
MemProf: a Memory Profiler for 

NUMA Multicore Systems 

Renaud Lachaize, Baptiste Lepers, Vivien Quéma

(presented at USENIX ATC 2012)



Machines are NUMA

8GB/s 160 cycles 3GB/s 300 cycles

Node 1 

Node 2 Node 3

Memory Memory

Memory Memory

CPU0 CPU1

CPU2 CPU3

2



Applications ignore NUMA

Memory

Memory

Application

3



That is problematic

4



That is problematic

5



Application-Agnostic Heuristics exist

• Thread scheduling and page migration (USENIX ATC’11)

• Thread Clustering (EuroSys’07)

• Page replication (ASPLOS’96)

• Etc.

6



… But they do not always improve 

performance

Example: Apache

7



We want to understand the causes 
of remote memory accesses

8



… In order to select an adequate 
optimization

• Custom allocation policy

• Memory replication

• Memory migration

• Memory interleaving

• Custom thread scheduling policy

9



Can we understand the causes of 

remote memory accesses 

using existing profilers?

10



Let’s take an example

11



FaceRec

• Facial recognition engine 

• 63% of DRAM accesses are remote

• 42% gain when modified based on MemProf output

12



Existing profilers point out

•The functions that perform remote accesses

•The memory pages that are remotely accessed

•The global static objects that are remotely accessed

13



Existing profilers point out
(FaceRec)

•The functions that perform remote accesses
– transposeMultiplyMatrixL = 98% 

•The memory pages that are remotely accessed
– 1/3 of the allocated pages

•The global static objects that are remotely accessed
– No such object

14



15

What can we conclude?

•Should we change the allocation policy?
– No idea

•Should we migrate memory pages?
– No idea

•Should we replicate memory pages?
– No idea

•Etc.



So… We need a new profiler!

16



We designed MemProf, a profiler 

that points out

•Remotely accessed objects

•Thread-Object interaction patterns

17



Objects

• Global statically allocated objects
• Dynamically allocated objects
• Memory-mapped files
• Code sections mapped by the OS
• Thread stacks

18



Thread-Object interaction patterns 

19



Scripting

20

• A simple script computing the average time between 
two memory accesses by distinct threads to an object



What can we do with MemProf?

21



We can detect that an object is simultaneously read by 
several remote threads…

Thread T0

(node N0)

Allocate

Obj1 on node N0

Thread T1

(node N1)

Read Obj1

(remotely)

Read Obj1

(remotely)

Thread T2

(node N2)

Read Obj1

(remotely)

Read Obj1

(remotely)

22



And thus decide to replicate this object on several nodes

Thread T0

(node N0)

Allocate and 
replicate

Obj1

Thread T1

(node N1)

Read Obj1

(locally)

Read Obj1

(locally)

Thread T2

(node N2)

Read Obj1

(locally)

Read Obj1

(locally)

23



This is the pattern observed in 
FaceRec

• 193 matrices 
• 1 matrix induces 98% of the remote accesses

• This matrix is first written and then read by all threads

• We replicate the matrix (10 lines of code)

• Performance improvement: 42%

24



We can detect that an object is simultaneously read and written 
by several threads with a high latency 

Thread T0

(node N0)

Allocate

Obj1 on node N0

Thread T1

(node N1)

Read/Write Obj1
(remotely)

High latency

Read/Write Obj1
(remotely)

High latency

Thread T2

(node N2)

Read/Write Obj1
(remotely)

High latency

Read/Write Obj1
(remotely)

High latency

25



And thus decide to interleave this object

Thread T0

(node N0)

Allocate

Obj1 with 
memory 

interleaved

Thread T1

(node N1)

Use Obj1
(locally/remotely)

Low latency

Use Obj1
(locally/remotely)

Low latency

Thread T2

(node N2)

Use Obj1
(locally/remotely)

Low latency

Use Obj1
(locally/remotely)

