
A Dynamic Programming algorithm for
minimizing total cost of duplication in

scheduling an outtree with communication
delays and duplication

Claire Hanen
Laboratory LIP6
4, place Jussieu

F-75 252 Paris cedex 05

Dalila Tayachi
Laboratory LIP6
4, place Jussieu

F-75 252 Paris cedex 05

July 13, 2004

Abstract

This paper introduces an algorithm using dynamic programming
to solve the problem of finding the minimum cost of duplication in
scheduling with small communication delays and an unbounded num-
ber of processors. When duplication is allowed, makespan can be
improved but it creates a cost wich can be important depending on
the number and the cost of duplicates. The cost of a duplication in
a schedule is defined as the sum of costs of tasks (i.e. original and
duplicates). we assume in this work that the tasks have the same
processing time d, that communication delays are all equal to c ≤ d
and that the precedence graph is an out-tree. We study the problem
of finding the minimum cost of a feasible schedule with makespan t.

1 Introduction

The problem we consider here is a scheduling problem with interprocessor
communication delays. This problem is modeled by a set of dependent tasks
that will be executed by a set of parallel processors connected by a network.

1

Besides classical precedence constraints between tasks, communication de-
lays must be included in account. This problem is modeled by a directed
acyclic graph, the nodes of which are tasks. An arc from task i to task j
means that i computes data that is an input for j. If these two tasks are
not performed by the same processor, a delay must be considered between
the completion of i and the beginning of j to dispatch the data through the
network. The aim is to find a schedule that minimizes the makespan. This
problem is NP-hard. Even if we assume a non restricted number of proces-
sors, unitary processing times and unitary communication delays (UET-UCT
task systems), the problem of finding the minimum makespan denoted by
P |prec, cjk = 1, pj = 1|Cmax is NP-hard [5]. For more details see the two sur-
veys [6]and [2]. Polynomial algorithms were developed in very special cases
when assumption are supposed on the structure of graph precedence, the
number of processors and/or the communication delays. For example, if we
assume that communication delays are less than or equal to the processing
times of the tasks (this case is the small communication delays), and that
we have an unbounded number of processors and an out-tree, Chretienne [1]
shows that the problem is solvable in polynomial time.

Another important assumption is duplication. Indeed, if a task i has sev-
eral successors j1, . . . , jk, then performing task i on k processors may allow
the execution of j1, . . . , jk on these processors just after i, avoiding commu-
nication through the network. Colin and chretienne [3] solved the problem
of minimizing the makespan in the case of duplication, small communica-
tion delays,and an unbounded number of processors. However, in computer
systems, cost of duplication can be very expensive. Indeed, the initial data
for each duplicated task must be sent to each processor through the net-
work. And, while the network bandwidth is supposed without limitations,
too many duplicates may limit the system performance. Existing schedul-
ing algorithms for tasks systems on an unlimited number of processors make
use of a great number of duplicates which can imply a high cost. Recently,
C.Hanen and A.M.Kordon [4] studied the minimization of the whole number
of duplicates, among the feasible schedules with a makespan at most t in
the case of an unbounded number of processor. They proposed a polynomial
algorithm based on dynamic programming.

In this paper we aim to solve the problem of minimizing the total cost
of duplicates. We assume that the precedence structure is an out-tree, that
all tasks have same duration d, and that communication delays are all equal
to c ≤ d. we present in section 2 the problem and several useful dominance

2

properties which are the adaptation of dominance properties developed in
C.Hanen and A.M.Kordon [4]. In section 3, we propose a polynomial time
algorithm to determine the minimum cost for any value t of the makespan,
together with a feasible schedule that realizes it. The last section discuss the
perspectives of this work.

2 Problem definition

Let T a set of tasks with duration d ∈ IN∗ indexed from 1 to |T | and G =
(T,A) an out-tree A rooted by task 1. ∀i ∈ T , A(i) denotes the sub-tree of A
rooted by i and, if i 6= 1, p(i) denotes the unique immediate predecessor of i
in A. ∀i ∈ T , Γ+(i) is the set of immediate successors of i in A. We consider
that the tasks are numbered such that, ∀j ∈ Γ+(i), i < j. We suppose that
the value of the communication delays is c ∈ IN∗ with c ≤ d.

