domain. The set of all
configurations c(E) is named C(E).

2.2 Definition of a component

Definition 3. A component Wi =< Si, Ii, Oi, Ti, Li, si > is described as a de-
terministic Moore Machine. Its definition follows :

Si : Finite set of states
Ii : Finite set of input signals with their finite definition domain. : {(sigin,Domi(sigin))}
Oi : Finite set of output signals with their finite definition domain. : {(sigout,Domi(sigout))}
Ti : Finite set of transitions ⊂ Si × C(Ii)× Si

Li : Vector of generation functions = {l0, . . . , l|O|−1} each function defining
the value of exactly one output signal in each state; for all output signal oj

0 ≤ j ≤ |Oi| − 1 we have lj : Si → Dom(oj),
si ∈ Si : the initial state

Remark 1. Applying the vector of generation functions to a given state of Si

produces a configuration c(Oi).

2.3 Increment

An increment is the set of modifications applied to a component’s architecture
in order to build a more complex one. It reflects the carrying out of a new
event at the component’s interface. The architecture of Wi does not consider the
occurrence of this new event, while the architecture Wi+1 does.

An increment is a new event (or a set of new events), taken into account in
a subset of states only, introducing new behaviors.
A new event can occur of two different manners :

– Either the definition domain of an existing signal is extended. The interfaces
of the component are fixed, but the incremental design process takes into
account values of these interfaces that were not previously considered.

– Or an new signal is added (with a definition domain). This is the case of an
increasing complexity of the data-path of the component.

It may be considered in a subset of states only :

– If the signal previously existed, it appeared into the input configuration
labelling some transitions exiting some states (at least one). The set of tran-
sitions leaving from these states has to be extended with the new potential
value of the input signal.

4 Cécile Braunstein and Emmanuelle Encrenaz

– If the signal is a fresh one, its new value is supposed to be pertinent in all
states, unless the user has tagged the states where this signal has to be taken
into account.

It introduces new transitions and states :

– The new behaviors are represented as new transitions and states in the pre-
vious Moore Machine.

– Completeness and determinism of the Moore Machine are preserved.

It drives new actions :

– Either an existing output signal has its domain extended, this new value
appears in the fresh states.

– Or a new output signal is created, it owns a quiet value (corresponding to a
no-action) and an action value.

– The new signal is added in the states existing in the elder Moore Machine,
driving its quiet value.

– The new signal appears in fresh states, driving either its quiet or action
value.

Fig. 1. Increment examples

Figure 1 presents two admissible increment. On the left, a new signal j is
added to an initial component Wi. Wi is represented in with black lines and the
increment applied is shown in grey. In this example, the quiet value of j equals
0. On the right, the increment consists in extending the definition domain of an
existing signal k whose values were i1 or i2 in Wi. In Wi+1 i1 and i2 are quiet
values of signal k while i3 is its active value.

Definition 4. The increment from a component Wi to a component Wi+1 is a
6-uplet INC =< I+, Σin, R+, O+, Σout, Σ+ >

I+ : The set of -possibly new- input signals and their -eventually- extended
definition domain = {(e,Dom(e))} with:

CTL-property transformations along an incremental design process 5

– if e ∈ Ii, Domi+1(e) = Domi(e) ∪ {newvalues}

– if e /∈ Ii, Domi+1(e) = {val qt, val act}

Σin ⊆ Si : The set of states modified by I+. By default Σin = Si.

R+ : The set of new transitions.

O+ : The set of new output signals and their -potentially- new definition domain
= (o,Dom(o)) with :

– if o∈ Oi Domi+1(o) = Domi(o)∪{new values}

– if o/∈ Oi Domi+1(o) = { val qt , val act }

Σout : The set of states (belonging to Si or successor of a state of Σin) modified
by O+.

Σ+ : The set of new reachable states.

We can now characterize the structure of Wi+1 with respect to Wi and a given
increment.

2.4 The component Wi+1

Definition 5. Wi+1 =< Si+1, Ii+1, Oi+1, Ti+1, Li+1, si+1 > :

Si+1 = Si ∪Σ+

Ii+1 = Ii ∪ I+

Oi+1 = Oi ∪ O+

Ti+1 ⊂ Si+1 × C(Ii+1)× Si+1

Li+1 ⊃ Li : generation functions: Si+1 → C(Oi+1).

si+1 = si : initial states.

