

Parameterization of Surfaces

Ph.D. Student Vintescu Ana-Maria

Outline

> Context
> Background
>Problem Statement
> Strategy
> Metric Distortion
> Conformal parameterization techniques
> Cone singularities
> Our algorithm

- Experiments
> Perspectives

Context

> Digital entertainment

[8]
[Nintendo]

Context

> Triangle mesh

[5]

Context

> Meta-data
> Texture

[7]

Context

> Meta-data
>Animation skeleton

[14]

Context

> Meta-data
> Deformation cages

[15]

Context

$>$ Optimize the production and editing chain of 3D content

Background

> Definitions
>Polygonal mesh

1.7\%

[3]

Background

> Triangle mesh

>Geometry

vertex 1 vertex 2	X	Y	Z
	X	Y	Z
vertex 3	X	Y	Z

Connectivity

Background

> Triangle mesh
>Connectivity
>Seen as a graph
> Graph embedding

Embedded in \mathbb{R}^{2}

Background

> Definitions
$>$ Topology
$>$ Genus

Genus 0

Genus 1

Genus 2
[3]

Background

> Definitions
> Orientability

[3]

Background

> Definitions
$>$ Orientability

Klein Bottle

Background

> Definitions
>Simplicial complex
$>$ Triangulation

[1]

Background

> Triangle mesh >Attributes
> Color

$>$ Normals

$>$ Texture

Problem Statement

>Consistent bijective mapping

[5]

Problem Statement

>Consistent bijective mapping

[6]

Strategy

> Simplify

$$
>g, \Phi_{1}, \Phi_{2}=?
$$

[9]

Strategy

$>$ Scientific issues
$>\mathrm{g}, \Phi_{1}, \Phi_{2}=$?
$>$ Generality
> Diff param dom

$2 \times 2 \pi=4 \pi$
$4 \times \pi=4 \pi$

Strategy

\Rightarrow Scientific issues
$>\mathrm{g}, \Phi_{1}, \Phi_{2}=$?
$>$ Generality > Topology

[3]

Strategy

$>$ Scientific issues
$>\mathrm{g}, \Phi_{1}, \Phi_{2}=$?
$>$ Generality
> Topology

Strategy

$>$ Scientific issues
$>\mathrm{g}, \Phi_{1}, \Phi_{2}=$?

[13]

Metric Distortion

>Developable surfaces

[16]
$>$ Non-unique parameterization

[5]

Metric Distortion

> Harmonic maps

$$
\Delta u=0, \Delta v=0
$$

Metric Distortion

$>$ Conformal maps

$$
\begin{aligned}
& >\|\nabla u\|=||\nabla v||, \\
& >\nabla u * \nabla v=0
\end{aligned}
$$

[12]

Metric Distortion

> Equiareal maps

[17 The equal-area Mollweide projection]

Metric Distortion

> SVD decomposition of the map

$$
J_{f}=U \Sigma V^{T}=U\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right) V^{T}
$$

[5]

- As a consequence, any circle of radius r around u will be mapped to an ellipse with semi-axes of length ro1 and ro2 around p and the orthonormal frame [$\mathrm{V} 1, \mathrm{~V} 2$] is mapped to the oxthogonal frame [$\sigma 1 \mathrm{U} 1, \sigma 2 \mathrm{U} 2$].

Conformal Parameterization techniques

> Fixed boundary vs Free boundary

A

[5]

Conformal Parameterization techniques

> LSCM
$>$ Description:
>Minimize the violation of Riemann's conditions in a least squares sense

$$
\nabla v=\operatorname{rot}_{90}(\nabla u)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \nabla u
$$

$>$ Minimize a distortion energy.

$$
\begin{aligned}
& E_{L S C M}=\sum_{T=(i, j, k)}|T|\left\|\mathbf{M}_{T}\left(\begin{array}{l}
v_{i} \\
v_{j} \\
v_{k}
\end{array}\right)-\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \mathbf{M}_{T}\left(\begin{array}{l}
u_{i} \\
u_{j} \\
u_{k}
\end{array}\right)\right\|^{2} \\
& \binom{\partial u / \partial X}{\partial u / \partial Y}=\mathbf{M}_{T}\left(\begin{array}{l}
u_{i} \\
u_{j} \\
u_{k}
\end{array}\right)=\frac{1}{2|T|_{X, Y}}\left(\begin{array}{ccc}
Y_{j}-Y_{k} & Y_{k}-Y_{i} & Y_{i}-Y_{j} \\
X_{k}-X_{j} & X_{i}-X_{k} & X_{j}-X_{i}
\end{array}\right)\left(\begin{array}{l}
u_{i} \\
u_{j} \\
u_{k}
\end{array}\right)
\end{aligned}
$$

$>$ Combine the conformality condition and the linearity of the mapping (inside a triangle) in a least squares sense.

