
Exercise & Case study (Telecom Systems)
proposal for solutions
F. Kordon & C. Girault - MATCH School

Installation - if you did not run Exercise 1 on your account.
First, you must get all the information (models for this exercise and formalisms) to be
operational. To do so, please type first (when logged under Unix) the following
commands :

>cd
>cp -r /export/home/profesores/kordon/MACAO .

Then, typing “ls”, you notice a MACAO folder in your home directory. All required
information is there. When you run Macao under your Home Directory and open
models, You will get into this MACAO that contains two folders :

- FORMALISMS that contains the AMI-Net description (you go there when you
create a new model),

- MODELS in which we will insert (if required) directories containing models
for exercises.

Installation - if you did run Exercise 1 on your account.
First, you must get all the information (models for this exercise and formalisms) to be
operational. To do so, please type first (when logged under Unix) the following
commands :

>cd
>cd MACAO/MODELS
>cp -r /export/home/profesores/kordon/MACAO/MODELS/EXERCISE_TELECOM .
>cp -r /export/home/profesores/kordon/MACAO/MODELS/SOLUTION_TELECOM .

All should read this.
1) In the MACAO/MODELS folder, you will find the EXERCISE_TELECOM

folder containing two models. File identifier starts with a number that
corresponds to the question you are required to use the model.

2) In the MACAO/MODELS folder, you will find the SOLUTION_TELECOM
folder containing modeling solutions. If you want to check your solution or get
tired of looking for it, you can get them. File identifier starts with a number that
corresponds to the related question.

3) There is an annex (at the end of this document) that provides you with some
basics about PROD queries (menu «Evaluation of the RG with PROD/Expert
mode/Build a query...» in CPN-AMI).

1. Design of a safe channel
We would like to design a safe channel based on a single cable line. The usual problem
with a unique cable is that electric signals coming from various origins may provoke
collisions (message is lost). To ensure a safe communication on the channel, we
propose the architecture of Figure 1.

interlocutor interlocutor

main cable

control cable

Controller

Figure 1: Structure of a line.

The channel relates two interlocutors that communicate together. It is composed of a
line and a controller that manages shared access to the channel main cable (128 bits

page 1



Exercise & Case Study (Telecom Systems)

width). The controller is connected two each interlocutor with a discrete control cable
(3 bits width). There is one control cable per interlocutor. Interlocutors cannot send a
signal at the same time : they must ask first the line to the controller that accepts or
refuse (according to an implemented strategy).

Interlocutors have to respect the following protocol :
(1) the default state for an interlocutor is listening to the main cable,
(2) when it wants to emit a signal, the interlocutor asks for the main cable,
(3) if the controller provides the main line, then, the interlocutor sends its message

and waits for an acknowledge,
(4) if the controller refuses the main line, then the interlocutor listens to the main

cable (a message should arrive) and retries later on,
(5) interlocutors only send one message at a time,
(6) when an interlocutor gets its acknowledge, it frees the line for another use,
(7) Only messages passing through the main cable are acknowledged1.

The table above provides the identification of signals passing through the cables.

Signal direction2

Signal name Signification Interlocutor Controller

AMC Ask for main cable

RMC Refuse main cable

PMC Provide main cable

MSG Message

ACK Acknowledge

FMC Free the main cable

Signal between two interlocutors are transmitted using the main cable. Other signals are
transmitted on the control cables.

Some typical execution scenarii are provided hereafter to illustrate the behavior of a
interlocutor according to specific situations.

Figure 2 illustrates the
behavior of a interlocutor that
initiates a communication
when the controller provides
the main cable. Then, the
answer to AMC (demand) is
PMC. The interlocutor (here,
1) then sends the message to
the other interlocutor (here,
2) and waits for an

Interlocutor1Controller

MSG
ACK

Interlocutor2

AMC
PMC

FMC

Figure 2: OMT-like scenario of an accepted connection.

acknowledge. When it gets the acknowledge, it releases the main cable (FMC).