Characterization of the transitions of Wi+1 . The transitions that were
present in Wi still exist in Wi+1 but the input configuration that labels each of
these may be extended (due to an extension of the definition’s domain of the
incremented signal). This is formaly defined below :

– If the increment signal e ∈ I+ is a fresh one, having a quiet value val qt

and an active value val act:
∀(s, ca, s′) ∈ Ti, ∃cb ∈ C(Ii+1) such that (s, cb, s

′) ∈ Ti+1 and cb=ca.(e =
val qt) (dot means vector concatenation)
and ∃cc ∈ C(Ii+1) and s′′ ∈ Si+1 such that (s, cc, s

′′) ∈ Ti+1 and cc=ca.(e =
val act)

– If the incremental signal e ∈ I+ already existed in Wi but has an extended
definition’s domain in Wi+1 (Domi(e) ⊂ Domi+1(e)):
∀(s, ca, s′) ∈ Ti, ∃cb ∈ C(Ii+1) such that (s, cb, s

′) ∈ Ti+1 and cb=ca

and ∃cc ∈ C(Ii+1) \ C(Ii) and s′′ ∈ Si+1 such that (s, cc, s
′′) ∈ Ti+1 and

cc=cae←Domi+1(e)\Domi(e)

6 Cécile Braunstein and Emmanuelle Encrenaz

Characterization of the generation functions Li+1 . The output signals
that were present in Wi remain in Wi+1. Their generation function is extended
to the new states in Σ+ and the new input configurations due to I+. The newly
introduced output signals own their generation functions.

– If the output signal oj is a fresh one, having a quiet value val qt and an
active value val act. The generation function of this signal is extended.
∀s ∈ Si ∩ Si+1, ∀c ∈ C(Ii ∩ Ii+1) : lji+1(s, c) = val qt

∀s ∈ Si+1 \ Si, ∀c ∈ Ci+1(Ii+1) : lji+1(s, c) ∈ Domi+1(oj)
– If the output signal oj already existed in Wi but has an extended definition’s

domain in Wi+1 (Domi(oj) ⊂ Domi+1(oj)):
∀s ∈ Si ∩ Si+1, ∀c ∈ C(Ii ∩ Ii+1 : lji+1(s, c) = lji

(s, c)
∀s ∈ Si+1 \ Si, ∀cinCi+1(Ii+1) : lji+1(s, c) ∈ Domi+1(oj)

A component Wi+1 obtained by applying an increment to a component Wi

preserves all behaviours that were present in Wi, assuming that, in Wi+1, the
new input signals are maintained to their quiet value.

Property 1. The initial state in Wi+1 simulates the initial state in Wi

Sketch of the proof : We build ρW a binary relation between the states of two
consecutive components Wi and Wi+1, such that : ρW :⊆ Si × Si+1 with :
∀s ∈ Si, let be s’ the name of s in Si+1, (s, s

′) ∈ ρW . By construction, ρW is a
simulation relation.

3 From Moore machine to Kripke structure

The verification of CTL properties is defined on the Kripke structure derived
from the initial Moore Machine describing the component Wi. We formally define
the Kripke structure K(Wi) obtained from the component Wi.

Definition 6. A Kripke structure is a 5-tuple 〈S, s0, AP,L, R〉 where

S is a finite set of states,
s0 ⊆ S is the set of initial states,
AP is a finite set of atomic propositions,
L = {l0, . . . , l|AP |−1} is a vector of | AP | functions, each function defining the

value of exactly one atomic proposition; for all 0 ≤ i ≤| AP | −1 we have
li : S → B; for all s ∈ S, we have that li(s) is true iff the atomic proposition
associated to li is true in s,

R ⊆ S × S is the transition relation.

Definition 7. Translating a FSM by Putting the Inputs in the Source
State Given a FSM of a component Wi =< Si, Ii, Oi, Ti, Li, si >, we deduce the
Kripke structure K(Wi) = 〈SK(Wi), sK(Wi),0, APK(Wi),LK(Wi), RK(Wi)〉 where:

SK(Wi) = Si × C(Ii),
sK(Wi),0 = si × C(Ii),

CTL-property transformations along an incremental design process 7

APK(Wi) = Ii ∪ Oi,
LK(Wi) = {lO0, . . . , lO |Oi|−1} . {lI0, . . . , lI |Ii|−1};

for all 0 ≤ j ≤| Oi | −1, we have l0j : SK(Wi) → DomWi
(oj);

for all 0 ≤ j ≤| Ii | −1, we have lI j : SK(Wi) → DomWi
(sj) ;

RK(Wi) ⊆ SK(Wi) × SK(Wi) and ∀ (s, ci) ∈ SK(Wi), ∀ (s′, c′i) ∈ SK(Wi), we have
((s, ci), (s

′, c′i)) ∈ RK(Wi) iff (s, ci, s
′) ∈ R.

Fig. 2. Transformation of a Moore Machine into a Kripke structure

All the states s′ in K(Wi) obtained from the same state s in Wi are said
to belong to the same brotherhood derived from s. The states belonging to a
common brotherhood differ from the input configuration that labels them, and
from their successor states.

Definition 8. Brotherhood Let be a Kripke structure K(Wi) obtained from
a component Wi, we define the Brotherhood Relation B : SK(Wi)×SK(Wi) → B.
For all s = (s1, c1) ∈ SK(Wi), for all t = (t1, c2) ∈ SK(Wi), we have (s, t) ∈ B iff
s1 = t1. The Brotherhood is the function Br : SK(Wi) → P(SK(Wi)), that, given
a state s returns the maximal set of states t such that (s, t) ∈ B.

Remark 2. The common part s of all states belonging to a Brotherhood
{(s, c1) . . . (s, cn)} ∈ K(Wi) are said to be derived from s, that is a state in Wi.

Remark 3. The set of brotherhood in K(Wi) is a partition of SK(Wi).

