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What is Floating-Point Arithmetic
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What is Floating-Point Arithmetic

Continuous
R numbers
3/2 = 1.5

π = 3.141592653589 . . .√
2 = 1.414213562373 . . .

Discrete
Floating point (FP) numbers

3/2 = 1.5e0
π = 3.14159e0√
2 = 1.41421e0
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3/2 = 1.5

π = 3.141592653589 . . .√
2 = 1.414213562373 . . .

Discrete
Floating point (FP) numbers

3/2 = 1.5e0
π = 3.14159e0√
2 = 1.41421e0

±m0.m1m2 . . .mk−1︸ ︷︷ ︸
significand

·βE

E is exponent, k precision, β radix
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Rounding

How to represent a real number in machine?

π ≈ 3.14
π ≈ 3.141
π ≈ 3.1415
π ≈ 3.14159
π ≈ 3.141592
π ≈ 3.1415926

e ≈ 2.71
e ≈ 2.718
e ≈ 2.7182
e ≈ 2.71828
e ≈ 2.718281
e ≈ 2.7182818

±m0.m1m2 . . .mk−1︸ ︷︷ ︸
significand

·βE ,

E is exponent, k precision
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How to Round

Rounding modes:

Rounding Down (RD)
Rounding Up (RU)
Rounding toward Zero (RZ)
Rounding to the Nearest : ties to even (RN), ties to away (RA)

3.14 3.15

x = 3.14159

RD(x)
RZ(x)

RN(x), RA(x)

RU(x)

x = 3.145

RD(x)
RZ(x)

RU(x)
RA(x)

RN(x)
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Accuracy and Rounding

Accuracy
Mathematical x→ x̂ in FP arithmetic
Due to roundings, |x− x̂| > 0

2Em 2E(m+ 1)

x̂x

RN

RN(x)
x̂

RN

Table Maker’s Dilemma (TMD)
How to determine the accuracy

of the approximation x̂
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Floating-Point Environment

IEEE754-1985: binary FP numbers, rounding modes,
arithmetic operations
In total ∼ 70 operations

IEEE754-2008 : decimal FP numbers and operations,
recommendations for mathematical function implementations,
heterogeneous operations: mix precisions
In total ∼ 350 operations for binary arithmetic
Current situation: decimal and binary worlds,
intersect only in conversion
...next revisions (2018?): even more operations?
mix binary and decimals in one operation
provide more implementations of mathematical functions
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Implementation of Mathematical Functions

Why do we need more implementations of mathematical functions?

Mathematics

exp(x) = ex = lim
n→∞

(
1 +

x

n

)n
logb(x) = y; by = x

erf(x) =

∫ x

0
e−t

2
dt

Computer Science

Several implementations for each:
exp - correctly rounded
exp - faithfully rounded
exp - with accuracy ≤ 2−45

. . .

The existing libraries give only few implementations per function
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Contributions/Structure

1. Mixed-Radix Arithmetic and Arbitrary Precision Base Conversion

2. Automatic Generation of Mathematical Functions (Metalibm)
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Mixed-Radix Arithmetic

Radix conversion algorithm for Mixed-Radix Arithmetic
Correctly-rounded conversion from decimal character sequence to a
binary FP number (scanf analogue)
Research for fused multiply-add operation xy ± z
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Mixed-Radix Arithmetic

Radix Conversion
Two-steps algorithm:

1 Exponent computation is errorless
2 Compute mantissa with specified accuracy

Integer-based computations
Memory consumption is known in advance

Olga Kupriianova Towards a Modern Floating-Point Environment Dec 11, 2015 9/ 44



Mixed-Radix Arithmetic

Radix conversion algorithm for Mixed-Radix Arithmetic
Correctly-rounded conversion from decimal character sequence to a
binary FP number (scanf analogue)
Research for fused multiply-add operation xy ± z

Olga Kupriianova Towards a Modern Floating-Point Environment Dec 11, 2015 9/ 44



Mixed-Radix Arithmetic

Our scanf version
User input is arbitrarily long
No way to precompute the worst cases for the TMD
Algorithm with integer computations, no memory allocations
Two-ways scheme is used: fast easy rounding or slow hard
Two conversions: decimal-binary and binary-decimal
Gives correctly-rounded (CR) result for all the rounding modes
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Mixed-Radix Arithmetic

Radix conversion algorithm for Mixed-Radix Arithmetic
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Mixed-Radix Arithmetic