We assume that we have an unbounded number of processors and that
any task i may be duplicated (i.e. performed several times)in order to reduce
the communication delays between i and some of its immediate successors.
A feasible schedule assigns to each task a set of duplicates, called copies, and
to each copy a non-negative starting time and a processor, such that:

1. For any arc (i, j) of G, if a copy of j is performed at time β on processor
P , then either a copy of i is performed at time β− d− c on a processor
P ′ 6= P or a copy of i starts on the same processor P at time β − d .

2. Each processor performs at most one copy of a task per time unit.

The makespan of a feasible schedule is the difference between the last
completion time of a duplicate, and the start time of the first copy of the root
of A. For any feasible schedule σ, we denote by Pi(σ) the set of processors
performing i ∈ T , by wi the cost of a copy i and by ni(σ) the number of
copies of i. w(σ) is the total cost of tasks (i.e. , original and duplicates) of σ
is calculated as below:

w(σ) =
∑
i∈T

ni(σ)× wi

We are interested in this article in determining the minimum cost of a
schedule with makespan at most t. Given t ∈ IN∗ we denote by D(t) the set
of feasible schedules with makespan bounded by t, and by D∗(t) the subset
of schedules of D(t) with minimum cost. We denote by W ∗(t) the cost of a
schedule in D∗(t).

3

A set D′ ⊂ D(t) is said to be dominant if D′∩D∗(t) 6= ∅. Three dominance
properties 1, 2 and 3, that allow us to consider a dominant subset of schedules
will be presented.

Property 1 The set of feasible schedules verifying the two following proper-
ties is dominant: for any task i > 1, let us consider a processor P ∈ Pi.

1. If P ∈ Pi(σ) ∩ Pp(i)(σ) and if p(i) is performed by P at time γ, then i
is performed by P at γ + d.

2. If P ∈ Pi(σ)−Pp(i)(σ) and if the starting time of the earliest execution
of p(i) is α, then i is performed by P at α + c + d,

Proof
Let σ be a feasible schedule in D(t) and i a task. We prove that if σ does
not satisfy one of the dominance properties for some copy of task i, then a
schedule σ′ ∈ D(t) with w(σ′) ≤ w(σ) that meets the requirements for this
copy of i can be built.

1. Assume that condition 1 is not satisfied. If for some processor π ∈
Πi(σ)∩Πp(i)(σ), p(i) starts at γ on π, then a copy of i is performed by
π at time γ + d + ε, for some ε > 0. If ε ≥ c then we can build a new
schedule by moving the copy of i and all the tasks in A(i) performed on
π in σ from π to a new processor π′ with the same starting times (so that
condition 2 may not be satisfied, and the rule of next paragraph may
be applied). Otherwise, ε < c ≤ d so that no task can be performed
on π between p(i) and i. Hence, without violating the precedence
constraints, the copy of i can start on π at time γ + d.

2. Assume that condition 2 is not satisfied. Then a copy of i starts on
some processor π at time β, while the first copy of p(i) starts on another
processor π′ at time α. As σ is feasible, β ≥ α + d + c. If β > α + c + d
then we can remove i and all the tasks in A(i) performed on π in σ
from π, and assign the copies on a new processor π′′ as follows: start i
at time α+ c+d, and schedule the other removed copies with the same
starting times as in σ. The new schedule is feasible and its makespan
is at most t.

By applying these transformations iteratively to each copy of each task
in increasing order of number and starting times, then a schedule σ′ that

4

satisfies the two properties and has at most the same number of copies and
the makespan of σ can be built. This implys that we can built a scheduling
with at most the same cost of duplication. We deduce that if σ ∈ D∗(t) then
so is σ′.

In the following we consider only feasible schedules that meet property 1.

Property 2 The set of feasible schedules σ for wich all copies of a task are
performed at the same time is dominant.