Figure 3 shows the behavior
of an interlocutor when the
controller refuses the main
cable (RMC). It means that
the other interlocutor (here,
2) obtained the cable and is
sending data. The interlocutor
(here, 1) then waits for the
incoming message and

Interlocutor1Controller

MSG
ACK

Interlocutor2

AMC
RMC

Figure 3: OMT-like scenario of a refused connection.

1 Acknowledgemen will be usefull further in the study.
2  and  provides the direction of the signal,  means that the signal is exchanged between two

interlocutors.

page 2



MATCH school - Jaca, Sept 1998

acknowledges it. The interlocutor will try later to get the main cable.

The aim of this study is to model this system (the controller and the interlocutors) with
P/T nets in order to validate it. To do so, we model separately the behavior of each
components of the safe channel. Then, we connect them together to study the system.

One modeling technique is to
let Petri net modules
communicate by means of
communication places. Signal
identified in the table are a
good candidate for these
communication places. We
thus identify six places that
will act as interfaces between
the two components of the
system : AMC, RMC, PMC,
MSG, ACK and FMC. The
signification of these places
is “some signal is in” (signal
AMC for place AMC, etc.).

FMC

AMC

I_receive

I_free

I_emit

I_refused

I_ask

wait_ack

wait_cablelisten
2

RMC

ACK

PMC

MSG

Figure 4: Petri net modeling interlocutors in the system.

We then provide the Petri net
that models interlocutors in
the system (Figure 4).
Interfaces places are bolded.
Each interlocutor listen to the
main cable (place listen).
When it asks for the cable (transition I_ask), it may get either a RMC (and then goes
back to listen) or a PMC. It then emit the message and waits for its acknowledge. When
it comes, the interlocutor frees the line (transition I_free). There are two interlocutors
(on each end of the channel) and thus two tokens3 in listen.

Question 1
Complete the Petri net model by inserting the behavior of the controller.

Answer: The Petri net model should be.

C_refuse

C_free

C_provide

cable_free

1

cable_used

FMC

AMC

I_receive

I_free

I_emit

I_refused

I_ask

wait_ack

wait_cablelisten2

RMC

ACK

PMC

MSG

3 This works only because there are two interlocutor.

page 3



Exercise & Case Study (Telecom Systems)

Question 2
Check the T-invariants with GreatSPN services (under CPN-AMI) on the complete
model. Can you provide a firing sequence and an interpretation for them?

Answer: The first T-invariant corresponds to the behavior of an interlocutor who does
not get the main cable.

C_refuse 1

I_refused

1

I_ask

1AMC

RMC

listen2

The second T-Invariant corresponds to the scenario where an interlocutor gets the line,
sends its message and gets the acknowledge.

C_free
1

C_provide
1

I_receive
1

I_free

1

I_emit

1

I_ask

1

wait_cable

wait_ackFMC

cable_free

1

AMC

PMC

ACK

MSG

listen2

Question 3
Check the P-invariants with GreatSPN services on the complete model. Some of them
can be interpreted. Can you provide an interpretation?

Answer: The first one corresponds to the status of the main cable from the synchronizer
point of view (free/reserved).

cable_free

1
1

cable_used

1

C_free

C_provide

The second one corresponds to state of the main cable : Free, reserved, in use, to be
released.

page 4



MATCH school - Jaca, Sept 1998

cable_free

1
1

FMC

1

wait_ack

1
PMC

1

C_provide

I_emit

I_free

C_free

The third corresponds to the state of the main cable from the user point of view..

cable_free

1
1

FMC

1

ACK

1

PMC

1

MSG

1

I_receive

I_emit

C_provide

C_free

I_free

The fourth one corresponds to the automata an interlocutor.

wait_ack

1

wait_cable

1

listen2

1
I_ask

I_refused

I_emit

I_free

The fifth one is difficult to interpret.

page 5



Exercise & Case Study (Telecom Systems)

wait_cable

1

listen2

1

ACK

1
MSG

1

I_free

I_ask

I_refused

I_emit

I_receive

This sixth one is difficult to interpret.