Mixed-radix FMA

xy ± z

2−4 · 139× 10−16 · 346− 23 · 42 = 10Em

Addition and multiplication within only one rounding
Worst cases search: reduce the iterations number with the use of
continued fraction theory and variable relations
Iterations reduced at ∼ 99%

Still about ∼ 16 000 000 000 iterations
First results obtained in ∼ 10 weeks of computations
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Code Generation for Mathematical Functions

1. Introduction & Motivation for Code Generation

2. Manual Function Implementation. Background

3. Metalibm: General Overview

4. Metalibm: Domain Splitting

5. Metalibm: Reconstruction for Vectorizable Code

6. Conclusion and Perspectives
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Existing Mathematical Libraries (libm)

Existing implementations

Intel’s Math Kernel Libraries
AMD’s libm
ARM’s mathlib
libmcr by Sun
. . .

glibc libm
CRLibm by ENS Lyon
newlib
OpenLibm for Julia
Yeppp!

All these libms are static
Only few implementations per function
Limited dictionary of functions

How to get
exp(x) with 40 accurate bits∫ x
0

sin t
t dt with 25 bits
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One Size Does not Fit All

Current request
Several performance/accuracy options
(“quick and dirty”, faithful, correctly-rounded)
Several portability options (SIMD instructions)

Some people are still not happy
More performance, less compliance

degraded accuracy
reduced domain

Functions not from standard libm (e.g.
∫ x
0

sin t
t dt, dilogarithm)

Who is going to write all these variants?
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Task

Rough Computations
3 precisions from IEEE754
∼ 50 functions in libm
∼ 5 accuracies for each precision
∼ 5 various approximations

I have to implement 1300 functions...

Each function implementation takes ∼ 1 man-month
It will take me more then 100 years to rewrite the libm

Generate parametrized implementations of mathematical functions
Metalibm
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Code Generation for Mathematical Functions

1. Introduction & Motivation for Code Generation

2. Manual Function Implementation. Background

3. Metalibm: General Overview

4. Metalibm: Domain Splitting

5. Metalibm: Reconstruction for Vectorizable Code

6. Conclusion and Perspectives
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How to Implement a Mathematical Function

Elementary functions have transcendental values

exp(1) = 2.71828182845904523536028747135266 . . .

log2(10) = 3.32192809488736234787031942948939 . . .

Compute polynomial approximations
Lagrange, Newton, Chebyshev

Remez algorithm

error bounds
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Approximation Polynomials

f = exp
Compute different approximations on [0, 5]

deg(p1) = 7, deg(p2) = 8, deg(p3) = 9

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0 1 2 3 4 5

p1 p2 p3
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Approximation Polynomials

f = exp
Compute different approximations on [0, 5]

deg(p1) = 7, deg(p2) = 8, deg(p3) = 9

Larger domain, larger degree

Conclusion: approximate only on small domains
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Argument Reduction. Example

Example
Implement f(x) = ex

Exploit the algebraic property ea+b = ea · eb

ex = 2
x

log 2 = 2

⌊
x

log 2

⌉
· 2

x
log 2
−
⌊

x
log 2

⌉
= 2E · ex−E log 2 = 2E · er

r ∈
[
− log(2)

2
,
log(2)

2

]

Olga Kupriianova Towards a Modern Floating-Point Environment Dec 11, 2015 17/ 44



Argument Reduction. Example

Example
Implement f(x) = ex

Exploit the algebraic property ea+b = ea · eb
P. Tang’s table-based method

ex = 2m · 2i/2t · er∗ , r∗ ∈
[
− log(2)

2 · 2t
,
log(2)

2 · 2t

]
m ∈ Z, t ∈ Z, 0 ≤ i ≤ 2t − 1, 2i/2

t
in table
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Argument Reduction. Does It Always Work?

Useful algebraic properties:
exp(a+ b) = exp(a) · exp(b)

log(ab) = log(a) + log(b)
sin(a+ 2πk) = sin(a)

. . .