We are now interested in characterizing K(Wi+1) with respect to K(Wi) and
INC. K(Wi+1) is obtained from the translation described in definition 7 of the
component Wi+1 obtained by applying the increment INC to the component Wi.

3.1 From K(Wi) to K(Wi+1)

We firstly define some relations between states of K(Wi) and K(Wi+1), that
expand the same state in Wi, but with an input configuration in C(Ii) or in
C(Ii+1). Diagram of figure 3 illustrates these relations between states in Wi,
Wi+1, K(Wi) and K(Wi+1).

Definition 9. Enrichment For all state si = (s, c) ∈ K(Wi), there exists s′i =
(s′, c′) and s′′i = (s′′, c′′) ∈ K(Wi+1) such that :

8 Cécile Braunstein and Emmanuelle Encrenaz

– if the increment is due to the extension of the definition domain of an imput
signal e : s′ = s, c′ = c and s′′ = s, c′′ = c|e←Domi+1(e)∩Domi(e) .

– if the increment is due to a fresh signal e having a quiet value and an active
value : s′ = s, c′ = c.(e = val qt) and s′ = s, c′ = c.(e = val act).

In both cases, s′i is said to enrich si (with (e = val qt) in the second case).

Definition 10. Incremental Brotherhood Let be two Kripke structures
K(Wi) and K(Wi+1) obtained from an increment INC, we define the Incre-
mental Brotherhood Relation Binc : SK(Wi) × SK(Wi+1) → B.
For all s = (s1, c1) ∈ SK(Wi), for all t = (s′1, c

′
1) ∈ SK(Wi+1), we have (s, t) ∈

Binc iff s1 = s′1. The Incremental Brotherhood is the function Brinc
: SK(Wi) →

P(SK(Wi+1)), that, given a state s returns the maximal set of states t such that
(s, t) ∈ Binc.

We can describe the Kripke structure K(Wi+1)= < SK(Wi+1), TK(Wi+1), APK(Wi+1), LK(Wi+1), sK(Wi+1),0 >
derived from a component Wi = < Si, Ii, Oi, Ti, Li, si >, its derived Kripke struc-
ture K(Wi) = < SK(Wi), TK(Wi), APK(Wi), LK(Wi), sK(Wi),0 > and an increment
INC =< I+, Σin, R+, O+, Σout, Σ+ > and I+ = { (e,val qt, val act)}

SK(Wi+1) : the finite set of states of K(Wi+1) is composed of : - Each state s
that was in SK(Wi) produces s′ and s′′ in SK(Wi+1), such that s′ is labelled
with e =val qt and s′′ is labelled with e =val act.
- The set of new states in Wi+1 generates new brotherhoods in K(Wi+1)
labelled with C(Ii ∪ I+)

TK(Wi+1) : the finite set of transitions of K(Wi+1) is composed of : - Existing
transitions in K(Wi) remain in K(Wi+1) and are extended to all successor
states belonging to the incremental brotherhood of a successor in K(Wi).
- For every new transitions in Wi+1, a new set of corresponding transitions
in K(Wi+1) are added.

APK(Wi+1) ⊃ APK(Wi): the finite set of atomic propositions of K(Wi+1)
LK(Wi+1) : the labelling function of K(Wi+1). LK(Wi+1)(s

′) = LK(Wi)(s)∪ (e =
val qt) if s’ enriches s.

sK(Wi+1),0 : the set of initial states corresponding to the Brinc
(si) for all si ∈

sK(Wi),0.

Figure 3 illustrates the Brotherhood, incremental brotherhood, enrichment
relations. Each state s in Wi induces a brotherhood Br(s) in K(Wi). The state s′

that renames s in Wi+1 induces an incremental brotherhood Brinc(s) in K(Wi+1)
that extends Br(s), since the input configuration part of a state in K(Wi+1)
encompasses the one of a state in K(Wi). the state sjk in K(Wi+1) enriches the
state sk in K(Wi).

3.2 Properties of K(Wi+1)

By construction, the tree of behaviours of K(Wi) is preserved in K(Wi+1), la-
belled with the quiet value of the increment signal. This preservation property

CTL-property transformations along an incremental design process 9

Fig. 3. Incremental Brotherhood

can be expressed as the existence of a simulation relation between the states of
the Kripke structures. In fact, the enrichment relation captures more precisely
the fact that the behaviours of the elder component are present in the newer
one, but tagged with the increment signal assigned to its quiet value.

Property 2. Each initial state of K(Wi+1) that enriches the initial state
of K(Wi) with (e = val qt) simulates the latest.
sketch of the proof : We define ρKW

⊆ K(Wi) × K(Wi+1), such that ∀s ∈
SK(Wi), c ∈ C(Ii) and ∀s′ ∈ SK((Wi+1), c′ ∈ C(Ii+1), if s = s′(s′ ∈ SK(Wi) ∩
SK(Wi+1)) and if c′ = c or c = c.(e = val qt) then ρKW

is a simulation relation.