AMC

1

wait_ack

1

listen2

1

RMC

1

PMC

1

C_refuse

I_ask

I_refused

I_free

I_emit

C_provide

The seventh one shows the signal flow exchanged in the protocol
(AMC/PMC/MSG/ACK/RMC or AMC/PRMC)

AMC

1

listen2

1

RMC

1

ACK

1

PMC

1

MSG

1

I_emit

C_provide

I_ask

I_receive

I_free

I_refused

C_refuse

page 6



MATCH school - Jaca, Sept 1998

Question 4
Subtract P-invariants two to P-invariant three. What can you deduce? do you observe
something similar with others couple of invariants?

Answer: Place wait_ack is implicit. Some invariants are thus replicated 2/3, 4/5, 6/7
these three couples are made of the same invariant, once with wait_ack, once without it.

Question 5
Is the net bounded? use the corresponding tool to check it.

Answer: The bound place service provides the following result :

cable_free : [0 ... 1]
cable_used : [0 ... 1]
FMC : [0 ... 1]
AMC : [0 ... 2]
wait_ack : [0 ... 1]
wait_cable : [0 ... 2]
listen : [0 ... 2]
RMC : [0 ... 2]
ACK : [0 ... 1]
PMC : [0 ... 1]
MSG : [0 ... 1]

You may observ that RMC is 2-bounded. Using PROD, you easaly find a path that lead
to this state. It occures when an interlocutor releases the line and ask for a ew line
immediatly before the controller takes the FMC signal into consideration.

Question 6
Some properties are stated on the Safe Channel. They are listed below :

P1 There is only one electric signal at a time in the main cable.
P2 There can never be two interlocutors emitting in the main cable at the same

time.
P3 If the interlocutors do not crash elsewhere, the protocol between components of

the channel does not introduce communication problems.

Translate these textual properties in terms of Petri net properties to verify.

Answer:

P1: places MSG and ACK should never been simultaneously marked.

P2: Place wait_ack is 1-bounded.

P3: The Petri net is deadlock-free.

Question 7
What formal properties can you use to validate properties P1 and P2?

Answer:

P1: The third P-invariant (cable_free+FMC+ACK+PMC+MSG = 1) insures that
the two places cannot be simultaneously marked.

P2: The tool computes that the place waits_ack is 1-bounded.

Question 8
Generate the reachability graph. Using model checking techniques (with PROD), try to
verify the corresponding properties. You should use the expert mode and type your
queries using the information provided in annex.

Answer:

P1: the query «query verbose node ((card(MSG )== 1) and (card (ACK) == 1))»
provides no result.

page 7



Exercise & Case Study (Telecom Systems)

P2: The query.«query verbose node (card(wait_ack )> 1)» provides no result.

P3: PROD says that there is no terminal node.

Question 9
You can have a look on the Reachability graph if you want.

Answer: Here is the reachability graph computed by PROD and displayed with dot.
The initial state is noted :