Proof
Let σ ∈ D(t) be a feasible schedule. Let i a task whose first copy is performed
at time α, another copy of i is performed at time α+k with k � 0.We build a
schedule with makespan less than t and cost less than w(σ) such that for any
task, all copies are performed at the same time. If we consider j a task in
Γ+(i), according to property 1 either a copy of j is performed at time α+d or
at time α+d+c. If a copy of j is performed at time α+d, then a copy of i is
necessarly performed on the same processor at time α. Otherwise, the copy
of j is performed at most at time α+d+ c and we can consider that the first
copy of i starting at time α delivers data to j through the network. Hence
the copy of i performed at time α + k can be removed without violating any
precedence constraint. We can do that for any copy of i performed after time
α. If we apply iteratively this procedure to a schedule σ ∈ D∗(t) we obtain
an optimal scheduling satisfying property 2.

In the following we assume that feasible schedules satisfy properties 1 and
2. We present now the third dominance property:

Property 3 The set of schedules σ such that, for all i ∈ T ,

ni(σ) = max{1,
∑
j∈J

nj(σ)}

with J = {j ∈ Γ+(i)|tj(σ) = ti(σ) + d} is dominant.

Proof
If J = ∅ then by property 2, all successors j of i satisfy tj(σ) = ti(σ) + d + c.
Hence only one copy of i performed at time ti(σ) is sufficient to meet the
precedence constraints. So if ni(σ) > 1, then we can remove useless copies of

5

i and get a feasible schedule with a lower number of copies until ni(σ) = 1.
Hence we get feasible schedule with a cost w(σ′)lower then w(σ).
If J 6= ∅ For any copy of j ∈ J performed on a processor P , there must
be a copy of i that is performed just before on the same processor. Hence
ni(σ) ≥ ∑

j∈J nj(σ). If there a copy of i is not mapped with some task of
J , it can be removed without violating the precedence constraints. Hence
in both cases, one can build a schedule σ′ with a number of copies small
then the number of copies of the schedule σ teherfore w(σ′) ≤ w(σ)such that
ni(σ

′) = max{1, ∑
j∈J nj(σ

′)}. Applying this transformation iteratively leads
the property 3.

It’s useful to limit the number of copies in any feasible schedule σ satis-
fying the dominance properties 1, 2 and 3. If we denote by li the number of
leaves of A(i), the following property offers an upper bound on the number
of copies.

Property 4 ∀i ∈ T, ni(σ) ≤ li.

Proof
We prove it by recurrence on the tree structure.

• If task i ∈ T is a leaf, then by property 3, ni(σ) = 1 = li.

• Otherwise, if J is defined as previously for task i, by recurrence,we
have nj(σ) ≤ lj so

∑
j∈J nj(σ) ≤ ∑

j∈J lj. We know by property 3that
ni(σ) = max{1, ∑

j∈J nj(σ)}, so ni(σ) ≤ max(1,
∑

j∈J lj) ≤
∑

j∈Γ+(i) lj ≤
li

In the rest of the paper, feasible schedule means that the schedule is
feasible and satisfies properties 1, 2 and 3.

3 Description of the algorithm

The algorithm we present here is based on dynamic programming. It allows
us to compute the minimum cost of duplication W ∗(t) for any t ∈ IN∗ and a
corresponding schedule. Minimum completion time can be obtained without
duplicating any path from the root to a leaf to get a feasible schedule as the
algorithm in [3] does. It is clear that this algorithm produces an important
number of useless duplicates and therefore it produces a higher cost.

6

We now introduce some notations that will be useful to derive a dynamic
programming scheme for the computation of W ∗(t).

∀i ∈ T,∀t ∈ IN∗ and ∀n ∈ IN∗, we will denote by

• Di(t) the set of feasible schedules of A(i) with makespan at most t,

• Wi(t) = minσ∈Di(t) w(σ). If Di(t) = ∅, Wi(t) = +∞.

• Di(n, t) the subset of schedules of Di(t) such that the root i has at
most n copies.

• Wi(n, t) = minσ∈Di(n,t) w(σ). If Di(n, t) = ∅,Wi(n, t) = +∞.