Remark 4. From above, if s′ enriches s with (e = val qt) ⇒ s′ simulates s and
s′ simulates s 6⇒ s′ enriches s

Corollary 1. If there exists some infinite path in K(Wi), then there exists some
infinite path in K(Wi+1) along which the increment signal e has always its quiet
value. Let be σ = s0 . . . sn . . . in K(Wi), ∃σ

′ = s′0 . . . s′n . . . in K(Wi such that all
s′i enriches si with (e = val qt).

Corollary 2. K(Wi) is the maximal sub-graph in K(Wi+1), reachable from
s′0,(that enriches s0 (in K(Wi)) with (e =val qt) when e remains to the quiet
value.

Corollary 3. The states in K(Wi+1) belonging to the brotherhood of a new state
(a state added by the increment, i.e. ∈ Σ+) are only reachable from the initial
state s′

K(Wi+1),0 that enriches sK(Wi),0 by a path along which at least one state

is labelled by (e 6= val qt).

Corollary 4. Let be s′ that enriches s with (e = val qt), then for all t′ ∈
K(Wi+1) such that s′ → t′, there exists t ∈ K(Wi) such that t′ ∈ Brinc

(t) and
s→ t.

Proof :

1. By induction on the length of σ.

10 Cécile Braunstein and Emmanuelle Encrenaz

2. By construction of K(Wi+1), we have s′
K(Wi+1),0

enriches sK(Wi),0 ⇒ s′
K(Wi+1),0

simulates s′
K(Wi),0

and for each state r’ reachable from s′
K(Wi+1),0

that en-

riches a state r in K(Wi), such that r’ → t’ and t’ does not enrich any state
in K(Wi), thus has no equivalent state in K(Wi), then t’ |= (e 6= val qt).

3. Let be s′ ∈ K(Wi+1) that simulates s ∈ K(Wi). Let e be a state in K(Wi+1)
belonging to the brotherhood of a new state new s added by the increment
INC, and such that s′ → new s. There is no transition from s to e in K(Wi)
since there is no Br(e) in K(Wi), hence, from s′(|= (e = val qt)), there
is no transition towards e due to the corollary 2. On the opposite, from
a state s′′ ∈ K(Wi+1) belonging to the brotherhood of s′ and such that
s′′ |= (e 6= val qt),there exists a transition to e.

4. Directly from corollary 2.

Hence, K(Wi+1) includes K(Wi) and K(Wi) can be detected in K(Wi+1) since
it is the maximal connected sub-graph tagged with e = val qt. This is captured
by the enrichment relation, that is a simulation. We now use this particularity
to establish links between CTL properties verified on K(Wi) and others verified
on K(Wi+1).

4 CTL-property transformations

[5] and [3] have stated some CTL property-preservation results between two
Kripke structures ordered by any simulation relation. We recall their results in
our particular context.

4.1 Preservation CTL formulae

Definition 11. Preservation of ECTL formulae from K(Wi) to K(Wi+1)
[5] Let be s a state of K(Wi) and s’ a state of K(Wi+1) such that s’ simulates s.
Let Φ be an ECTL formulae : K(Wi),s |= Φ ⇒ K(Wi+1),s’ |= Φ.

Definition 12. Preservation of ACTL formulae from K(Wi+1) to K(Wi)[3]
Let be s a state of K(Wi) and s’ a state of K(Wi+1) such that s’ simulates s. Let
Φ be a ACTL formulae : K(Wi+1),s’ |=Φ ⇒ K(Wi),s |=Φ.

4.2 Transformation of CTL formulae

Given a CTL formula Φ , we are going to set out the transformations rules to
transform Φ in K(Wi),sK(Wi),0 (shortly named s0) into Φ’ in K(Wi+1),s

′
K(Wi+1),0

(shortly named s′0) when s′0 enriches s0.

Theorem 1. Let be s ∈ SK(Wi) and s’ ∈ SK(Wi+1) such that s’ enriches s with
(e = val qt), let be p and q atomic propositions in APK(Wi).

K(Wi),s |= p ⇔ K(Wi+1),s’ |= p.
K(Wi),s |= EXp ⇔ K(Wi+1),s’ |= (e = val qt) ⇒ EXp.

CTL-property transformations along an incremental design process 11

K(Wi),s |= EFp ⇔ K(Wi+1),s’ |= E((e = val qt) U p).
K(Wi),s |= EGp ⇔ K(Wi+1),s’ |= EG((e =val qt) ∧p).
K(Wi),s |= EpUq ⇔ K(Wi+1),s’ |= E(((e = val qt)∧p) U q).
K(Wi),s |= AXp ⇔ K(Wi+1),s’ |= (e = val qt) ⇒ AXp.
K(Wi),s |= AFp ⇔ K(Wi+1),s’ |= AF((e 6= val qt) ∨ p).
K(Wi),s |= ApUq ⇔ K(Wi+1),s’ |= A(((e = val qt) ∧ p) U ((e 6= val qt) ∨q)).
K(Wi),s |= AGp ⇔ K(Wi+1),s’ |= A(((e = val qt) ∧ p) W (e 6= val qt)).
K(Wi),s |= ApW1q ⇔ K(Wi+1),s’ |= A(p W (q ∨(e 6= val qt))).