page 8



MATCH school - Jaca, Sept 1998

prod_graph

Graph generated by PROD in CPN-AMI

 21 nodes
 40 arcs

  cable_used: <..>
  wait_ack: <..>
  wait_cable: <..>
  RMC: <..>
  ACK: <..>

  cable_used: <..>
  FMC: <..>
  AMC: <..>
  wait_cable: <..>
  listen: <..>

  cable_used: <..>
  wait_ack: <..>
  wait_cable: <..>
  RMC: <..>
  MSG: <..>

  cable_used: <..>
  AMC: <..>
  wait_ack: <..>
  wait_cable: <..>
  ACK: <..>

  cable_used: <..>
  FMC: <..>
  listen: 2<..>

  cable_used: <..>
  wait_cable: 2<..>
  RMC: <..>
  PMC: <..>

  cable_used: <..>
  AMC: <..>
  wait_ack: <..>
  wait_cable: <..>
  MSG: <..>

  cable_used: <..>
  wait_ack: <..>
  listen: <..>
  ACK: <..>

  cable_used: <..>
  AMC: <..>
  wait_cable: 2<..>
  PMC: <..>

  cable_free: <..>
  wait_cable: 2<..>
  RMC: 2<..>

  cable_used: <..>
  wait_ack: <..>
  listen: <..>
  MSG: <..>

  cable_used: <..>
  FMC: <..>
  wait_cable: 2<..>
  RMC: 2<..>

  cable_free: <..>
  AMC: 2<..>
  wait_cable: 2<..>

  cable_free: <..>
  AMC: <..>
  wait_cable: 2<..>
  RMC: <..>

  cable_used: <..>
  wait_cable: <..>
  listen: <..>
  PMC: <..>

  cable_used: <..>
  FMC: <..>
  AMC: <..>
  wait_cable: 2<..>
  RMC: <..>

  cable_free: <..>
  AMC: <..>
  wait_cable: <..>
  listen: <..>

  cable_free: <..>
  wait_cable: <..>
  listen: <..>
  RMC: <..>

  cable_free: <..>
  listen: 2<..>

  cable_used: <..>
  FMC: <..>
  AMC: 2<..>
  wait_cable: 2<..>

  cable_used: <..>
  FMC: <..>
  wait_cable: <..>
  listen: <..>
  RMC: <..>

C_refuse

I_refused

I_emit

C_free

I_free

I_refused

I_ask

I_ask

C_refuse

C_refuse

I_emit

C_free

I_refused

I_refused

C_free

I_ask

I_ask

I_ask

C_refuse

C_provide

C_refuse

C_free

I_ask

I_free

I_refused

I_emit

I_refused

C_provide

I_ask

C_refuse

I_refused

C_provide

C_free

C_free

I_receive

I_ask

I_refused

I_ask

I_free

I_refused

2. Managing loss in the main cable
It appears that the 128 bit width main cable is not as safe as the 3 bits width control
cables. Thus, the electric signal can be loss (i.e. not interpreted as a message by a

page 9



Exercise & Case Study (Telecom Systems)

interlocutor). It is thus decided to introduce a time-out. After that time-out, the emitting
interlocutor will send again his message.

Question 10
By adding one transition in the previous P/T net, model the fact that an interlocutor can
re-emit a message in the main cable. So far, only consider the loss of messages (MSG
signal).

Answer: The model is easy to modify, just add the transition I_reemit as shown in the
model above

I_reemit

C_refuse

C_free

C_provide

cable_free

1

cable_used

FMC

AMC

I_receive

I_free

I_emit

I_refused

I_ask

wait_ack

wait_cablelisten2

RMC

ACK

PMC

MSG

Question 11
Compute bounds of this model. What effect do you observe?

Answer: The model is not bounded any more... thus, the reachability graph should not
be computed. The result of bound-places is:

cable_free : [0 ... 1]
cable_used : [0 ... 1]
FMC : [0 ... 1]
AMC : [0 ... 2]
wait_ack : [0 ... 1]
wait_cable : [0 ... 2]
listen : [0 ... 2]
RMC : [0 ... 2]
ACK : [0 ... +oo]
PMC : [0 ... 1]
MSG : [0 ... +oo]

Question 12
What do you deduce about the reachability graph?

Answer: It is infinite. We should be advised not to compute it;-)

Question 13
Where is the problem, Modify the P/T net model to solve it. Please consider now all
loss on the main cable (MSG as well as ACK). Like in TCP/IP, the emiter re-emit the
message when te Acknowledge is lots. The receiver then handles it.

Important: we assume that there is not “bad time-out” (i.e. a time-out is generated only
if there is a message loss).

page 10



MATCH school - Jaca, Sept 1998

Answer: The problem is due to the fact that we have modeled the possibility to re-emit
a message but not in the appropriate condition (i.e. when this message is lost). We thus
have to modify the model by generating errors (i.e. taking out tokens from MASG or
ACK). You the get this model :

loss_a

I_reemit

C_refuse

C_free

C_provide

cable_free

1

cable_used

FMC

AMC

I_receive

I_free
I_emit

I_refused

I_ask

wait_ack

wait_cablelisten2

RMC

ACK

PMC

MSG

loss_m

T_out

Question 14
Use PROD queries to list states of the reachability graph that correspond to a time-out
generation. How many states do you identify?

Answer:

The PROD query is «query verbose node (card(T_out ) == 1)» (i.e. a time-out is
generated when place T_out is marked).