Clearly, Di(n, t) ⊆ Di(n + 1, t), so Wi(n, t) ≥ Wi(n + 1, t). Moreover, by
property 4, we get

Di(t) =
⋃

n∈IN∗
Di(n, t) = Di(li, t)

Hence
Wi(t) = min

n∈{1,...,li}
Wi(n, t) = Wi(li, t)

Two lemma are deduced:

Lemma 1 If j is a leaf then ∀t ≥ d, Wj(1, t) = wj and ∀t < d, Wj(1, t) =
+∞.
If j is any node and n > lj, then Wj(n, t) = Wj(lj, t)

Now, we can prove the following inequality :

Lemma 2 Let σ ∈ Di(n, t) and J be the set of immediate successors of i
starting their executions at the completion time of i. Then,

w(σ) ≥ max{wi,
∑
j∈J

(nj(σ) + wj(nj(σ), t− d))}+
∑

j∈Γ+(i)−J

wj(lj, t− d− c)

Proof
Cost of tasks (copies) performed by σ is the sum of three costs: cost of copies
of i, cost of copies of tasks of A(j),denoted by W (A(j)) for j ∈ J and the
cost of tasks of A(j), for j ∈ Γ+(i)− J . We distinguish two cases:

7

• If J = ∅ then ni(σ) = 1 and w(σ) = wi +
∑

j∈Γ+(i)−J W (A(j)). This
cost is greater then wi +

∑
j∈Γ+(i)−J Wj(nj(σ), t− d− c) or we know by

property 3 that nj(σ) ≤ lj so Wj(nj(σ), t − d − c) ≥ Wj(lj, t − d − c)
and w(σ) ≥ wi +

∑
j∈Γ+(i)−J Wj(lj, t− d− c) .

• If J 6= ∅ then w(σ) =
∑

j∈J nj(σ)×wi+
∑

j∈J W (A(j))+
∑

j∈Γ+(i)−J W (A(j))

≥ ∑
j∈J nj(σ)× wi +

∑
j∈J Wj(nj, t− d) +

∑
j∈Γ+(i)−J Wj(lj, t− d− c)

so w(σ) ≥ ∑
j∈J nj(σ)×wi+Wj(nj(σ), t−d)+

∑
j∈Γ+(i)−J Wj(lj, t−d−c)

Hence, in the two cases we have

w(σ) ≥ max{wi,
∑
j∈J

(nj(σ)×wi+Wj(nj(σ), t−d))}+
∑

j∈Γ+(i)−J

Wj(lj, t−d−c)

The following theorem will be obtained by proving the converse inequal-
ity :

Theorem 1 ∀t ∈ IN∗, ∀i ∈ T such that Γ+(i) 6= ∅, ∀n ≤ li,

Wi(n, t) = min
J⊂Γ+(i)

{wiJ=∅ +
∑

j∈Γ+(i)−J

Wj(lj, t− d− c)

+ min
0<nj≤lj ,

∑
j∈J

nj≤n

∑
j∈J

nj × wi + Wj(nj(σ), t− d)}

Proof
Let σ ∈ Di(n, t) be a schedule with a minimum cost w(σ) = Wi(n, t). We
have by lemma 2, Wi(n, t) is greater than the right term of the equality. If
this term is infinite, also is Wi(n, t).

Conversely, if Wi(n, t)is finite, we can build a feasible schedule of Di(n, t)
with a cost exactly the right term of equality as below:

• If i is a leaf, since Wi(n, t) is finite,necessarily we have t ≥ d. Hence,
we can perform one execution of i at time 0, obtaining a cost of wi.

• If i is not a leaf, Γ+(i) 6= ∅. Let J∗ be a subset of Γ+(i) that realizes
the right term of the equality and the associated numbers of executions
n∗j > 0, j ∈ J∗.Let σj be a schedule of cost wj(n

∗
j , t− d) for j ∈ J∗ and

of cost wj(lj, t− d− c) for j ∈ Γ+(i)− J∗. Let us assign disjoint subset
of processors to the schedules σj, j ∈ Γ+(i).

