
05/04/2024

Institut de Recherche en Informatique et
Systèmes Aléatoires

Taming Variability in Software
Engineering: Past, Present & Future

Jean-Marc Jézéquel
jezequel@irisa.fr

@jmjezequel

The software paradoxe

• So easy to write simple programs that a 6 years old
child can do Logo or Scratch programming right after a
few minutes of training.

• On the other hand, it is so difficult to write complex
ones that basically nobody is able to write large, bug
free programs

• writing a 100,000 line program is much more difficult than
1000 times the effort of writing a 100 line program

05/04/2024

Dimensions of complexity in building software

• Inherent complexity due to indecidability
• Complexity due to size of the problem

• Essential vs. Accidental

• Complexity due to variability/uncertainty
• Variability with requirements

• including business or legal rules and human expected behavior
• generally incomplete and do evolve over time

• Uncertainty in assumptions about the world
• quite rough, often implicit, and do not take into account all corner cases

• both inherent (platform) and accidental (misunderstanding of API)
• Not counting cybersecurity

Reasoning (proof, dbc, tests)

Modularity/Abstraction

Separation of concerns, Variability management

Software Engineering at Google:
Programming Integrated over Time

Variability Management, the Good Old Way

• Conditional compilation, e.g. in C with CPP
#IFDEF feature
xxx
#ELSE
yyy
#ENDIF

• Hard to manage, hard to change mind of what is static/dynamic
• J.-M. Jézéquel. Reifying Configuration Management for Object-Oriented Software. ICSE 1998

• Linux Kernel has 15000 such « features »
• Yielding a huge number of possible configurations for a Linux Kernel

• 215000 ≈ 105000

05/04/2024

1014 1028 1038 1050 1080

Plank length: 10-35m
Volume of the observable Universe: 1080m3

=> #places in Universe: 10115

#configurations of Linux Kernel: 105000

#universes to store configurations of Linux Kernel: 1043

Dimensions of complexity in building software

• Inherent complexity due to indecidability
• Complexity due to size of the problem

• Essential vs. Accidental

• Complexity due to variability/uncertainty
• Variability with requirements

• including business or legal rules and human expected behavior
• generally incomplete and do evolve over time

• Uncertainty in assumptions about the world
• quite rough, often implicit, and do not take into account all corner cases

• both inherent (platform) and accidental (misunderstanding of API)
• Not counting cybersecurity

Reasoning (proof, dbc, tests)

Modularity/Abstraction

Separation of concerns, Variability management

OO Modeling
Model Driven Engineering

05/04/2024

The 5 Ages of Model Driven Engineering

1. CASE tools
2. Model Driven Architecture
3. Separation of Concerns with Models, Aspects and Features
4. Domain Specific Languages & Software Language Engineering
5. Handling Data-Centric Socio-Technical Systems

1. CASE tools

Address variability in the specification
=> A small change in the specification should not be that hard to

validate/implement

Mid 80’s-Mid 90’s

05/04/2024

Computer Assisted Software Engineering
CASE Tools
• Formal Description Techniques used in e.g. the Telecom

industry since the 80’s
• Estelle or SDL (Specification and Description Language)

• based on extended state machines
• Lotos (Logic of Temporal ordering of events)

• based on process algebra

• Features:
• Graphic/textual editors
• consistency checking
• Validation (simulation, model-checking)
• code generation

CASE Tools

• Program complex distributed computers at a high level of abstraction
• with a high level of confidence in the validity the code

• because of the simulation/validation/model-checking could be performed on the exact same
source code.

• C. Jard, J.-M. Jézéquel . A multi-processor Estelle to C compiler to experiment distributed algorithms on parallel
machines. 9th IFIP International Workshop on Protocol Specification, Testing and Verification, 1989

• Clear separation between
• the essential complexity (the specification of a protocol)
• the accidental complexity of the implementation

• Thus making it easier to evolve the specification to meet new requirements

05/04/2024

CASE Tools

• Highly abstract and somehow mathematical nature of FDT
• difficult to train large numbers of telecom engineers

• Code generators at that time were black boxes
• Sometimes perfectly fitted the engineering needs => published success stories
• Most often missed at least one engineering constraint

• speed, code compacity, memory footprint, memory usage, interface with legacy software
or firmware

• Then we are stuck!
• Workarounds (risky w.r.t. FDT semantics)

• Bottom line: not worth the trouble

2. Model Driven
Architecture

Explicitly address the variability of the platform

Mid 90’s-Mid 2000’s

05/04/2024

MDA
• Separate the fundamental logic behind a specification from the

specifics of the particular middleware that implements it
• Main concepts

• CIM a Computation Independent Model focuses on the context and
requirements of the system without consideration for its structure or processing

• PIM a The Platform Independent Model focuses on the operational capabilities
of a system outside the context of a specific platform

• showing only those parts that can be abstracted out of that platform.
• PSM a Platform Specific Model augments a PIM with details

• relating to the use of a specific platform.
• PDM a Platform Description Model describes set of subsystems & technologies

that provide a coherent set of functionalities
• e.g.; CORBA, Java/EJB, C\#/.NET etc.