PROD tells that three states corresponds to time-out in the Graph. Here is what PROD
displays :

Result from custom query:
PATH
Node 8, belongs to strongly connected component %%0
  cable_used: <..>
  wait_ack: <..>
  listen: <..>
  T_out: <..>
------------------------------------------------
PATH
Node 13, belongs to strongly connected component %%0
  cable_used: <..>
  AMC: <..>
  wait_ack: <..>
  wait_cable: <..>
  T_out: <..>
------------------------------------------------
PATH
Node 16, belongs to strongly connected component %%0
  cable_used: <..>
  wait_ack: <..>
  wait_cable: <..>
  RMC: <..>
  T_out: <..>
------------------------------------------------
3 paths
Built set %1

page 11



Exercise & Case Study (Telecom Systems)

Question 15
For each identified state, use PROD queries to get a scenario that leads to the generation
of a time-out.

Answer: The PROD query is:

«goto <x>
query true
goto 0
query verbose bspan (true) %1»

where <x> is the identification number of the node. For node 8, it provides you the
following result:

------------------------------------------------
8#PATH
Node 0, belongs to strongly connected component %%0
  cable_free: <..>
  listen: 2<..>
Arrow 0: transition I_ask, precedence class 0
Node 1, belongs to strongly connected component %%0
  cable_free: <..>
  AMC: <..>
  wait_cable: <..>
  listen: <..>
Arrow 0: transition C_provide, precedence class 0
Node 2, belongs to strongly connected component %%0
  cable_used: <..>
  wait_cable: <..>
  listen: <..>
  PMC: <..>
Arrow 0: transition I_emit, precedence class 0
Node 4, belongs to strongly connected component %%0
  cable_used: <..>
  wait_ack: <..>
  listen: <..>
  MSG: <..>
Arrow 2: transition loss_m, precedence class 0
Node 8, belongs to strongly connected component %%0
  cable_used: <..>
  wait_ack: <..>
  listen: <..>
  T_out: <..>
------------------------------------------------

It corresponds to the scenario “I_ask->C_provide->I_emit->loss_m”.

Question 16
To check if the protocol is safe despite message loss, it is stated that when a message is
sent, an acknowledge has to be received. Can you express that using a PROD query and
run it? Is this property respected?

Answer: The PROD query is:

«query verbose AG(IfThen(card (wait_ack) > 0, AF (card(FMC) > 0)))»

or

«query verbose AG(IfThen(card (wait_ack) == 1, AF (card(FMC) == 1)))»

If you run it, PROD finds no path. This means the property is NOT verified.

Question 17
Somebody suggests the problem comes from message loss that could generate infinite
repetitive sequences of particular transitions. How can you detect such a sequence using
structural properties? run the appropriate tool to demonstrate this idea

Answer: T-invariants should outline this problem. If you run GreatSPN, you get :

(1) loss_m + I_reemit

page 12



MATCH school - Jaca, Sept 1998

(2) I_receive + I_reemit + loss_a
(3) I_ask + I_refused + C_refuse
(4) I_ask + I_emit + I_free + I_receive + C_provide + C_free

Invariants (1) and (2) demonstrate the hypothesis if the corresponding firing sequences
can be found (this is the case, you can use PROD to show that a reachable state may
lead to this sequence).

Question 18
Can you provide an interpretation of these two invariants? what hypothesis can we
reasonably suggest on the main cable?

Answer: It means that the protocol supports loss of messages on he main cable but
cannot run when the line is broken (no message at all). We can suppose that the number
of time-out is bounded (i.e. we suppose the line is not broken).

Question 19
Modify the Petri net model to handle that new hypothesis

Answer: The solution is provided in the model  above.

Gto

S_tout

R_tout

1

T_out

loss_m

MSG

PMC ACK

RMC

listen
2

wait_cable

wait_ack

I_ask

I_refused

I_emit

I_free

I_receive
AMC

FMC

cable_used

cable_free

1

C_provide

C_free

C_refuse

I_reemit

loss_a

We have introduced place R_tout which initial marking sets the maximum of time-out
to be generated when a connection is initiated (here, one). Firing loss_m or loss_a
consume a token from this place and thus another time-out cannot be generated.
Transition Gto may then mark again place R_tout. Place S_tout is there to bound the
reachability graph and limit the maximum number of Gto firings.