8

1. ∀j ∈ Γ+(i) − J∗, make a right shift on σj so that the first task starts
at time d + c. As the makespan of σj is at most t− d− c, the resulting
schedule has a makespan at most t.

2. if J∗ = ∅, perform a copy of i at time 0.

3. Otherwise, for each j ∈ J∗, shift σj so that j starts at time d. On each
of the n∗j processors that perform a copy of j, start a copy of i at time
0.

The schedule obtained is feasible and its cost is exactly the right term of the
equality.

4 Computation of the costs

In this section, we prove that the costs wi(n, t) may be polynomially com-
puted using the relation expressed by theorem 1. Firstly, we reduce the total
number of useful values of the state variable t ∈ IN to a finite set of polyno-
mial size. Then, we introduce some intermediate steps for the computation
of Wi(n, t). Lastly, we evaluate the complexity of this algorithm.

4.1 Time domain

From property 1, the makespan of any schedule from D1(t), t ∈ IN starting at
time 0 can be decomposed as th,k = hd+k(d+c), with (h, k) ∈ IN×IN . Now,
let us consider t∗ the minimal length of a schedule of A without duplication
(this value can be polynomially computed by the algorithm of P.Chrétienne
[1]). t∗ is bounded by |T |d + (|T | − 1)c.

1. ∀t ≥ t∗, A may be scheduled with makespan t∗ without duplication, so
W1(t) = W1(t

∗) =
∑|T |

i=1 wi.

2. ∀t such that d ≤ t < t∗, let th,k be the greatest value th,k such that
th,k ≤ t. Then Wi(t) = Wi(th,k).

3. If t < d, there is no feasible schedule, so Wi(t) = +∞.

So, we will limit the time domain τ to the values th,k with h ≤ d t∗

d
e, k ≤

d t∗

(d+c)
e and hd + k(d + c) ≤ t∗. The size of this domain is roughly bounded

by |T |2.

9

4.2 Computation of Wi(n, t)

Let us consider a task i ∈ T such that Γ+(i) 6= ∅. In order to compute
the minimum cost Wi(n, t) of theorem 1, we decompose it over the set of
successors of i. We suppose that, for every j ∈ Γ+(i),∀n′ ≤ lj and ∀t′ ∈ τ
we have computed Wj(n

′, t′). The aim is here to compute Wi(n, t), ∀n ≤ li
and ∀t ∈ τ .

Let us consider Γ+(i) = {j1, . . . , j|Γ+(i)|} the set of immediate successors
of i. ∀k ∈ {1, . . . , |Γ+(i)|}, we will denote by Ci(n, t, k) the minimum cost of
a schedule σ of the subgraph A(i)−A(jk+1) . . .−A(j|Γ+(i)|) such that :

1. the makespan of σ is at most t,

2. ni(σ) ≤ n,

3. there is at least one j ∈ {j1, . . . , jk} such that tj(σ) = ti(σ) + d.

Let us consider a feasible schedule σ ∈ Di(n, t).

• If no successor of i is performed at the completion time of i in σ, then
w(σ) ≥ wi +

∑
j∈Γ+(i) wj(lj, t− d− c). The right term of the inequality

is the cost of a schedule built by performing a single copy of i at time
0, and starting at time d+ c the schedules of A(j), j ∈ Γ+(i) with costs
wj(lj, t− d− c). Hence wi(n, t) ≤ wi +

∑
j∈Γ+(i)

wj(lj, t− d− c)

• Otherwise, at least one successor of i is performed at its completion
time and we get w(σ) ≥ Ci(n, t, |Γ+(i)|). Similarly, the right term is
the cost of a feasible schedule with at most n copies of i and makespan
at most t, so that wi(n, t) ≤ Ci(n, t, |Γ+(i)|).

Hence, if we consider a schedule σ such that w(σ) = wi(n, t), we get:

wi(n, t) = min{Ci(n, t, |Γ+(i)|), wi +
∑

j∈Γ+(i)

wj(lj, t− d− c)}

The second term of this minimum can be easily computed. We will present
now how to compute the value Ci(n, t, k) by recurrence on k ∈ {1, . . . , |Γ+(i)|}.

