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Context

L. Baratchart, J. Leblond and D. Ponomarev
(APICS team, Inria Sophia-Antipolis, France),

E. Lima and B.Weiss
(Earth, Atmospheric and Planetary Sciences Dpt., MIT,
Cambridge Massachusetts, USA)

and D. Hardin and E. Saff
(Center for Constructive Approximation,
Vanderbilt University, Nashville, Tennessee, USA).

I Geophysicists at MIT: study the story of Earth’s magnetic field.
 by analysing magnetization characteristics of rocks.

I Not directly observable  one observes the induced magnetic field.
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Why study planetary magnetic field?
I Magnetic field is useful:

I For navigation (compass, migratory birds, some fishes, etc.).
I It prevents stripping of the atmosphere by the solar wind.

I Complex phenomenon: generated by a “dynamo”.
 Several possible mechanisms. Still fairly misunderstood.

I Polarity reversals.
 One of the most convincing evidence of continental drift.

Hot questions:
I Did the moon have a dynamo?
I If so, what was generating it?
I When did it turn on/off?
I same questions for Mars (could explain why Mars lost its

atmosphere).
 A key question for understanding the early history of the solar system.
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How do rocks acquire magnetization?
I Types of rocks: mainly

I igneous (e.g., from volcanos);
I or sedimentary (e.g., at the bottom of oceans).

I Thermoremanent magnetization:
ferro-magnetic particles follow the magnetic field.

I Can be subsequently altered
 under high pressure or temperature.
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Measuring instruments
I Magnetometer: gives the net moment of a sample:

∫∫∫
rock

~M.
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Measuring instruments
I Magnetometer: gives the net moment of a sample:

∫∫∫
rock

~M.

I Scanning Magnetic Microscopes (SMM):

SQUID sensors
(Superconducting QUantum

Interference Device)

I high sensibility,
I far from the sample (100 µm),
I do not affect the magnetization,
I complicate to operate.

Non-superconducting sensor

I less sensitive,
I close to the sample (6 µm),
I may induce magnetizations,
I easy to operate.
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SQUID microscope

Pedestal + sensor
Sapphire window
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General scheme
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Inverse problem
I Magnetization:

at each point P ′ =
( x ′

y ′

z ′

)
of the sample: M(P ′) =

( m1(P ′)
m2(P ′)
m3(P ′)

)
.

I Thin-plate hypothesis: M 6= 0 only for z ′ = 0, i.e. P ′ =
( x ′

y ′

0

)
.

I Generates a magnetization potential:

at any point P =
( x

y
z

)
of the space, ϕM(P), s.t. ∆ϕM = div(M).

ϕM(P) = 1
4π

∫∫ m1(P ′)(x − x ′) + m2(P ′)(y − y ′)
|P − P ′|3 + m3(P ′)z

|P − P ′|3 dx ′dy ′

I Magnetic field induced by ϕM : B(P) = ∇ϕM(x , y , z).
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Silent sources

I Inverse problem: from measurements of B at height h, recover M
(more precisely: only Bz is measured).

I M is said silent from above (resp. below) if
ϕM(x , y , z) = 0 for all z > 0 (resp. z < 0).

I Such magnetizations exist.  Problem is ill-posed.
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A silent source
M
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Regularization hypotheses (1/2)

I Need for further assumptions on M:
I The support of M is compact.

I Does compact support help?  A bit. In this case:

(M is silent from above) ⇔ (M is silent from below).

I There are silent magnetization from both sides: those s.t.

m3 = 0 and div
(

m1
m2

)
= 0.
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Regularization hypotheses (2/2)

I M can often be supposed unidirectional:

∃ v ∈ R3, ∃ Q : R2 → R s.t. ∀P ′,M(P ′) = Q(P ′)v.

 realistic if the rock has not been altered after its formation.

I Does unidirectionality help?  No.
For any M and any direction v not horizontal, there exists a
scalar field Q s.t. Q(P ′)v is equivalent from above to M.

I If we have compact support and unidirectionality?  Yes.
If M is unidirectional and compactly supported, there is no
unidirectional compactly supported equivalent magnetization.
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Fourier technique
I We consider Fourier transform with respect to horizontal

variable w =
(

x
y

)
:

f̂ (κ, z) =
∫∫

f (w, z)e−2iπ(w·κ)dw.

I For the potential, we get at height z > 0:

ϕ̂M(κ, z) = e−2πz|κ|

2

(
i κ
|κ|
·
(

m̂1(κ)
m̂2(κ)

)
− m̂3(κ)

)
.

I Case when M is undirectional: M(P ′) = Q(P ′)v:

ϕ̂M(κ, z) = e−2πz|κ|

2

(
i κ

|κ|
·
(

v1
v2

)
− v3

)
Q̂(κ).
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Direct approach
I Discretize the operator M 7→ Bz :

I Rectangular regular n × n magnetization grid.
I At each node of the grid a dipole.
I Rectangular regular N × N measurement grid.

I Let A be the matrix of the discrete operator.

 each column: field generated by a single dipole.

I Let b be the vector of measurements. We try to solve Ax ' b.

I Problem: A very big  N2 rows and 3n2 columns

 example: N = 100, n = 50  600 MB just to store A.
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Lonar spherule example

Field measured for the lonar spherule.
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Direct approach (2)
If columns of A are linearly independent:

(minimize ‖Ax − b‖2) ⇔ (solve A?Ax = A?b).

I Interesting if 3n2 � N2, i.e. magnetization is localized.
I Computing A?A and A?b: simple dot-products.
I SVD decomposition of a matrix M = A?A: M = VSV ? where:

I S is diagonal and non-negative.
I V is orthogonal.

