Persistent homology for multivariate data visualization

Bastian Rieck
Interdisciplinary Center for Scientific Computing
Heidelberg University

Motivation

Understanding the 'shape' of data

Agenda

1 Theory: Algebraic topology
2 Theory: Persistent homology
3 Applications

Part I

Theory: Algebraic topology

Algebraic topology

Algebraic topology is the branch of mathematics that uses tools from abstract algebra to study manifolds. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism.

Manifolds

A d-dimensional Riemannian manifold \mathbb{M} in some \mathbb{R}^{n}, with $\mathrm{d} \ll n$, is a space where every point $p \in \mathbb{M}$ has a neighbourhood that 'locally looks' like \mathbb{R}^{d}.

A 2-dimensional manifold

Homeomorphisms

A homeomorphism between two spaces X and Y is a continuous function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ whose inverse $\mathrm{f}^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$ exists and is continuous as well.

Intuitively, we may stretch, bend-but not tear and glue the two spaces.

Algebraic invariants

An invariant is a property of an object that remains unchanged upon transformations such as scaling or rotations.

Example

Dimension is a simple invariant: $\mathbb{R}^{2} \neq \mathbb{R}^{3}$ because $2 \neq 3$.
In general
Let \mathcal{M} be the family of manifolds. An invariant permits us to define a function $\mathrm{f}: \mathcal{M} \times \mathcal{M} \rightarrow\{0,1\}$ that tells us whether two manifolds are different or 'equal' (with respect to that invariant).
No invariant is perfect-there will be objects that have the same invariant even though they are different.

Betti numbers

A useful topological invariant

Informally, they count the number of holes in different dimensions that occur in a data set.
$\begin{array}{ll}\beta_{0} & \text { Connected components } \\ \beta_{1} & \text { Tunnels } \\ \beta_{2} & \text { Voids } \\ \vdots & \vdots\end{array}$

Space	β_{0}	β_{1}	β_{2}
Point	1	0	0
Circle	1	1	0
Sphere	1	0	1
Torus	1	2	1

Signature property

If $\beta_{i}^{X} \neq \beta_{i}^{Y}$, we know that $X \neq Y$. The converse is not true, unfortunately:

We have $\beta_{0}=1$ and $\beta_{1}=1$ for X and Y, but still $X \neq Y$.

Simplicial complexes

0-simplex 1-simplex 2-simplex
3-simplex

Simplicial complexes

Example

The simplicial complex representation is compact and permits the calculation of the Betti numbers using an efficient matrix reduction scheme.

Basic idea

Calculating boundaries

The boundary of the triangle is:

$$
\partial_{2}\{a, b, c\}=\{b, c\}+\{a, c\}+\{a, b\}
$$

The set of edges does not have boundary:

$$
\begin{aligned}
\partial_{1} & (\{b, c\}+\{a, c\}+\{a, b\}) \\
& =\{c\}+\{b\}+\{c\}+\{a\}+\{b\}+\{a\} \\
& =0
\end{aligned}
$$

Fundamental lemma

For all p, we have $\partial_{p-1} \circ \partial_{p}=0$: Boundaries do not have a boundary themselves.

This permits us to calculate Betti numbers of simplicial complexes by reducing a boundary matrix to its Smith Normal Form using Gaussian elimination.

Summary

- We want to differentiate between different objects.

Summary

- We want to differentiate between different objects.
- This endeavour requires algebraic invariants.

Summary

- We want to differentiate between different objects.
- This endeavour requires algebraic invariants.
- One invariant, the Betti numbers, measures intuitive aspects of our data.

Summary

- We want to differentiate between different objects.
- This endeavour requires algebraic invariants.
- One invariant, the Betti numbers, measures intuitive aspects of our data.
- Their calculation requires a simplicial complex and a boundary operator.

Summary

- We want to differentiate between different objects.
- This endeavour requires algebraic invariants.
- One invariant, the Betti numbers, measures intuitive aspects of our data.
- Their calculation requires a simplicial complex and a boundary operator.