Sketch of proof : The transformations are based on the reduction of the
computational tree explored in K(Wi+1) to the sub-tree along which the new
value of the input signal is not considered. By corollary 2, this sub-graph repre-
sents K(Wi). The transformation is proven for each CTL operator by including
the (e = val qt) constraint in its definition. The detailled proof of each case is
given in annex.

Theorem 2. For any CTL formulae Φ χ and Ψ (with all the atomic proposi-
tion in APK(Wi)), K(Wi),s|= Φ ⇔ K(Wi+1),s’|= Φ′ , where Φ′ is the formulae
obtained by recusively applying the following transformations :

K(Wi),s |= EX Ψ ⇔ K(Wi+1),s’ |= (e = val qt) ⇒ EXΨ ’.
K(Wi),s |= EFΨ ⇔ K(Wi+1),s’ |= E((e = val qt) U Ψ ′).
K(Wi),s |= EGΨ ⇔ K(Wi+1),s’ |= EG((e =val qt) ∧Ψ ’).
K(Wi),s |= EΨUχ ⇔ K(Wi+1),s’ |= E(((e = val qt)∧Ψ ’) U χ’).
K(Wi),s |= AXΨ ⇔ K(Wi+1),s’ |= (e = val qt) ⇒ AXΨ ’.
K(Wi),s |= AFΨ ⇔ K(Wi+1),s’ |= AF((e 6= val qt) ∨ Ψ ’).
K(Wi),s |= AΨUχ⇔ K(Wi+1),s’ |= A(((e = val qt) ∧Ψ ′)U((e 6= val qt)∨χ′)).
K(Wi),s |= AGΨ ⇔ K(Wi+1),s’ |= A(((e = val qt) ∧ Ψ ’) W (e 6= val qt)).
K(Wi),s |= AΨWχ ⇔ K(Wi+1),s’ |= A(Ψ ’ W (χ’ ∨(e 6= val qt)))

Sketch of proof : The proof proceeds by induction on the length of the for-
mula Φ.

5 Result

We implemented a tool that automates the transformation of the CTL formulae
described on 4.3. This tool took a file with a set of CTL formulae and a file
containing the definition of an increment and returns the set of transformed
CTL formulae.

We applied this approach for the verification of a VCI-PI wrapper. A wrapper
is a device wrapping around an IP core and implementing a given interface. In
our context, the IP core are supposed to be VCI compliant and the considered
wrappers are adapters between the VCI interface and the PI-bus protocol, thus
we are able to connect these IP-cores through a PI-bus. Using an incremental

1 W stands for “weak until”

12 Cécile Braunstein and Emmanuelle Encrenaz

Fig. 4. Plateform ; Wrappers master interface

design process approach, we developed a set of six master VCI-PI wrappers,
from a very simple one supposing that the VCI initiator and the PI target will
always respond in one cycle, up to a more complex one supporting delays and
retract events sent by the VCI initiator or the PI target.
The behavior of the simplest wrapper (model A) is a 3-stages pipeline, perform-
ing at the same time : accepting a VCI request k to be sent to PI from its VCI
interface, sending the PI request corresponding to the k-1th VCI request on its
PI interface, accepting the PI response to the k-2th VCI request on its PI inter-
face. The further models (B to C’) (fig.5) deal with external events disturbing
the pipeline flow.

Fig. 5. Hierarchical VCI-PI wrapper

We implemented in synchronous Verilog a system containing a VCI initiator
and a VCI target, connected to a PI-bus through a VCI-PI master wrapper and
a VCI-PI slave wrapper. We verified this system with the VIS plateform [2].
We checked about 80 CTL properties for the master wrapper B, the slave wrap-
per B and the complete system (when the VCI initiator and target may generate
delay events). Then, we checked the properties obtained by applying the CTL
transformations on a system containing now VCI-PI master and slave belonging
to model B’. Some examples of CTL properties checked is given in annex.
All properties that were successfully checked on the B plateform were translated
to be accepted on plateform B’, and the verification results were successfull. Of
course, extra CTL formulae had to be added to the B’-platform in order to check

CTL-property transformations along an incremental design process 13

the behaviours added by the increment.
The whole system was composed of about 300-400 BDD variables, and the veri-
fication run from about a second to about a hour, depending on the complexity
of the property under verification.

6 Concluding Remarks

The transformation rules of CTL formulae we propose is the basis to an approach
to answer the “non-regression problem” encountered during the incremental de-
sign process of a component. We have shown that this approach can be used
during the design of a concrete component, assuming the increment respects
the rules we formalized, as we take advantage of the existence of a particular
value tagging the initial part of a model included in an extended model. Nev-
ertheless, the experimental results obtained have shown that the transformed
CTL formula may become very complex (furthermore if the increment process
is iterated), downgrading the verification process.