• Model Transformations are automated ways of modifying and creating models.

MDA

• Portability
• increasing application re-use and reducing the cost and complexity of application development

and management, now and into the future.
• Cross-platform Interoperability

• using rigorous methods to guarantee that standards based on multiple implementation
technologies all implement identical business functions.

• Platform Independence
• greatly reducing the time, cost and complexity associated with re-targeting applications for

different platforms ---including those yet to be introduced.
• Domain Specificity

• through Domain-specific models that enable rapid implementation of new, industry-specific
applications over diverse platforms.

• Productivity
• by allowing developers, designers and system administrators to use languages and concepts they

are comfortable with, while allowing seamless communication and integration across the teams.

05/04/2024

MDA
• Mostly a forward engineering approach

• models are transformed into implementation artifacts
• But PDM do not really exists!

• Not everything captured in the source models =>
• some modification of the generated code has to be carried out manually

• to take into account the missing concerns.
• nightmare from the maintenance point of view

• even with tricks to alleviate the burden of keeping them in synch

• But know-how not just in PIM but also in the design process
• Transformations can get much more complex than the PIM!

• But at the wrong level of abstraction
• QVT/ATL meant for relatively simple MT, cannot compete with modern Java/Kotlin/…

• Hard to use at scale: Model Transformation Languages are a dead end

3. Separation of
Concerns with

Models, Aspects
and Features

A model is the abstraction of an aspect of reality for handling a given concern
=> Multi-dimentional, explicit management of variability (not just the platform)

+Applicant()
+ApplicantInfo()
+MakeApplication()

-companyName : CString
-experience : CString
-reference1 : CString
-reference2 : CString
-reference3 : CString

Applicant

+Person()
+PersonInfo()

-personID : unsigned long
-surname : CString
-givenName : CString
-middleInit ial : char
-s treetAddress : CString
-postCode : CString
-countryname : CString
-eMailAddress : CString

Person

-is taught by

1

-teaches

0..*
+CourseSession()
+CourseSessionInfo()

-courseSessionID : unsigned long
-courseDate : uns igned long
-courseID : unsigned long
-courseLocation : CString

CourseSession

+AppStatus()
+AppStatusInfo()

-statusCode : char
-statusName : CString

AppStatus

+CourseRegistration()
+CourseRegistrationInfo()

-registrationDate : unsigned long
-completionFlag : bool
-confirmedDate : unsigned long

CourseRegistration

+Test()
+TestInfo()

-testScore : unsigned long

Test

+Application()
+ApplicationInfo()

-productNr : unsigned long
-certificationLevel : uns igned long
-applicat ionDate : unsigned long

Application

+PermittedStatusChange()
+StatusChangeInfo()

-fromStatus : char
-toStatus : char

PermittedStatusChange

+ExamSession()
+ExamSessionInfo()

-examSession : unsigned long
-examlocation : CString
-examDate : unsigned long

ExamSession

-gives0..*

-is achieved1

-is made by

1

-makes

0..*

-allows change in

0..*

-has a

1..*

-is taken by1

-takes0..*

-is made by a1

-made a1..*

-is in1

-is filled by0..*

-uses

1

-is used in

0..*

-applies to a0..*

-is for a1

+Exam()
+ExamInfo()

-examID : unsigned long
-cert if icationLevel : unsigned long

Exam

+Employee()
+GetCurrentAge()
+EmployeeInfo()

-jobType : CString
-roomNr : unsigned long
-department : CString
-division : CString
-jobTit le : CString
-manager : unsigned long
-headsDept : CString
-headsDivision : CString
-mobileNr : CString
-birthDate : unsigned long

Employee

+registrationform()

RegistrationForm

-uses*
*

ApplicantApplicantList PersonList

findApplicant()

ApplicationRegForm

Applicant()

findPerson()

addPerson()

addApplication()

Application()

MakeApplication()

ApplicationListEarly 2000’s-Mid 2010’s

Wai-Ming Ho, Jean-Marc Jézéquel, François Pennaneac'h, Noël Plouzeau:
A toolkit for weaving aspect oriented UML designs. AOSD 2002

05/04/2024

Modeling and Weaving

Design
Model

Use Case
Model

Security
Model

QoS
Model Reliability

Model

Data
Model

Test
Model

UI
Model

Platform
Model

Code
Model

tester

Challenges:
-Product Families
-Reuse of
Weaving Process

-Automatic Weaving

Challenges:
-Product Families
-Reuse of
Weaving Process

-Automatic Weaving

Jean-Marc Jézéquel:
Model driven design and
aspect weaving. Software
& System Modeling 7(2)
2008