Part II

Theory: Persistent homology

Real-world multivariate data

- Unstructured point clouds
- n items with D attributes; $\mathrm{n} \times \mathrm{D}$ matrix
- Non-random sample from \mathbb{R}^{D}

Manifold hypothesis
There is an unknown d-dimensional manifold $\mathbb{M} \subseteq \mathbb{R}^{\mathrm{D}}$, with $\mathrm{d} \ll \mathrm{D}$, from which our data have been sampled.

*
2-manifold in \mathbb{R}^{3}

Agenda

1 Convert our input data into a simplicial complex K.
2 Calculate the Betti numbers of K .
3 Use the Betti numbers to compare data sets.
(Fair warning: It won't be so simple)

Converting unstructured data into a simplicial complex

Require: Distance measure (e.g. Euclidean distance), maximum scale threshold ϵ.

Construct the Vietoris-Rips complex \mathcal{V}_{ϵ} by adding a k-simplex whenever all of its ($k-1$)-dimensional faces are present.

Calculating Betti numbers directly from \mathcal{V}_{ϵ}

Unstable behaviour

Calculating persistent Betti numbers

Persistent homology

How does this work in practice?

An example for β_{0}

- Have a function $\mathrm{f}: \mathcal{\nu}_{\epsilon} \rightarrow \mathbb{R}$ on the vertices of the Vietoris-Rips complex.

How does this work in practice?

An example for β_{0}

- Have a function $\mathrm{f}: \mathcal{V}_{\epsilon} \rightarrow \mathbb{R}$ on the vertices of the Vietoris-Rips complex.
- Extend it to a function on the whole simplicial complex by setting $\mathrm{f}(\sigma)=\max \{\mathrm{f}(\nu) \mid v \in \sigma\}$.

How does this work in practice?

An example for β_{0}

- Have a function $\mathrm{f}: \mathcal{V}_{\epsilon} \rightarrow \mathbb{R}$ on the vertices of the Vietoris-Rips complex.
- Extend it to a function on the whole simplicial complex by setting $\mathrm{f}(\sigma)=\max \{\mathrm{f}(\nu) \mid v \in \sigma\}$.
- Analyse the connectivity changes in the sublevel sets of f, i.e. sets of the form

$$
L_{\alpha}^{-}(f)=\{v \mid f(v) \leqslant \alpha\} .
$$

How does this work in practice?

An example for β_{0}

- Have a function $\mathrm{f}: \mathcal{V}_{\epsilon} \rightarrow \mathbb{R}$ on the vertices of the Vietoris-Rips complex.
- Extend it to a function on the whole simplicial complex by setting $\mathrm{f}(\sigma)=\max \{\mathrm{f}(\nu) \mid v \in \sigma\}$.
- Analyse the connectivity changes in the sublevel sets of f, i.e. sets of the form

$$
\mathrm{L}_{\alpha}^{-}(\mathrm{f})=\{v \mid \mathrm{f}(v) \leqslant \alpha\} .
$$

- This can be done by traversing the values of f in increasing order and stopping at 'critical points'.

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Persistent homology \& persistence diagrams

One-dimensional example

Uses for persistence diagrams

A persistence diagram is a multi-scale summary of topological activity in a data set. But the diagrams go well and beyond a simple comparison of Betti numbers!

L'algèbre est généreuse, elle donne souvent plus qu'on lui demande.
—D'Alembert

Distance calculations

Distance calculations

Distance calculations

$$
W_{2}(X, Y)=\sqrt{\inf _{\eta: X \rightarrow Y} \sum_{x \in X}\|x-\eta(x)\|_{\infty}^{2}}
$$

Sensitivity of distances

Wasserstein versus function space distances

Sensitivity of distances

Wasserstein versus function space distances

Only the Wasserstein distance does not distort the 'shape' of noise in the data.