Cone singularities

> Absorb distortion
> Cut the mesh

[13]

Cone singularities

>Gaussian curvature
> Angle deficit
> Gauss-Bonnet theorem

$$
\sum_{v \in M, v \in e M} K_{v}+\sum_{v \in \omega M} \kappa_{v}=2 \pi \chi(M)
$$

Our algorithm

> Key References
> CFCPMS

- Poisson eq $\nabla^{2} \phi=K^{T}-K^{m s}$
- Least-squares

[2]

Our algorithm

> Key References
>CETM

- Non-linear convex energy

Our algorithm

> Key References
\rightarrow ABF + +

- Non-linear optimization problem
- Slow

[10]

Our algorithm

> Key References $>$ MIPS

$$
K_{2}\left(\mathbf{J}_{T}\right)=\left\|\mathbf{J}_{T}\right\|_{2}\left\|\mathbf{J}_{T}^{-1}\right\|_{2}=\sigma_{1} / \sigma_{2}
$$

- Non-linear optimization problem
- Slow

$$
K_{F}\left(\mathbf{J}_{T}\right)=\left\|\mathbf{J}_{T}\right\|_{F}\left\|\mathbf{J}_{T}^{-1}\right\|_{F}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{\sigma_{1} \sigma_{2}}=\frac{\operatorname{trace}\left(\mathbf{I}_{T}\right)}{\operatorname{det}\left(\mathbf{J}_{T}\right)}
$$

[4]

Our algorithm

> LSCM
>Improvement:
$>$ Add rotational terms to the distortion energy.
$>$ Detect the angle of a cone singularity
$>$ Round it to the nearest value multiple of pi/2
$>$ Constrain that angle to the new value
$>$ Translation, rotation, translation

$$
\left(\begin{array}{c}
m A \cdot x \\
m A \cdot y \\
1
\end{array}\right)=T 1 * R * T 2 *\left(\begin{array}{c}
A \cdot x \\
A \cdot y \\
1
\end{array}\right)
$$

Our algorithm

> LSCM
$>$ With rotation equations added, the 2 sides of the cut can fit seamlessly

LSCM

LSCM + rot

Experiments

> Mesh "Planck" - 23525V, 46930F
> Manually placed cones

Experiments

> LSCM [2] and rotational equations
> Resulted flattening

LSCM

LSCM + rot

Experiments

> Try cross-map between near isometric meshes
Mesh head2q 10857V
$21656 F$

Mesh head3q 9429V 18792F

Experiments

>Planck, head2q, head3q - manually placed cones $>$ Visualize the meshes unfolded with the new alg (LSCM+rot)

Experiments

> Try cross-map between near isometric meshes
$>$ First unfold head2q with the new algorithm (LSCM+rot)
$>$ Pin the boundary vertices of head3q and Planck to match the boundary vertices of head2q

Head3q_to_2q
Planck_to_2q
OBS: known cones corresp -> known corresp cut-paths

Experiments

> Same texture applied to the 3 meshes constrained to the boundary of Head2q

Head2q

Head3q_to_2q

Planck_to_2q

Experiments

> Same texture applied to the 3 meshes constrained to the boundary of Head2q

Head2q

Head3q_to_2q

Planck_to_2q

Experiments

> Same texture applied to the 3 meshes constrained to the boundary of Head2q

Head2q

Head3q_to_2q

Planck_to_2q

Experiments

> Same texture applied to the 3 meshes constrained to the boundary of Head2q

Head2q

Head3q_to_2q

Planck_to_2q

Experiments

- Try cross-map between near isometric meshes
$>$ Since for both meshes head3q and Planck, the cut2 are in similar locations, do a cross-map between them $>$ Map Planck to head3q, color by faces' normals