It is our intention to pursue this study towards the following directions :
Up to now, we did not take into account all the particularities of the increment;
we considered only the existence of a particular value spliting the set of states
with the ones that appeared in the initial model and the new ones. We did not
take advantage of the graph structure of the increment; most of the time, it
consists of the adding of a new state (or set of states) characterizing the freezing
of the data-path. In these cases, a new set of CTL tranformations may be defined,
simpler than the ones we proposed here in a more general context.
The opposite analysis can also be of interest : given a complex formula to be
verified on a complex model, can we find an increment such that the complex
model has been built from the application of this increment to a simpler model.
If yes, can we transpose the complex formula to a simpler one to be verified.
We are also interested in studying the way this approach can be mixed with an
Assume-Guaranty verification process.

References

1. J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking: 1020 states
and beyond. Information and Computation (Special issue for best papers from
LICS90), 98(2):153–181, 1992.

2. The VIS group. Vis : A system for verification and synthesis. In International Con-
ference on Computer-Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 428–432. Springer-Verlag, 1996.

3. O. Grumberg and D.E. Long. Model checking and modular verification. In Interna-
tional Conference on Concurrency Theory, volume 527 of Lecture Notes in Computer
Science, pages 250–263. Springer Verlag, 1991.

4. K.Lano. In The B Language and Method, A guide to practical Formal Development,
FACIT. Springer-Verlag, 1996.

5. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. volume 6 of Formal Methods
in System Design, pages 1–35. Kluwer, 1995.

14 Cécile Braunstein and Emmanuelle Encrenaz

Appendix

We present the proofs of each basic case of the CTL transformation.
s’ enriches s, K(Wi),s |= p ⇔ K(Wi+1), s’ |= p, p as an atomic propo-
sition that is not concerned with the increment.

1. ⇒ By definition, if s’ enriches s, s’ contains a greater set of atomic propo-
sitions than s. As s|=p, p is an atomic proposition of s, then p is an atomic
proposition of s’, hence s’|=p.

2. ⇐ If p is not a property concerned with the increment and s’∈K(Wi+1)enriches
s∈K(Wi), then K(Wi+1),s’|=p ⇒ K(Wi)|=p.

s’ enriches s, K(Wi),s |= EXp ⇔ K(Wi+1), s’ |= (e = val qt) ⇒ EXp.

1. ⇒ If s|= EXp, there exists a state t ∈ K(Wi) such that s→ t and t |= p.
Let be a state s’ enriches s with (e = val qt), by corollary 2 there exists
t’ ∈ K(Wi+1) such that s’ → t’ and t’ ∈ Brinc

(t). Hence K(Wi+1), t’ |=p,
K(Wi+1), s’ |= (e = val qt) ⇒EXp

2. ⇐ Let be K(Wi+1),s’|=(e = val qt)⇒EXp and s’ enriches s with (e = val qt),
let be t’ such that s’ → t’ and t’|=p. By the corollary 4, there exists t such
that t’∈Brinc(t), then t|=p if p is not concerned with the increment and s’
simulates s hence K(Wi),s |= EXp.

s’ enriches s, K(Wi),s |= EFp ⇔ K(Wi+1),s’ |= E((e = val qt) U p).

1. ⇒ If s|= p, s’|= p then s’|= EFp.
If s 6|= p, there exists a path σ in K(Wi) : σ = s→t → ... → r, such that r |=
p. By corollary 1, there exists a path σ’ in K(Wi+1) : s’→t’ → ... → r’ such
that s’ enriches s with (e = val qt), t’ enriches t with (e = val qt), ... , and
r’ Brinc

(r), then r|=p, hence s’|=E((e = val qt) U p).
2. ⇐ Let be K(Wi+1), s’|=E((e = val qt) U p) and s’ enriches s with (e =

val qt). There exists a path σ′in K(Wi+1) : s’→t’ → ... → r’ such that for
all s’<u’<r’ u’|=(e = val qt) and r’|=p then there exists a path σ in K(Wi)
: s→t → ... → r such that for all s≤u<r u’ simulates u and r’∈ Brinc

(r),
then r|=p if p is not concerned by the increment and K(Wi), s |=EFp. No
conclusion can be made in others cases.

s’ enriches s, K(Wi),s |= EGp ⇔ K(Wi+1),s’ |= EG((e = val qt) ∧p).

1. ⇒ If s |= EGp there exists a path σ in K(Wi) s→t → ... → r → ... , such
that s |= p, t |= p, ... , r |= p,... By corallary 1, there exists a path σ’ in
K(Wi+1) : s’→t’ → ... → r’→ ... , such that s’ |= p . (e = val qt), t’ |= p .
(e = val qt), ... , r’ |= p . (e = val qt), ... : s’|= EG((e = val qt) ∧ p).

2. ⇐ Let be K(Wi+1), s’|=E((e = val qt)∧ p) and s’ enriches s , s∈K(Wi).
There exists a path in K(Wi+1) s’→t’ → ... → r’ → ... such for all state
u’ of this path u’|=p . (e = val qt) then by corollary 4, ther exists a path
σ ∈ K(Wi) : s→t → ... → r → ... such that s’ enriches s, t’ enriches t ...
hence s|=p, t|=p if p is not concerned by the increment and K(Wi)|=EGp.
No conclusion can be made in others cases.