Part III

Applications

Published projects

Published projects

Qualitative visualizations: Persistence rings

Qualitative visualizations: Persistence rings

Qualitative visualizations: Persistence rings

Qualitative visualizations: Simplicial chain graphs

Motivation

Analyse the connectivity of topological features for ensembles of data sets: Different runs of an experiment, different times at which measurements are being taken...

Central idea

Obtain geometrical descriptions of topological features ('holes') while calculating persistent homology.

This is known as the 'localization problem' in persistent homology.

Solving the localization problem

1 Define a geodesic ball in a simplicial complex.
2 Solve all-pairs-shortest-paths problem to find possible sites.
3 Branch-and-bound strategy to improve performance.

Simplicial chain graph

Basic example

Advantage: The space in which we localize the features usually has a high dimensions, but the graph will always be drawn in \mathbb{R}^{2}.

Data: Tropical Atmosphere Ocean Array

Lessons learned

1 We can obtain features via persistent homology that permit a comparative analysis.
2 Visualizing these features becomes abstract very quickly.
3 Need more 'quantitative' topological visualizations.
. Quantitative visualizations: Model landscapes

Example: Solubility analysis

- 19 different mathematical models
- 1267 chemical compounds, described by 228-dimensional feature vectors
- Measured ground truth (solubility values)

Each model is a function $f: \mathbb{D} \rightarrow \mathbb{R}$. How to evaluate similarities \& differences between the models?

State-of-the-art

- Existing measures (RMSE or R^{2}) only focus on values of a model.
- The structure/shape is not being used!
- Shortcomings: Sensitivity to noise, 'masking' the influence of outliers...

Our approach

1 Calculate Vietoris-Rips complex \mathcal{V}_{ϵ} on the molecular descriptors.

Our approach

1 Calculate Vietoris-Rips complex \mathcal{V}_{ϵ} on the molecular descriptors.
2 Use model values \& ground truth to obtain a set of functions on ν_{ϵ}.

Our approach

1 Calculate Vietoris-Rips complex \mathcal{V}_{e} on the molecular descriptors.
2 Use model values \& ground truth to obtain a set of functions on ν_{ϵ}.
3 Calculate persistence diagrams for each function.

Our approach

1 Calculate Vietoris-Rips complex \mathcal{V}_{ϵ} on the molecular descriptors.
2 Use model values \& ground truth to obtain a set of functions on ν_{ϵ}.
3 Calculate persistence diagrams for each function.
4 Compare diagrams using the Wasserstein distance.

Our approach

1 Calculate Vietoris-Rips complex \mathcal{V}_{ϵ} on the molecular descriptors.
2 Use model values \& ground truth to obtain a set of functions on ν_{ϵ}.
3 Calculate persistence diagrams for each function.
4 Compare diagrams using the Wasserstein distance.
5 Absolute comparison with ground truth diagram.

Our approach

1 Calculate Vietoris-Rips complex \mathcal{V}_{ϵ} on the molecular descriptors.
2 Use model values \& ground truth to obtain a set of functions on ν_{ϵ}.
3 Calculate persistence diagrams for each function.
4 Compare diagrams using the Wasserstein distance.
5 Absolute comparison with ground truth diagram.
6 Relative comparison with all diagrams.

Visualization of relative model differences

$\underset{\text { knn }}{\mathrm{O}}$
bagged trees
○
Orpart

3. Why is $m 5$ rated differently?

Comparison with cubist

Summary

Topological methods yield quantitative and qualitative information about data sets-often, this goes well and beyond the scope of regular geometric approaches.

Summary

Topological methods yield quantitative and qualitative information about data sets-often, this goes well and beyond the scope of regular geometric approaches.

Future work

1 Performance improvements: Smaller complexes, other distance measures, ...
2 Ensemble data \& 'average' topological structures
3 Connection to geometric features in data

Summary

Topological methods yield quantitative and qualitative information about data sets-often, this goes well and beyond the scope of regular geometric approaches.

Future work
1 Performance improvements: Smaller complexes, other distance measures, ...
2 Ensemble data \& 'average' topological structures
3 Connection to geometric features in data
Thank you for your attention!