• If k = 1, then j1 is performed at the end of i, so

Hi(n, t, 1) = min
1≤m≤n

(mwi + wj1(m, t− d))

10

• Now, let us consider k > 1. By theorem 1 and since J 6= ∅, we get :

Hi(n, t, k + 1) = min
J⊆{j1,...jk+1},J 6=∅

{
∑

j∈{j1,...jk+1}−J

Wj(lj, t− d− c)+

min
0<nj≤lj ,

∑
j∈J

nj≤n

∑
j∈J

(njwi + Wj(nj, t− d))}

Let J∗ be an optimal subset (for which the right term of the previous
equality is minimum). Three cases may occur :

1. If jk+1 6∈ J∗, then there is a communication delay between i
and jk+1 and thus the sub-schedule of A(jk+1) has a makespan
bounded by t − d − c and an unconstrained number of copies of
jk+1 :

Ci(n, t, k + 1) = Wjk+1
(ljk+1

, t− d− c) + Ci(n, t, k)

2. If J∗ = {jk+1}, then the sub-schedules of A(jl), 1 ≤ l ≤ k have a
makespan bounded by t−d− c, the sub-schedule of A(jk+1) has a
makespan bounded by t− d and to each copy of jk+1 corresponds
a copy of i. So we get:

Ci(n, t, k + 1) =
∑

j∈{j1,...,jk}
Wj(lj, t− d− c)

+ min
1≤m≤n

(mwi + Wjk+1
(m, t− d))

3. Otherwise, {jk+1} ⊂ J∗ and thus the sub-schedule of i and the sub-
trees A(jl), 1 ≤ l ≤ k satisfy the requirements of Ci(n −m, t, k)
for some m. As previoulsy the sub-schedule of A(jk+1) has a
makespan bounded by t− d and to each copy of jk+1 corresponds
a copy of i. Hence we get :

Ci(n, t, k+1) = min
1≤m<min(n,ljk+1

)
(mwi+Wjk+1

(m, t−d)+Ci(n−m, t, k))

Ci(n, t, k + 1) will be obtained by getting the minimum of these 3 values.

11

4.3 Complexity of the algorithm

Let us consider i ∈ T , n ∈ {1, . . . , li} and t ∈ τ . The complexity of the
computation of Wi(n, t) is O(|Γ+(i)|(|Γ+(i)|+ n)). We deduce that the com-
plexity of Wi(n, t), n ∈ {1, . . . , li} is O(|Γ+(i)|)l2i . So, the complexity of the
computation of every value Wi(n, t) is O(|T |3.|τ |) = O(|T |5).

For a fixed value t, an optimal schedule associated with W1(t) can be
built using a recursive algorithm of complexity also bounded by O(|T |5).

Wj(lj, t− d− c)

References

[1] P. Chrétienne. A polynomial time to optimally schedule tasks over an
ideal distributed system under tree-like precedence constraints. European
Journal Operations Research, 2:225–230, 1989.

[2] P. Chrétienne and C. Picouleau. Scheduling with communication delays
a survey : in P. Chretienne, E.G. Coffman, J.K. Lenstra, Z. Liu (Eds.),
Scheduling theory and its applications, pages 65–89. John Wiley Ltd.,
New york, 1995.

[3] J-Y. Colin and P. Chrétienne. CPM scheduling with small com-
munication delays and task duplication. Operations Research,
39:681–684, 1991.

[4] C. Hanen and A.M. Kordon. Minimizing the volume in
scheduling an out-tree with communication delays and du-
plication. Parallel computing, 28:1573–1585, 2002.

[5] C. Picouleau. Two new NP-complete scheduling problems
with communication delays ans unlimited number of proces-
sors. Discrete Applied Mathematics, 60:331–342, 1995.

[6] B. Veltman and B.J. Lenstra. Multiprocessor scheduling with
communication delays. Parallel computing, 16:173–182, 1990.

12