CTL-property transformations along an incremental design process 15

s’ enriches s, K(Wi),s |= EpUq ⇔ K(Wi+1),s’ |= E(((e = val qt)∧p) U
q).

1. ⇒ If s|= q, then s’|= q hence s’|= E(((e = val qt) ∧ p) U q).
If s|= p and there exists a path σ : s→t→ ...→ r→ ... , such that s |= p, t |=
p, ... , r |= q, and s’ enriches s with (e = val qt) by corollary 1, there exists
a path σ’ in K(Wi+1) : s’→t’ → ... → r’ , such that s’ |= p . (e =val qt), t’
|= p . (e = val qt) , ... , r’ |= q : s’|= E(((e = val qt) ∧ p) U q).

2. ⇐ Let be K(Wi+1), s’|= E(((e = val qt)∧p) U q) and s’ enriches s, s∈K(Wi).
There exists a path in K(Wi+1) σ′ = s’ →t’ → ... → r’→ ... such that s’ |= p
. (e =val qt), t’ |= p . (e = val qt), ... , r’ |= q. By corollary 4, there exists a
path in K(Wi) σ = s → t → ... → r → ... such that s’ enriches s, t’ enriches
t, ..., r’ ∈ Brinc

(r) and σ satisfies pUq, if p and q are not concerned by the
increment then K(Wi), s|=EpUq. No conclusion can be made in others cases.

s’ enriches s, K(Wi),s|= AXp ⇔ K(Wi+1),s’|= (e = val qt) ⇒ AXp.

1. ⇒ In K(Wi) all the successors r of s verify p. As s’ enriches s with (e = val qt)
and there exists a set of the successors r’ of s’ which are in the incremental
brotherhood of all the successors r of s. Let be r’ ∈ Brinc

(r), r’ is represented
as r’ = r.(e = val qt) or r’=r.(e 6= val qt). In the both cases r’ |=p because
r|=p and the atomic propositions are preserved in K(Wi+1). Hence all the
successors of s’ verify (e = val qt) ⇒ AXp.

2. ⇐ Let be s’ a state in K(Wi+1). s’ can be a state in the brotherhood of s in
K(Wi), or a state in the brotherhood of a new state.
If s’ ∈ Brinc

(s), s∈K(Wi), then s’ = s.(e = val qt) ou s’ = (e 6= val qt),
moreover s’ verify (e = val qt) ⇒ AXp, we have that s’ = s.(e = val qt) (s’
enriches s with (e = val qt)) verify AXp and s’ = s.(e 6= val qt) can verify
AXp or not, hence s∈K(Wi) verify AXp.
If s’ is a state in a brotherhood of a new state then s’ = s.(e = val qt) or s’
= (e 6= val qt) but s’ doesn’t exist in K(Wi).

s’ enriches s, K(Wi),s|= AFp ⇔ K(Wi+1),s’|= AF((e 6= val qt) ∨ p).

1. ⇒ In K(Wi) for all path σ = s0, . . . sn . . ., there exists a state sk, 0≤k≤n
in which p is true. From the corallary 1, there exists some path in K(Wi+1)
σ′ = s′0, . . . s

′
n, such that all the states labelled with (e = val qt) and all

states are in the incremental brotherhood of a state in K(Wi). Moreover,
by constructing K(Wi+1) we have that there doesn’t exist any transition tk

from a state in σ′ to a state s′k+1 labelled with (e = val qt) and which is not
in Brinc

(sk+1) sk+1 in K(Wi).
Induction hypothesis : If s′k ∈ σ′ then s′k |=AF(p + (e 6= val qt))
From s′0, there exists a path such that all the states verify (e = val qt) and
AF(p), hence s′0 |= (e = val qt) and AF(p . (e = val qt))
Soit s′k ∈ σ′, the set of these successors are as :
s′k+1 = sk+1 .(e 6= val qt) and thus verify AF(p + (e 6= val qt))
s′k+1 = sk+1 .(e = val qt),the transition from sk → sk+1 is in σ′ and thus
verify AF(p + (e 6= val qt)) (induction hypothesis).

16 Cécile Braunstein and Emmanuelle Encrenaz

2. ⇐ By the corollary 2, the maximum computation tree in K(Wi+1) from s’, s’
enriches s with (e = val qt) is K(Wi) in which e← val qt. As K(Wi+1)|=AF(p
+ (e 6= val qt)),and by the property preservation (definition 9 : preservation
of ACTL-formulae), the sub-tree representing K(Wi) in K(Wi+1) verify A(p
+ (e = val qt)), hence K(Wi), |= AF(p).

s’ enriches s, K(Wi),s|= ApUq ⇔ K(Wi+1),s’|= A(((e = val qt) ∧ p) U
((e 6= val qt) ∨q)).