Experiments

> Try cross-map between near isometric meshes
>Map Planck to head3q, color by faces' normals

Experiments

> Try cross-map between near isometric meshes >Map Planck to head3q, color by faces' normals

Experiments

> Try cross-map between near isometric meshes >Map Planck to head3q, color by faces' normals

Experiments

> Try cross-map between near isometric meshes >Apply the same texture to all 3 flattenings; visualize 3D

Experiments

- Quasi-conformal factor
$>$ Ratio of the larger to the smaller eigenvalue of the Jacobian matrix $->$ ideal $=1$

Map	LSCM	LSCM+rot	LSCM+pinne d bdry	Cross-map
Mesh	1.0024	1.0028	1.0028	1.3030
Head2q	1.0034	1.0034	1.1002	1.5268
Head3q				
Planck	1.0002	1.0002	1.0350	1.3131

Experiments
 > Timings [s]

Mapping	LSCM	LSCM+rot	LSCM+pinne d bdry*	Cross-map
Mesh	1.942444	2.305175	-	1705.965937
Head2q 10857V, 21656F	1.547186	1.833591	4.261377	670.079407
Head3q 9429V, 18792F				1517.296428
Planck 23525V, $46930 F$	7.944052	9.237458	15.169150	

Perspectives

> Initial user-driven cross-map for simple configurations
>User-supplied corresponding cone singularities
>Good performance

- Good timings for the 2D parameterization
> Existence of solutions to speed up the crossmap

Perspectives

> More general alg to support arbitrary cut networks/ arbitrary singularity layouts
> Automatic -> pairs of corresponding cone singularities and consistent cuts on two models
> Post-process procedure for the planar optimization

Refferences

[1] P. Alliez, G. Ucelli, C. Gotsman, M. Attene. Recent advances in remeshing of surfaces, 2008, Shape Analysis and Structuring, Mathematics and Visualization
[2] M. Ben-Chen, C. Gotsman and G. Bunin. Conformal Flattening by Curvature Prescription and Metric Scalingm, 2008, EUROGRAPHICS
[3] M. Ben-Chen, Stanford Course, 2010
[4] K. Hormann and G. Greiner. MIPS: An efficient global parametrization method. Curve and Surface Design: Saint-Malo 1999, Innovations in Applied Mathematics
[5] K. Hormann, B. Lévy, and A. Sheffer. Mesh parameterization: Theory and practice 2007, ACM SIGGRAPH 2007 Courses, New York, USA, SIGGRAPH '07.
[6] V. Kraevoy and A. Sheffer. Cross-parameterization and compatible remeshing of 3D models. ACM Transactions on Graphics, 23(3):861_869, 2004. Proceedings of SIGGRAPH 2004.
[7] B. Lévy. Constrained texture mapping for polygonal meshes. Proceedings of SIGGRAPH 2001, pages 417_424. ACM Press, 2001
[8] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics, 21 (3):362_371, 2002. Proceedings of SIGGRAPH 2002.

Refferences

[9] Y. Lipman, T. Funkhouser. Mobius Voting for Surface Correspondence. 2009. ACM Transactions on Graphics (Proc. SIGGRAPH)
[10] A. Shffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov. ABF++: fast and robust angle based flattening. ACM Transactions on Graphics, 24(2):311_330, 2005.
[1 1] B. Springborn, P.Schröder, U. Pinkall.Conformal equivalence of triangle meshes, ACM Transactions on Graphics - TOG, vol. 27, no. 3, 2008
[12] J. Tierny. Reeb graph based 3D shape modeling and applications. PhD. Thesis, 2008
[13] J. Tierny, J. Daniels II, L. G. Nonato, V. Pascucci and C. Silva. Inspired quadrangulation, 201 1, Computer Aided Design. Proc. of ACM SPM
[14] J. Tierny. Surface Parameterization Course, 2012, page 30
[15] J.-M. Thiery, J. Tierny, and T. Boubekeur. Jacobians and Hessians of Mean Value Coordinates for Closed Triangular Meshes, 2013 , The Visual Computer Journal.
[16] http://www.rhino3.de/design/modeling/developable
[17] http://en.wikipedia.org/wiki/Mollweide_projection