I x = VT where T = S−1V ?A?b. In other words x =
∑

k tkVk .
I Solution of min ‖Ax − b‖2, subject to x ∈ span(V1 . . .VK ) is

x (K) =
K∑

k=1
tk Vk .

S. Chevillard An inverse problem of magnetization in geoscience 19



Motivation
Strategies

Preliminary results

Accuracy issues with the SVD
I Sometimes: accuracy problems with Matlab.
I Criterion: compute [V S Vtilde] = svd(M);  check V ' Ṽ .

Number of matching bits for each elements of V and Ṽ

I Other criterion: check that ‖b −
∑K

k=1 tkVk‖ is decreasing with K .
S. Chevillard An inverse problem of magnetization in geoscience 20



Motivation
Strategies

Preliminary results

Using sparse representation?
I Alternative way to save memory consumption: use sparsity.
I Column of A: field generated by a single dipole.
 should decrease quickly.

Field produced by a single dipole

I Approximate A by replacing values smaller than some threshold by 0.
S. Chevillard An inverse problem of magnetization in geoscience 21
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Sparse representation
I Sparse representation of A  easily fits in memory.
I Fast computation of A?A.
I But does not reduce computation time for the SVD.
I And. . . deeply change the behavior of A even with small threshold.

Singular values of A?A Idem sparse case: threshold = 0.1%
S. Chevillard An inverse problem of magnetization in geoscience 22
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Lonar spherule and synthetic example
I Lonar spherule: very small sphere of rock.

I Synthetic example: looks like the spherule example.
 Allows for benchmarking.

Field measured for the lonar spherule. Field of the synthetic example.

I Use a sparse magnetization grid.S. Chevillard An inverse problem of magnetization in geoscience 23
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Synthetic example, 1st step
I Magnetization grid: 34× 34, same dimensions as measurement grid.
I Field very well reconstructed: ‖Ax − b‖2/‖b‖2 ' 1.7%.
I But last singular vectors have significant moments.

Amplitude of the net moment
of VK

‖Ax (K) − b‖.

x (K) =
K∑

k=1
tk Vk .

 does not permit to deduce the net moment.
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1st step: recovered moment

Magnetizations explaining equally well the measured field.
(true moment in red)

Amplitude of the net moment of x (K).
Direction of the net moment of x (K).
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Synthetic example, 2nd step
I We expect the support of the magnetisation to be very

localised.
I We discard points of the magnetization grid, using a

thresholding strategy based on the result of the 1st step.
I Second step with new support.

New support in yellow (threshold = 10%)
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Synthetic example, 2nd step
I Field still well reconstructed: ‖Ax − b‖2/‖b‖2 ' 1.76%.
I This time, moments of the last singular vectors are very small.
I Last singular vectors have small moments.

Amplitude of the net moment
of VK

‖Ax (K) − b‖.

x (K) =
K∑

k=1
tk Vk .
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2nd step: recovered moment
Net moments of the least-square solution on span(V1 . . .VK )

(true moment in red)

Amplitude of the net moment of x (K).
Direction of the net moment of x (K).

I Net moment remarkably well recovered.
 shrinking the support regularizes the problem.

S. Chevillard An inverse problem of magnetization in geoscience 28



Motivation
Strategies

Preliminary results

Lonar spherule example

Iteration 1
S. Chevillard An inverse problem of magnetization in geoscience 29
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Lonar spherule example

Iteration 2
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Lonar spherule example

Iteration 3
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Lonar spherule example

Iteration 4
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Lonar spherule example

Iteration 5
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Lonar spherule example

Iteration 6
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Evolution of the angle of the net moment

Iteration 1
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Evolution of the angle of the net moment

Iteration 2
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Evolution of the angle of the net moment

Iteration 3
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Evolution of the angle of the net moment

Iteration 4
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Evolution of the angle of the net moment

Iteration 5
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Evolution of the angle of the net moment

Iteration 6
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Preliminary results

I This strategy in two steps has been used on the lonar spherule
example and on some chondrules from Allende meteorite.

I The net moment recovered by this method matches the net moment
measured with a magnetometer.

Example Recovered moment Measured with magnetometer
r θ ϕ r θ ϕ

Lon. sph. 5 e−6 117.5 −159.2 5.31 e−6 112.7 −159.2
A1b1 1.45 e−9 85.7 11.7 1.54 e−9 87.2 14.9
A1b4 7.4 e−10 160 155 6.28 e−10 155 160
A1b6 1.8 e−11 92 223.8 1.73 e−11 93.2 234.5
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Non-localised example

Photograph of an Hawaian basalt

I Too many points to recover it well with a rough
magnetization grid.
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Non-localised example

Measured field Bz

I Too many points to recover it well with a rough
magnetization grid.
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Non-localised example

Recovered 3D magnetization (normal component)

I Too many points to recover it well with a rough
magnetization grid.
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Non-localised example

Recovered unidirectional magnetization (right direction)

I Too many points to recover it well with a rough
magnetization grid.
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Non-localised example

Recovered unidirectional magnetization (wrong direction)

I Too many points to recover it well with a rough
magnetization grid.
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What next?

I Use less naive strategies to compute the net moment of the
magnetization.

I Once a plausible magnetization is recovered, find an
equivalent unidirectional magnetization.

I Problem: existence of fairly silent magnetization from above,
but not from below.

I Solution? Measure from both sides?

S. Chevillard An inverse problem of magnetization in geoscience 33
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Silent source from only one side

Bz measured at height h = 270µm Bz measured at height h = −270µm

Field produced by a 28× 28 grid of uniformly magnetized squares.
S. Chevillard An inverse problem of magnetization in geoscience 34
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