Question 20
Process the query of question 16. Is it now verified? Can you use a similar way to the
one of question 17 to find an explanation?

Hint: have a look on the behavior of interlocutors.

Answer: We proceed like for question 17 and compute T-invariants with GreatSPN.
We get these ones :

(1) Gto + loss_m + I_reemit
(2) Gto + I_receive + I_reemit + loss_a
(3) I_ask + I_refused + C_refuse

page 13



Exercise & Case Study (Telecom Systems)

(4) I_ask + I_emit + I_free + I_receive + C_provide + C_free

The invariant (3) already noticed and interpreted in question 2 shows that, even if the
main cable can be freed, the Petri net may still loop on the T-invariant (3).

Question 21
Does that comes from the modeling of message loss on the main cable? Can you
propose a modification on the previous model?

Hint: you have to change the behavior of interlocutors by preventing this infinite loop.

Answer: No. To be convinced, process the query of question 16 on the model. It is still
not respected. It does not mean that it does not work but starvation may occurs because
some point of the requirements have not been properly modeled : when the main cable
is refused, the interlocutor has to listen and wait for a message. The new model is
shown below

I_rec2 wait_msg

Gto

S_tout

R_tout

1

T_out

loss_m

MSG

PMC ACK

RMC

listen
2

wait_cable

wait_ack

I_ask

I_refused

I_emit

I_free

I_rec1AMC

FMC

cable_used

cable_free

1

C_provide

C_free

C_refuse

I_reemit

loss_a

We introduces place wait_msg that is marked when the connection is refused by the
controller. We must also duplicate transition I_receive (into I_rec1 and I_rec2) in order
to be able to consume a message even if the listening interlocutor does not ask for the
main cable.

Question 22
Use PROD to process the query of questions 16 and 20. Is it now verified?

Answer: Yes (ouf;-).

Question 23
Use now PROD to display statistics on the reachability graph What particular states can
you observe?

Answer: The reachability graph contains two terminal states.

Question 24
Use PROD to identify path that lead to these particular configurations and propose a
solution to the problem.

page 14



MATCH school - Jaca, Sept 1998

Answer: the firing sequence: I_ask->C_provide->I_emit->I_rec1->I_ask->I_free
->I_ask->C_refuse->I_refused->C_refuse->I_refused->C_free leads to the marking
2wait_msg+R_tout+cable_free. This marking is dead.

It corresponds to the case where the controller refuses two queries before taking into
account the FMC message. Thus the two interlocutors are waiting for each other.

A solution should be to prevent the controller to answer queries when a FMC message
is coming in (its like providing a higher priority to transition C_free).

Question 25
Modify the model in order to take into solve this problem.

Answer: The modified model is proposed above.

FMCb
1

I_rec2 wait_msg

Gto

S_tout

R_tout

1

T_out

loss_m

MSG

PMC ACK

RMC

listen
2

wait_cable

wait_ack

I_ask

I_refused

I_emit

I_free

I_rec1AMC

FMC

cable_used

cable_free

1

C_provide

C_free

C_refuse

I_reemit

loss_a

The simplest way to solve the problem should the use of an inhibitor arc. However, they
are not supported by many tools in CPN-AMI and we have to find another way to
express this modification.

Place FMC has been doubled into FMC (means that FMC is incoming) and FMCb.
FMCb enables the firing of transitions C_provide and C_refuse. It is emptied when
I_free is fired and filled again when C_free fires.

Question 26
Check the bounds of places with the appropriate service in CPN-AMI. Do you observe
something suspicious? if yes, check with PROD and propose an explanation.

Answer:  the service bounds of place provides :

cable_free : [0 ... 1]
cable_used : [0 ... 1]
FMC : [0 ... 1]
AMC : [0 ... 2]
wait_ack : [0 ... 1]
wait_cable : [0 ... 2]
listen : [0 ... 2]
RMC : [0 ... 2]
ACK : [0 ... 1]
PMC : [0 ... 1]
MSG : [0 ... 1]

page 15



Exercise & Case Study (Telecom Systems)

T_out : [0 ... 1]
R_tout : [0 ... 1]
S_tout : [0 ... 1]
wait_msg : [0 ... 2]
FMCb : [0 ... 1]

It says that place wait_msg is 2-bounded where it should not be. However, PROD on
the reachability graph finds no node (expert mode, the query is : «query verbose node
(card (wait_msg)== 2)»).

