Toward optimizing compilers for quantum computers

Jan 17, 2019 PEQUAN seminar

Sylvain Collange Inria, Univ Rennes, CNRS, IRISA sylvain.collange@inria.fr

Why Quantum Computing Today?

- Already an established research topic since 1990's
 - In theoretical computer science
 - In applied quantum physics
- Usual stance in applied CS: I'll believe it when I'll see it.
- Today: no excuse, we got hardware!
 - IBM: open access
 16-bit quantum computer,
 20-qubit in limited access,
 50-qubit prototype
 - Rigetti
 19-qubit in limited access
 - Google, Microsoft, Intel... various prototypes up to 72-qubit

https://quantumexperience.ng.bluemix.net

- Enables experimental computer science
- Opportunity for computer architecture and compiler research

Computer history reduced to "how many bits?"

- Babbage: "It seems to me probable that a long period must elapse before the demands of science will exceed this limit."
- As of 2018
 - 50-digit (~170-bit) numbers still considered ludicrous precision
 - Complete Analytical Engine has yet to be built

Welcome to the NISQ era

John Preskill keynote: Quantum computing in the NISQ era and beyond

- Today: we have real quantum hardware
 - But too few, noisy, qubits to implement 1990's algorithms
 - A few near-term applications: quantum chemistry simulation
- Crossroads for the quantum computing field
 - Success \rightarrow sustained investments toward more ambitious applications
 - Failure \rightarrow quantum computing winter for the next 20-30 years

- Introduction to the programming model
 - Logical qubits and quantum gates
- Compiling quantum circuits
 - Allocating logical qubits on physical qubits

What is so special about quantum?

Example: Young's double-slit experiment

- Each photon behaves as a wave: goes through both holes and interferes with itself
- Idea: craft quantum experiments to perform computations
- Quantum computing approach
 - Compute on superposed states
 - Exploit interference to select useful information
 - Measure results to infer statistical distribution

Computing abstraction: Quantum circuit

- Like classical circuit or dataflow graph, except:
 - Operates on qubits
 - Reversible: no creation, destruction, nor duplication of qubits
 - Starts by initialization, ends by measurement

Basic data-type: the qubit

- Superposition of states: $\alpha |0\rangle + \beta |1\rangle$ with $\alpha, \beta \in \mathbb{C}$, $|\alpha|^2 + |\beta|^2 = 1$
 - Representation as vector in basis ($|0\rangle$, $|1\rangle$): $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
- We can visualize possible states on the surface of a sphere

Multiple qubits

- State space: exponential number of dimensions
 - *n* classical bits encode **one** of 2^n states: space is $\{0,1\}^n$
 - *n* qubits encode a **superposition** of 2^n states: space is \mathbb{C}^{2^n} (normalized)
- From independent qubits
 - Tensor product of individual states

State may not be separable: qubits are in an *entangled* state

No a,b,c,d such that $ac=bd=1/\sqrt{2}$ and ad=bc=0

- Need to consider group of entangled qubits as a whole
- Visualization: 2²ⁿ-dimension hypersphere? ③

Operation: Measurement

Measurement turns a qubit into a bit

- Measuring $\alpha |0\rangle + \beta |1\rangle$ gives:
 - 0 with probability $|\alpha|^2$
 - 1 with probability |β|²
- Destructive operation
 - State space of the system projected to C^{2ⁿ⁻¹}
 - No information on sign / complex phase
 - Random: need to repeat to infer distribution

p = probability of measuring a **1**

Operation: single-qubit gate

Х

Quantum gates as mul by unitary matrices

- Correspond to rotations on the sphere
- e.g. X gate
 - flip along X axis
 - \bullet maps $|0\rangle$ to $|1\rangle$ and $|1\rangle$ to $|0\rangle$
 - "equivalent" of classical NOT

Operation: single-qubit gate

Х

н

Quantum gates as mul by unitary matrices

- Correspond to rotations on the sphere
- e.g. X gate
 - flip along X axis
 - \bullet maps $|0\rangle$ to $|1\rangle$ and $|1\rangle$ to $|0\rangle$
 - "equivalent" of classical NOT
- e.g. Hadamard-Walsh gate
 - maps $|0\rangle$ to $1/\sqrt{2} |0\rangle + 1/\sqrt{2} |1\rangle$ and $|1\rangle$ to $1/\sqrt{2} |0\rangle - 1/\sqrt{2} |1\rangle$
- Any single-qubit gate can be decomposed into sequence of X and Z axis rotations