How to implement Dickman’s function?

uρ′(u) + ρ(u− 1) = 0, ρ(u) = 1 for 0 ≤ u ≤ 1

Piecewise-polynomial approximation
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General Scheme

x

f(x)

Argument Reduction

Reconstruction

Polynomial Table

Reduced argument r Tabulation index i

x

f(x)

Domain Splitting

Reconstruction

Polynomial Table

Subdomain index ix

And filtering of special cases
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Structure

parameters
function
domain
final accuracy
max poly degree
table size
...

implementation

C code for function

Metalibm
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What is Metalibm

Academic Prototype
Open-Source code generator for parametrized libm functions
Part of ANR Metalibm Project
Available at http://metalibm.org/

Objectives
Push-button tool to implement functions f : R→ R

automatic argument reduction
automatic polynomial approximation
automatic domain splitting

Support black-box functions
no function dictionary
specify function by an expression or external code

⇒ use only C3 functions that can be evaluated over intervals
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Generation Levels

1

2

3

parameters
C3 function
domain
final accuracy
max poly degree
table size

implementation

C code for function

Metalibm

1 - Properties detection
2 - Domain splitting
3 - Approximation
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Property Detection: Example on Exponential

Task
Generate f(x) on [a, b] with accuracy ε̄

Generation hypothesis
f(x) is of type βx, unknown β
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Property Detection: Example on Exponential

Task
Generate f(x) on [a, b] with accuracy ε̄

Generation hypothesis
f(x) is of type βx, unknown β

Finding the base

β = exp
(
log(f(ξ))

ξ

)
, for some ξ ∈ [a, b]

Decision of acceptance

ε =
∥∥∥ βx

f(x) − 1
∥∥∥[a,b]
∞

|ε| < |ε̄|
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Property Detection: Example on Exponential
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Property Detection

Currently detectable properties
Exponential f(a+ b) = f(a)f(b)

Logarithmic f(ab) = f(a) + f(b)

Periodic f(x+ C) = f(x)

Symmetric f(x) = f(−x) and f(x) = −f(x)

Sinh-like family f(x) = βx − β−x
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When property detection does not work

Argument reduction
Step is based on mathematical properties:
na+b = na · nb, sin(x+ 2π) = sin(x), log(a · b) = log(a) + log(b), . . .

What properties do we know for erf(x), or a black-box function?

When argument reduction does not work
Piecewise-polynomial approximation

Algorithm to split the domain
Reconstruction becomes an execution of if-statements
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Problem Statement

Task:
Split the domain [a, b] into I0, I1, . . . , IN
Approximation degrees on Ik: dk ≤ dmax

function f

initial domain [a, b]

accuracy ε̄

degree bound dmax
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Problem Statement

Task:
Split the domain [a, b] into I0, I1, . . . , IN
Approximation degrees on Ik: dk ≤ dmax

function f

initial domain [a, b]

accuracy ε̄

degree bound dmax

Naive Solution:
Split domain into N equal parts, N is large.
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Problem Statement

f = asin, [a, b] = [0, 0.85], dmax ≤ 8, ε̄ = 2−52
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Problem Statement

The quantity of intervals N → min

Classic problem:
having f , [a, b] and d
find a polynomial p and accuracy ε

We need:
having f , [a, b], bounds ε̄ and dmax

find I and polynomial p

Solution:
compute Remez polynomials and check the constraints?
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Problem Statement

Remez

Test

OK Bisect

Olga Kupriianova Towards a Modern Floating-Point Environment Dec 11, 2015 29/ 44



Domain Splitting

Theorem of de la Vallée-Poussin:
a continuous function f on [a, b],
its approximating polynomial p
find the bounds for optimal error

-6e-05

0

6e-05

0 0.2 0.4 0.6 0.8 1

error bounds
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Domain Splitting

Interpolation on Chebyshev nodes

Test

OK Remez Bisect

OK Bisect
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Domain Splitting
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Domain Splitting
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Domain Splitting
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Domain Splitting. Our method

Bisection

f = asin, [a, b] = [0, 0.85], dmax ≤ 8, ε̄ = 2−52
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Domain Splitting. Our method

Our optimized method

f = asin, [a, b] = [0, 0.85], dmax ≤ 8, ε̄ = 2−52

 0

 0.5

 1

 1.5

 2

 0  0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5

 0
.5

5

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

splitting
asin(x)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9
degrees

18 intervals

Olga Kupriianova Towards a Modern Floating-Point Environment Dec 11, 2015 31/ 44



Some results

measure f1 f2 f3 f4
subdomains in bisection 24 15 9 12

subdomains in our method 18 10 5 8
subdomains saved 25% 30% 44 % 30%
coefficients saved 42 34 30 28

memory saved (bytes) 336 272 240 224
memory saved (%) 23% 35% 38.5% 45%

name f ε̄ domain I dmax

f1 asin 2−52 [0, 0.85] 8

f2 asin 2−45 [−0.75, 0.75] 8

f3 erf 2−51 [−0.75, 0.75] 9

f4 erf 2−45 [−0.75, 0.75] 7
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Problem Statement