Feature Modeling

05/04/2024

Orthogonal Variability
+Applicant()
+ApplicantInfo()
+MakeApplicat ion()

-companyName : CString
-experience : CString
-reference1 : CString
-reference2 : CString
-reference3 : CString

Applicant

+Person()
+PersonInfo()

-personID : unsigned long
-surname : CString
-givenName : CString
-middleInitial : char
-streetAddress : CString
-postCode : CString
-countryname : CString
-eMailAddress : CString

Person

-is taught by

1

-teaches

0..*
+CourseSession()
+CourseSessionInfo()

-courseSessionID : unsigned long
-courseDate : unsigned long
-courseID : unsigned long
-courseLocation : CString

CourseSession

+AppStatus()
+AppStatusInfo()

-statusCode : char
-statusName : CString

AppStatus

+CourseRegistration()
+CourseRegistrationInfo()

-registrationDate : unsigned long
-completionFlag : bool
-conf irmedDate : unsigned long

CourseRegistration

+Test()
+TestInfo()

-testScore : unsigned long

Test

+Application()
+ApplicationInfo()

-productNr : unsigned long
-cert ificationLevel : unsigned long
-applicationDate : unsigned long

Application

+PermittedStatusChange()
+StatusChangeInfo()

-fromStatus : char
-toStatus : char

PermittedStatusChange

+ExamSession()
+ExamSessionInfo()

-examSession : unsigned long
-examlocat ion : CString
-examDate : unsigned long

ExamSession

-gives0..*

-is achieved1

-is made by

1

-makes

0..*

-allows change in

0..*

-has a

1..*

-is taken by1

-takes0..*

-is made by a1

-made a1.. *

-is in1

-is f illed by0..*

-uses

1

-is used in

0..*

-applies to a0..*

-is for a1

+Exam()
+ExamInfo()

-examID : unsigned long
-certificationLevel : unsigned long

Exam

+Employee()
+GetCurrentAge()
+EmployeeInfo()

-jobType : CString
-roomNr : unsigned long
-department : CString
-division : CString
-jobTitle : CString
-manager : unsigned long
-headsDept : CString
-headsDivision : CString
-mobileNr : CString
-birthDate : unsigned long

Employee

+registrationform()

RegistrationForm

-uses*
*

Tewfik Ziadi, Jean-Marc Jézéquel:
Software Product Line Engineering with the UML:
Deriving Products. Software Product Lines 2006

SoC with Models, Aspect & Features
• Modeling is the activity of separating concerns into aspects
• Design is weaving of these aspects into a detailed design model

• Using eg Design Patterns
• MDE is about mechanizing this design process

• Making it possible to change one’s mind on which version of which variant of any
particular aspect she wants in the system. And she wants to do it cheaply, quickly
and safely.

• when a new product has to be derived from the product-line, we can
automatically replay the design process, just changing a few things here and
there

• Delay decision until runtime => Self Adaptive Systems, aka Dynamic SPL
• B Morin, O Barais, G Nain, JM Jézéquel. Taming Dynamically Adaptive Systems using models and aspects. ICSE 2009

05/04/2024

SoC with Models, Aspect & Features

• Cleanly separating concerns of a system is not always completely
straightforward

• But difficulty proportional to the inherent complexity of the problem at hand
• Weaving a single aspect is pretty straightforward, weaving a second

one at the same join point is another story
• Depending on how you define join point matching mechanism, detection can

get undecidable and/or advice composition tricky
• Missing associativity and commutativity for the weaving operator

• No hope for a fully general purpose, meta-model independent,
model-level aspect weaver

• Specific solutions might exist and be valuable though

4. Domain Specific
Languages &

Software
Language

Engineering

Provide a language to each stakeholder to express variable problems/solutions
=> lift the composition at the language (or meta-model) level

Early 2010’s-?

05/04/2024

« Another lesson we should have learned from the recent past is that the
development of 'richer' or 'more powerful' programming languages was a
mistake in the sense that these baroque monstrosities, these
conglomerations of idiosyncrasies, are really unmanageable, both
mechanically and mentally. »

« I see a great future for very systematic and very modest
programming languages »

23

aka Domain-
Specific Languages1972 ACM Turing Lecture,

« The Humble Programmer »
Edsger W. Dijkstra

Domain Specific Languages

• Targeted to a particular kind of problem
• with dedicated notations (textual or graphical), support (editor, checkers, etc.)