Ζ

Multi-qubit gate: Controlled NOT

CNOT or Controlled-X: analog of classical XOR

 $a|00\rangle + b|01\rangle + d|10\rangle + c|11\rangle$

"Flips second qubit when first qubit is $|1\rangle$ "

As a way to entangle qubits

$$\frac{\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle}{|0\rangle} \left\{ \frac{\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|10\rangle}{\frac{1}{\sqrt{2}}|10\rangle} \right\} = \frac{\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle}{\frac{1}{\sqrt{2}}|11\rangle}$$

As a building block to make arbitrary controlled gates

- Introduction to the programming model
 - Logical qubits and quantum gates
- Compiling quantum circuits
 - Allocating logical qubits on physical qubits

Compilers for quantum computing

- Existing and near-future architectures:
 - 10s to 100 qubits
 - No error correction
 - Low-level constraints on circuits: set of gates, qubit connectivity
- Need compilers of circuits down to lowlevel gates
 - Many differences from classical compilers

Algorithms	
Quantum circuits	
Quantum circuit compiler	
Quantum microarchitecture	
Quantum computing hardware	

Focus: the qubit allocation phase

- Map logical qubits to physical qubits
 - Need to meet hardware constraints: connectivity between physical qubits
 - Transform circuit to fit on given quantum computer
- Minimize runtime and gate count to minimize noise

Software: circuit on logical qubits

Hardware: physical qubits

 Joint work with Marcos Yukio Siraichi, Vinícius Fernandes dos Santos and Fernando Magno Quintão Pereira, DCC, UFMG, Brazil

Circuit subset for qubit allocation

Input: reversible quantum circuits described at gate level

- Between initialization and measurement : unitary gates only
- After decomposition into single-qubit and CNOT gates
- Expressed in QASM language

```
qreg l[2];
creg c[2];
x l[0];
h l[0];
cx l[0] l[1];
t l[1];
measure l[0] -> c[0];
measure l[1] -> c[1];
```

Limited-connectivity quantum computer

Target: superconducting qubit based quantum computers

- Constraints on which qubits are allowed to interact
- e.g. IBM QX2, 5 qubits

(Q3) E

Q2

(Q4)

 $(00 \not\leftarrow = 015) \longrightarrow (014 \not\leftarrow = 013 \not\leftarrow = 012) \longrightarrow (011) \longleftarrow (010 \not\leftarrow = 010 \not\vdash = 010 = 010 = 010 \not\vdash = 010 \not\vdash = 010 =$

(Q5)

(Q6)

(Q7)

18

• e.g. IBM QX5, 16 qubits

Qubit assignment is Subgraph Isomorphism

Can we label logical qubits with physical qubits so that all gates obey machine connectivity constraints?

- Known as the Subgraph Isomorphism problem
- "Easy part" of qubit allocation
- Already NP-Complete

 In practice, most circuits will need transformations to "fit" the connectivity graph

Circuit transformation primitives

Transformation

CNOT reversal

Effect on dependency graph (assuming no other dependency)

Bridge

a

b

Change mapping!

1. Compute maximal isomorphic partitions

- Break circuit into solvable instances of subgraph isomorphism
 - Maximal: adding one dependency makes it unsolvable
- Approximated with bounded exhaustive search
 - For each partition, build collection of candidate mappings

2. Choose qubit mappings, add swaps

Select one mapping in each partition

- Goal: minimize total number of swaps
- Equivalent to Token Swapping problem (NP hard)
- Use 4-approximation algorithm proposed in 2016

Comparison with other approaches

Cost (lower is better)

RevLib Benchmarks

An entire domain to explore

- Qubit allocation
 - Seek run-time vs. accuracy tradeoffs, optimize for fidelity
 - Specialize for regular quantum computer structures
 - Take advantage of quantum circuit properties: spacial, temporal locality
- Mapping high-level gates to hardware-supported gates
 - High-level gate implementation: accuracy/cost tradeoffs
 - Selecting gate sequences: use degree of freedom on relative phase
- Time/space tradeoffs
 - Adapt number of helper qubits to resource availability
- Formalization
 - Which semantics for quantum programs and quantum computers?
 - Which intermediate representation for quantum circuits?