Reconstruction gets tricky with arbitrary domain splitting:
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Problem Statement

Reconstruction gets tricky with arbitrary domain splitting:

f(x) ≈ pk(x), x ∈ Ik, k ∈ [0, N ] ∩ Z

∀x ∈ [a, b] find k such that x ∈ Ik

a b
0 1 2 3 4 5 6 7 8 9

x

f ≈ p2(x)
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Problem Statement

/∗ compute i so that a[i] < x < a[i+1] ∗/
i=31;
if (x < arctan_table[i][A].d) i−= 16;
else i+=16;
if (x < arctan_table[i][A].d) i−= 8;
else i+= 8;
if (x < arctan_table[i][A].d) i−= 4;
else i+= 4;
if (x < arctan_table[i][A].d) i−= 2;
else i+= 2;
if (x < arctan_table[i][A].d) i−= 1;
else i+= 1;
if (x < arctan_table[i][A].d) i−= 1;
xmBihi = x−arctan_table[i][B].d;
xmBilo = 0.0;

Listing 1: Code sample for arctan function from crlibm library
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Vectorizable Reconstruction

Splitting of
the domain [a, b]:

a b
0 1 2 3 4 5 6 7 8 9

x

f ≈ p2(x)
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Vectorizable Reconstruction

To determine the subinterval we
build a mapping function

P (x) = k, x ∈ Ik

a b

0
1
2
3
4
5
6
7
8
9
10

I0
I1

I2
I3
I4

I5
I6

I7
I8
I9
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Vectorizable Reconstruction

Interpolation polynomial
with a posteriori condition check

a b
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Vectorizable Reconstruction

mapping function

P (x) = k, x ∈ Ik

p(x) : bp(x)c = k, x ∈ Ik

a b

p(x)
bp(x)c

0
1
2
3
4
5
6
7
8
9
10

I0
I1

I2
I3
I4
I5

I6
I7
I8
I9
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Example

0
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p

f = asin(x); dom = [-0.75; 0];
ε̄ = 2−48; dmax = 10;
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A Posteriori Condition Check Fails

0

1
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p

f = atan(x); dom = [-π/2; 0];
ε̄ = 2−40; dmax = 8;
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How to Improve our Method
Interval Arithmetic approach:

a b

0
1
2
3
4
5
6
7
8
9
10
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How to Improve our Method
Interval Arithmetic approach:

a b

0
1
2
3
4
5
6
7
8
9
10 Interval system of linear algebraic

equations


1 a0 · · · an0
1 a1 · · · an1
...

...
. . .

...
1 an · · · ann

 ·

c0
c1
...
cn

 =


b0

b1
...
bn


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How to Improve our Method
Interval Arithmetic approach:

a b

0
1
2
3
4
5
6
7
8
9
10 Interval system of linear algebraic

equations


1 a0 · · · an0
1 a1 · · · an1
...

...
. . .

...
1 an · · · ann

 ·

c0
c1
...
cn

 =


b0

b1
...
bn



tolerance solution:
united solution:

Ξtol =
{
c ∈ RN | ∀a ∈ a, ∀b ∈ b, Ac = b

}
Ξuni =

{
c ∈ RN | ∃a ∈ a, ∃b ∈ b, Ac = b

}
S. Shary HdR thesis “Интервальные алгебраические задачи и их численное решение”
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Achievements

Generate the specified function versions in few minutes
Detect algebraic properties automatically
Use the improved (optimized) domain splitting algorithm
Generation of the vectorizable implementations has started
Extra bonuses: composite functions and a set of function variants
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Conclusion

Paving the road for mixed-radix arithmetic:
Novel algorithm for radix conversion
Algorithm for conversion from decimal character sequence to a
binary FP number
Worst cases search for FMA

Code generation for mathematical functions:
Novel algorithm for domain splitting
Novel approach to generate vectorizable implementations
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Future Work

Mixed-Radix arithmetic
Finish the worst cases search for FMA
Start its implementation
Research on other arithmetic operations
Obtain test/comparison results for our scanf

Code generation of mathematical functions
Filtering of special cases
Improve vectorizable reconstruction:

Interval arithmetic for a priori approach
Overlapping intervals
Connection between reconstruction and domain splitting

Add more parameters
Integrate with N.Brunie’s version
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Perspectives

Long-term Future
Integrate Metalibm to the glibc/gcc
Apply the similar algorithms for filter generation
Formal proof for scanf algorithm
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