1. ⇒ Let be s0 ∈ K(Wi), if s0 |=q, then we have s0 |=A(pUq). Let be s′0 ∈
K(Wi+1), s′0 enriches s0 with (e = val qt) then s′0 |=q.(e = val qt), hence
s′0 |= A(((e = val qt) ∧ p) U ((e 6= val qt) ∨q)).
If s0 6|=q, s0 |=p and si|=q, such that all si is a successor of s0, then we have
s′0 |=p.(e = val qt), by the corallary 4, all the successors of s′0 are in the
incremental brotherhood of a state si ∈K(Wi), which is a successor of s0.
Then s′i |=q, and we have K(Wi+1),s0’|=A(p.(e = val qt) U (e 6= val qt) ∨
q).
Inductuon hypothesis : Let be r’∈K(Wi+1) such that r’ enriches r with (e =
val qt) then we have r’|= A(((e = val qt) ∧ p) U ((e 6= val qt) ∨q)).
Let be s|=p we have for all r : s → r :
r|=q ⇒ r|=A(pUq) or
r|=p and r|=A(pUq)
Let be s’ such that s’ enriches s with (e = val qt) we have s’|=p.(e = val qt)
and for all r’ ∈ Brinc

(r) such that s’→ r’ we have :
r’ = r.(e 6= val qt) hence r’|=A(((e = val qt) ∧ p) U ((e neq val qt) ∨q))
r’ = r.(e = val qt) hence r’ enriches r with (e = val qt) and by induction
r’|=A(((e = val qt) ∧ p) U ((e 6= val t) ∨q)).

2. ⇐ Let be s’ a state in K(Wi+1) such that s’ verify A(((e = val qt) ∧ p)
U ((e 6= val qt) ∨q)), if s’ is in the incremental brotherhood of a state s
in K(Wi), then s’ = s.(e 6= val qt) and nothing can be said, or s’ = s.(e =
val qt), in this case, by presevation of the ACTL-formula we have s|= A(((e
= val qt) ∧ p) U ((e 6= val qt) ∨q))|i←val qt= A(pUq).

s’ enriches s, K(Wi),s|= AGp ⇔ K(Wi+1),s’|= A(((e = val qt) ∧ p) W
(e 6= val qt)).

1. ⇒ Let be t’∈ SK(Wi+1), t’|= ¬p.(e = val qt) and σ′ = s′ . . . t′. t’ doesn’t
simulate a state in K(Wi) (∀s∈ Si s|=p). t’ is a state in the brotherhood of
a new state, t’ is accessible only by a state where e6=val qt (corollary 4).
Let be s’, s’ enriches s and σ′ = s’. . .r’. . .t’ with s’< r’ ≤ t’, if ∃/ u’ labelled
with (e 6= val qt) such that u’<r’ then r’|=p.(e = val qt) or r’|=(e 6= val qt).
Moreover, by corollary 1, if there exists some infinite path in K(Wi), there
exists some infinite path in K(Wi+1) labelled with (e = val qt). Then there
exists some path in K(Wi+1) which verify p.(e = val qt).
We have thus s’|=A(p.(e = val qt) W (e 6= val qt))

2. ⇐ By corollary 2, the maximum computation tree in K(Wi+1) from s’, s’
enriches s with (e = val qt) and where all state are labelled with (e = val qt)

CTL-property transformations along an incremental design process 17

is K(Wi) in which e is stucked to val qt. As K(Wi+1)|=A(p.(e = val qt) W
i) in sub-tree representating K(Wi) e is always equal to val qt, all the states
of the sub-tree verify p.(e = val qt) hence K(Wi)|= AGp.

s’ enriches s, K(Wi),s|= ApWq ⇔ K(Wi+1),s’|= A((p ∧ (e = val qt))
W (q ∨(e 6= val qt))).

1. ⇒ s|=A(pWq) then all paths from s are such they verified pUq or Gp. In the
first case, same reasoning as ApUq. In the second case, by corollary 1 these
paths exist in K(Wi+1) labelled with (e = val qt). The divergents behaviours
are labelling with (e 6= val qt) (corollary 3). We have thus K(Wi+1),s’|= A(
(p ∧ (e = val qt)) W (q ∨(e 6= val qt)))

2. ⇐ By the corollary 2, the maximum sub-graph in K(Wi+1) from s’, s’ enriches
s with (e = val qt) and where all path are labelled by (e = val qt) is K(Wi),
and is as p . . .pq ou p. . .p. We have thus K(Wi),s|= ApWq if p and q are
not concerned by the increment.

Here are examples of CTL properties checked on models B :

AG ((wrap0.state = R_REQ) -> (A((m_pi_req = 1) U (m_pi_gnt = 1))));

Ckeck the interface between the inititor VCI and the master wrapper.

!EF((wrap_cible.cmd_cible.state = CMD_IDLE) *

!(wrap_cible.rsp_cible.state = RSP_IDLE));

Check the behavior of the slave wrapper.

AG((m_cmd_plen[6:0] = 8 * m_cmd[0] = 1) ->

% A ((A (

(A((m_cmd_plen[6:0] = 8 * m_cmd[0] = 1 * m_cmd_eop = 0 * m_cmd_val = 1)

U (m_cmd_ack = 1)))

U (A((m_cmd_eop = 1 * m_cmd_val=1)

U (m_cmd_ack = 1)))))

U (m_cmd_val = 0)));

Check the behavior of the complete system, check the number of packet send

with the number of acknowledgement recieved.