• Promises: more « efficient » languages for resolving a set of specific
problems in a domain

• Each concern described in its own language => reduce abstraction gap
• Emergence of the Software Language Engineering (SLE)

• application of systematic, disciplined, and measurable approaches to the
development, use, deployment, and maintenance of software languages

24

05/04/2024

Example: jHipster
• Development platform to generate, develop and deploy Spring Boot +

Angular Web applications and Spring microservices.
• Goal is to generate a complete and modern Web app or microservice

architecture, unifying:
• A high-performance and robust Java stack on the server side with Spring Boot
• A sleek, modern, mobile-first front-end with Angular and Bootstrap
• A robust microservice architecture with JHipster Registry, Netflix OSS, ELK

stack and Docker
• A powerful workflow to build your application with Yeoman, Webpack/Gulp

and Maven/Gradle
• Use of 40+ different DSLs!

• But you already know most of them…

HTML

• Domain: web (markup)

26

05/04/2024

CSS

• Domain: web (styling)

27

SQL

• Domain: database (query)

28

05/04/2024

Maven

• Domain: software building

29

Lighthttpd configuration file

• Domain: web server (configuration)

30

05/04/2024

Regular expression

• Domain: strings (pattern matching)

31

DSL/Software Language Engineering

• New DSLs can nowadays easily be developed using a language
workbench

• Languages as first-class entities that can be extended, composed,
and manipulated as a whole. Melange (Degueule et al. 2015)

• Co-develop a set of related DSLs
• Globalization of modeling languages (Combemale et al.2014)

• Allowing eg a system engineer to analyze a system property that requires
information scattered in models expressed in different DSLs.

05/04/2024

DSL/Software Language Engineering

• GEMOC Studio http://gemoc.org/studio.html
• metaprogramming approaches and associated execution engines to design and

execute the behavioral semantics of executable modeling languages,
• efficient and domain-specific execution trace management services,
• model animation services,
• advanced debugging facilities such as forward and backward debugging (i.e.

omniscient debugging), timeline, etc.
• coordination facilities to support concurrent and coordinated execution of

heterogeneous models
• an extensible framework for easily adding new execution engines & runtime services

DSL/Software Language Engineering

• Software languages are software too
• Inherit all the complexity of software development in terms of maintenance,

evolution, user experience, etc.
• Requires specialized knowledge for conducting the development of complex

artifacts such as grammars, metamodels, interpreters, or type systems
• Lot of progress since Dijktra’s time, but still…

• Globalization of DSLs
• Relationships among the languages will need to be explicitly defined in a form

that corresponding tools can use to realize the desired interactions.

05/04/2024

5. Data-Centric
Socio-Technical

Systems

Variability: you don’t know the model beforehand
=> you have to learn it from the data!

Mid 2010’s-?

No longer just a priori Engineering Models
• Engineering Models

• prescriptive during the design process of a system
• become descriptive once the system is built

• Scientific Models
• representations of some aspects of a phenomenon of the real world
• Descriptive but once validated can become Predictive

• If computer based simulation is needed (n-body problem) also Engineering models

• Inductive Models (built from Data and Machine Learning)
• Descriptive of a current or past relationship
• Predictive when given some hypothetical input data
• Prescriptive if they are used in a larger system to make decisions

• How to organize them?

05/04/2024

Scope

Socio-Technical System

Data

External
Data

Predictive
Model

Descriptive
Model

Running
Software

Input /
Sensor Data

Output / Actuator
Data

Measured
Data

State

Prescriptive
Model

A

B

C

Generalization,

E

Analysis,
decision,
and change

G

Enactment

J

Software
(Code, Config., …)

Deployment

F

H

I

D

Generation

Input
processing

Preparation for

Other interplay

prediction

Models

calibration

Output
processing

A Hitchhiker's Guide to Model-Driven
Engineering for Data-Centric Systems
Combemale et al. IEEE Software, 2020

MODA
framework

05/04/2024

05/04/2024

Integrating past/present/future

• DataTime Framework (Lyan et al. MODELS 2021)
• optimized structure of the time series

• capturing the past states of the system, possibly evolving over time
• ability to get the last available value provided by the system's sensors
• a continuous micro-learning over graph edges of a predictive model

• query future states, either locally or globally, thanks to a composition law
• support for what-if scenarios

05/04/2024

Some Challenges and Opportunities
• What methods for designing the data processing pipeline?

• from observations to decisions

• How can we control data quality through the entire pipeline?
• How can ML techniques be used to support design decisions?
• How can ML techniques be used w.r.t. online data processing?

• measurement overhead needs to be kept low

• How can we systematically deal with data uncertainty?
• …

Institut de Recherche en Informatique et Systèmes Aléatoires

@irisa_labwww.irisa.fr

All these ideas have been developed with all my
colleagues of the DiverSE team at IRISA/Inria

• In particular M. Acher, B. Combemale, O. Barais

Acknowledgement

@jmjezequel