Low latency

26



This is the pattern observed in 
Streamcluster

• 1000 objects allocated 
• 1 represents 80% of remote memory accesses

• It is accessed read/write by all threads

• We interleave this object (1 line of code)

• Performance improvement: 161%

27



We can detect that threads do not share objects

Thread T1

(node N1)

Use Obj1

(remotely)

Use Obj2

(remotely)

Thread T2

(node N2)

Use Obj3

(remotely)

Use Obj4

(remotely)

Thread T0

(node N0)

Allocate
Obj1-4 

on node N0

28



And thus decide to change the allocation policy

Thread T1

(node N1)

Use Obj1

(node N1)

Use Obj2

(node N1)

Thread T2

(node N2)

Use Obj3

(node N2)

Use Obj4

(node N2)

Thread T0

(node N0)

Allocate
Obj1-2 on N1
Obj3-4 on N2

29



This is the pattern observed in 
Psearchy

• Remote accesses are done on private variables

• We forced local allocations (2 lines of code)
• Performance improvement: 8.2%

30



Last use case: Apache

31

• Apache is a popular Web server

• 75% of memory accesses are remote



Optimizing Apache with existing profilers

32

• Output of existing profilers:
– Functions that perform remote memory accesses:

– No function stands out; the top functions are related to memory operations 
and are called from many different places, on many different variables

– Some pages are accessed at different time intervals by different threads
– Some pages are simultaneously accessed by multiple threads (Apache 

threads are not supposed to share memory � memory allocation problem?)

– Possible optimizations:

– Page migration (5% performance decrease)
– Local memory allocation (same performance)

– Thread pinning (2% improvement)

% of total remote memory 

accesses

Function

5,8 memcpy

2,8 _zend_alloc_int



Optimizing Apache with MemProf

• Output of MemProf:
– Most remote memory accesses are performed on 2 types of objects:

• apr_pools variables
• Pointer relocation table 

– Each of these objects is shared between a set of threads belonging to the 
same process

• Possible optimization:
– Pin all threads belonging to the same process on the same node (20%

improvement)
• 10 lines of code

• Remote memory accesses: 10%

33



As a summary

• MemProf allows finding memory access patterns

• Knowing memory access patterns allows designing 
simple and efficient optimizations 

34



A word on the implementation 

35



36

Object lifecycle tracking
•Overload allocation functions
•Kernel hook

Event collection

Thread lifecycle tracking
•Kernel hooks

Memory access tracking
•IBS samples

Time t0 ; pid p0
Alloc/Free obj0

Time t1 ; pid p1
Mapping of binary 'X'

Time t2 ; tid ti2 ; pid p2
Creation of thread T

Time t3 ; tid ti3 ; pid p3
Mem. access on @virt

Ordered sets of events TEF and OEF

Range of
@virt OEF

TEFtid

Red-black tree

hashmap



MemProf – Online Profiling

37

• Memory access tracking
• IBS samples

• Object lifecycle tracking
• Overloading of allocation functions
• Kernel hooks

• Threads lifecycle tracking
• Kernel hooks



MemProf – Offline Analysis

38

• Sort samples by time

• Match memory addresses with objects 
• Leverages object lifecycle tracking
• Leverages thread lifecycle tracking

• Create object-thread interaction flows
• Leverages thread lifecycle tracking



Overhead

• 5% slowdown

• 2 sources of overhead:
– IBS sampling collection: one interrupt every 20K cycles

– Object lifecycle tracking

39



Conclusion
• Remote memory accesses are a major source of 

inefficiency

• Existing profilers do not pinpoint the causes of remote 
memory accesses

• We propose MemProf, a memory profiler that allows:
– Finding which objects are accessed remotely
– Understanding the memory access patterns to these 

objects

• Using MemProf, we profiled and optimized 4 applications 
on 3 machines
– Optimizations are simple: less than 10 lines of code
– Optimizations are efficient: up to 161% improvement

40



QUESTIONS?


