
Toward optimizing compilers for
quantum computers

Jan 17, 2019
PEQUAN seminar

Sylvain Collange
Inria, Univ Rennes, CNRS, IRISA

sylvain.collange@inria.fr

 2

Why Quantum Computing Today?

Already an established research topic since 1990's

In theoretical computer science

In applied quantum physics

Usual stance in applied CS: I'll believe it when I'll see it.

Today: no excuse, we got hardware!

IBM: open access
16-bit quantum computer,
20-qubit in limited access,
50-qubit prototype

Rigetti
19-qubit in limited access

Google, Microsoft, Intel…
various prototypes
up to 72-qubit

Enables experimental computer science

Opportunity for computer architecture and compiler research

https://quantumexperience.ng.bluemix.net

 3

Computer history reduced to “how many bits?”

Babbage: “It seems to me probable that a long period must elapse
before the demands of science will exceed this limit.”

As of 2018

50-digit (~170-bit) numbers still considered ludicrous precision

Complete Analytical Engine has yet to be built

1800 20001900

W
or

d
le

ng
th

 (
bi

ts
)

Time
1

32

64

128

256

Babbage Analytical Engine
(1837-1842)

1000×50-decimal digit RAM

Zuse Z3 (1941)
64×22 bits

Computers actually built

Atanasoff-Berry (1939)
30×50 bits

Colossus Mk. 1 (1943)
~5×10 bits?

ENIAC (1946)
20×10 digits

Computers
designed

 4

Welcome to the NISQ era

John Preskill keynote: Quantum computing in the NISQ era and beyond

Today: we have real quantum hardware

But too few, noisy, qubits to implement 1990's algorithms

A few near-term applications: quantum chemistry simulation

Crossroads for the quantum computing field

Success → sustained investments toward more ambitious applications

Failure → quantum computing winter for the next 20-30 years

1990 202020102000

Qubits

Time
1

10

100

1K

1M Most prior quantum
computing research in CS

Noisy Intermediate-Scale
Quantum computing

Actual quantum computers

Near future Far future

 5

Agenda

Introduction to the programming model

Logical qubits and quantum gates

Compiling quantum circuits

Allocating logical qubits on physical qubits

 6

What is so special about quantum?

Example: Young's double-slit experiment

Each photon behaves as a wave:
goes through both holes and interferes with itself

Idea: craft quantum experiments to perform computations

Quantum computing approach

Compute on superposed states

Exploit interference to select useful information

Measure results to infer statistical distribution

Photosensitive
plate

Photons
1 by 1

Plate with
2 holes

Observation:
random distribution following
a wave interference pattern

 7

Computing abstraction: Quantum circuit

Like classical circuit or dataflow graph, except:

Operates on qubits

Reversible: no creation, destruction, nor duplication of qubits

Starts by initialization, ends by measurement

qubits

single-qubit
gates

measurements

H H

H HX

|0〉

|0〉

multi-qubit
gates

 8

Basic data-type: the qubit

Superposition of states: α|0 + 〉 β|1 with 〉 α,β , |∊ ℂ α|²+|β|²=1

Representation as vector in basis (|0 , |1):〉 〉

We can visualize possible states on the surface of a sphere

(
α
β)

1

√2
|0〉+ 1

√2
|1〉

1

√2
|0〉− 1

√2
|1〉

|0〉

|1〉
1

√2
|0〉+ i

√2
|1〉

Z

X

Y

 9

Multiple qubits

State space: exponential number of dimensions

n classical bits encode one of 2n states: space is

n qubits encode a superposition of 2n states: space is

From independent qubits

Tensor product of individual states

State may not be separable: qubits are in an entangled state

e.g.

No a,b,c,d such that ac=bd=1/√2 and ad=bc=0

Need to consider group of entangled qubits as a whole

Visualization: 22n-dimension hypersphere? ☹

a|0 + 〉 b|1〉

c|0 + 〉 d|1〉

!

!
1/√2 |00 + 〉 1/√2 |11〉

(a|0 + 〉 b|1〉) (⊗ c|0 + 〉 d|1〉)
= ac |00〉 + ad |01 + 〉 bc |10 + 〉 bd |11〉

ℂ
2n

{0,1}n

(normalized)

 10

Operation: Measurement

Measurement turns a qubit into a bit

Measuring α|0〉 + β|1〉 gives:

0 with probability |α|²

1 with probability |β|²

Destructive operation

State space of the system
projected to

No information on
sign / complex phase

Random: need to repeat
to infer distribution

qubit bit

p = probability of measuring a 1

p=1

p=0

p=½

p=½
ℂ

2n−1

1

√2
|0〉+ 1

√2
|1〉

1

√2
|0〉− 1

√2
|1〉

|0〉

|1〉

Z

X

Y

Projection along
Z axis

 11

Operation: single-qubit gate

Quantum gates as mul by unitary matrices

Correspond to rotations on the sphere

e.g. X gate

flip along X axis

maps |0〉 to |1〉 and |1〉 to |0〉
“equivalent” of classical NOT

X

X

1

√2
|0〉+ 1

√2
|1〉

Z

X

Y

|0〉

|1〉

 12

Operation: single-qubit gate

Quantum gates as mul by unitary matrices

Correspond to rotations on the sphere

e.g. X gate

flip along X axis

maps |0〉 to |1〉 and |1〉 to |0〉
“equivalent” of classical NOT

e.g. Hadamard-Walsh gate

maps |0〉 to 1/√2 |0〉 + 1/√2 |1〉
and |1〉 to 1/√2 |0 〉 - 1/√2 |1〉

Any single-qubit gate can be
decomposed into sequence of
X and Z axis rotations

X

H
H

X

1

√2
|0〉+ 1

√2
|1〉

|0〉

|1〉

Z

X

Y

1

√2
|0〉+ 1

√2
|1〉

|0〉

|1〉

Z

X

Y

 13

Multi-qubit gate: Controlled NOT

CNOT or Controlled-X: analog of classical XOR

As a way to entangle qubits

As a building block to make arbitrary controlled gates

1

√2
|0〉+ 1

√2
|1〉

|0〉

1

√2
|00〉+ 1

√2
|11〉

a|00 + b|01 + c|10 + d|11〉 〉 〉 〉 a|00 + b|01 + 〉 〉 d|10 + 〉 c|11〉

“Flips second qubit
when first qubit is |1 ”〉

=
1

√2
|00〉+ 1

√2
|10〉

Z H H

=

e.g. Z H HX=

H H=
and

 14

Agenda

Introduction to the programming model

Logical qubits and quantum gates

Compiling quantum circuits

Allocating logical qubits on physical qubits

Compilers for quantum computing

Existing and near-future architectures:

10s to 100 qubits

No error correction

Low-level constraints on circuits:
set of gates, qubit connectivity

Need compilers of circuits down to low-
level gates

Many differences from classical compilers

Algorithms

Quantum circuits

Quantum computing
hardware

Quantum microarchitecture

Quantum circuit
compiler

 16

Focus: the qubit allocation phase

Map logical qubits to physical qubits

Need to meet hardware constraints:
connectivity between physical qubits

Transform circuit to fit on given quantum computer

Minimize runtime and gate count to minimize noise

Hardware: physical qubitsSoftware: circuit on logical qubits

Joint work with Marcos Yukio Siraichi, Vinícius Fernandes dos Santos and
Fernando Magno Quintão Pereira, DCC, UFMG, Brazil

 17

Circuit subset for qubit allocation

Input: reversible quantum circuits described at gate level

Between initialization and measurement : unitary gates only

After decomposition into single-qubit and CNOT gates

Expressed in QASM language

HX|0〉

|0〉 T

qreg l[2];
creg c[2];
x l[0];
h l[0];
cx l[0] l[1];
t l[1];
measure l[0] -> c[0];
measure l[1] -> c[1];

 18

Limited-connectivity quantum computer

Target: superconducting qubit based quantum computers

Constraints on which qubits are allowed to interact

e.g. IBM QX2, 5 qubits

e.g. IBM QX5, 16 qubits

Possible
CNOT gates

Qubits

 19

Qubit assignment is Subgraph Isomorphism

Can we label logical qubits with physical qubits
so that all gates obey machine connectivity constraints?

Known as the Subgraph Isomorphism problem

“Easy part” of qubit allocation

Already NP-Complete

In practice, most circuits will need transformations to “fit” the
connectivity graph

embed?

l0
l1
l2
l3
l4

l0
l1

l2

l3

l4

Circuit Dependencies
on logical qubits

Connectivity
of physical qubits

 20

Circuit transformation primitives

CNOT reversal

H H

H H

H

H

H

H

Swap

Bridge

Effect on dependency graph
(assuming no other dependency)

Transformation

a

b

a

b

a

b

c

a

b

a

b

a

b

c

`a

b

c

a

b a

b
Change mapping!

 21

1. Compute maximal isomorphic partitions

Break circuit into solvable instances of subgraph isomorphism

Maximal: adding one dependency makes it unsolvable

Approximated with bounded exhaustive search

For each partition, build collection of candidate mappings

1
2
3
4
5

a

b

c

d

e

f

3

1

5

2

4

1 3

2

4

5

1

3

2

Connectivity graph Circuit

Example
candidate
mappings

Partition 1 Partition 2 Partition 3

 22

2. Choose qubit mappings, add swaps

Select one mapping in each partition

Goal: minimize total number of swaps

Equivalent to Token Swapping problem (NP hard)

Use 4-approximation algorithm proposed in 2016

3

1

5

2

4

1 3

2

4

5

1

3

2

1 2

3

4

5

Swap
2—3

3 1

2

Swap
1—3

Partition 1
candidates

Partition 2
candidates

Partition 3
candidates

5

4

1

3 2

 23

Comparison with other approaches

Cost (lower is better)

Proposed algorithm

 24

Conclusion: compiler optimization for quantum circuits

An entire domain to explore

Qubit allocation

Seek run-time vs. accuracy tradeoffs, optimize for fidelity

Specialize for regular quantum computer structures

Take advantage of quantum circuit properties: spacial, temporal locality

Mapping high-level gates to hardware-supported gates

High-level gate implementation: accuracy/cost tradeoffs

Selecting gate sequences: use degree of freedom on relative phase

Time/space tradeoffs

Adapt number of helper qubits to resource availability

Formalization

Which semantics for quantum programs and quantum computers?

Which intermediate representation for quantum circuits?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