The explanation is that structural bounds may not be reached in the reachability graph.
They are an upper bound for places. It insure that the marking will never exceed the
bounds provided but it may not reach all the proposed range.

3. Designing a bus
Having successfully designed the safe channel, we would like to use a similar strategy
to design a safe bus that can connect up to N users. The architecture of this bus is
similar to the one presented in section 1. Each interlocutor is connected to the controller
using a dedicated control cable and have a unique identification number. Each one is
also connected to the maim cable. When an interlocutor sends a message, it provides the
identification of its corespondent. Acknowledge does not requires identification while
only the sender is listening to it in the main cable. The model is similar to the one of the
safe channel.

The Petri net of Figure 5 models such a behavior. Interlocutors are identified using the
It class. To evaluate the design, we set the maximum of connected interlocutors to 4.

FMCb
1

I_rec2

[r=i]

wait_msg It

Gto

S_tout

R_tout

1

T_out

loss_m

MSG It

PMC It ACK

RMC It

listen

<It.all>

It

wait_cable
It

wait_ack
Dom

I_ask

I_refused

[i=j]

I_emit
[i=j]

I_free

I_rec1
[r=i]

Class
   It is 1..4;
 Domain
   Dom is <It, It>;
Var
   i,j, r in It;

AMC It

FMC It

cable_used

It

cable_free

1

C_provide
C_free
[i=j]

C_refuse

I_reemit

loss_a

<i,r>

<i,r>

<r>

<i>

<i>

<j>

<i>

<i>

<j> <j>

<i> <i>

<i>

<i>

<i,r>

<i,r>

<i>

<i>

<i>

<r>

<r>

<j>

<j>

<i>

<i>

<i>

<i>

<r>

<i>

<i>

<i>

<r>

Figure 5: Petri net modeling the controller and four interlocutors.

Question 27
Generate the reachability graph for this model and have a look on the statistics (do not
think one second at downloading it;-). Is the Petri net deadlock-free?

Answer: Here are the statistics provided by PROD :

Number of nodes: 6624
Number of arrows: 23360
Number of terminal nodes: 4
Number of nodes that have been completely processed: 6624
Number of strongly connected components: 769
Number of nontrivial terminal strongly connected components: 0

page 16



MATCH school - Jaca, Sept 1998

No.

Question 28
Use the tools to propose an explanation to what you observed in the previous question.

Answer: PROD proposes to view the list of dead markings. Here is the answer :
Node 6060, belongs to strongly connected component %%0
  FMCb: <..>
  wait_msg: <.2.> + <.3.> + <.4.>
  S_tout: <..>
  MSG: <.1.>
  wait_ack: <.1,1.>
  cable_used: <.1.>
------------------------------------------------
Node 6065, belongs to strongly connected component %%162
  FMCb: <..>
  wait_msg: <.1.> + <.3.> + <.4.>
  S_tout: <..>
  MSG: <.2.>
  wait_ack: <.2,2.>
  cable_used: <.2.>
------------------------------------------------
Node 6070, belongs to strongly connected component %%226
  FMCb: <..>
  wait_msg: <.1.> + <.2.> + <.4.>
  S_tout: <..>
  MSG: <.3.>
  wait_ack: <.3,3.>
  cable_used: <.3.>
------------------------------------------------
Node 6075, belongs to strongly connected component %%220
  FMCb: <..>
  wait_msg: <.1.> + <.2.> + <.3.>
  S_tout: <..>
  MSG: <.4.>
  wait_ack: <.4,4.>
  cable_used: <.4.>
------------------------------------------------
4 path end nodes

You may observe that, in all states, an interlocutor is sending a message to himself. He
thus cannot get any answer.

Question 29
Propose a correction that solves the problem.

Answer: To prevent self sending of message, you may create a “message container”
(here called msgl) and associate it with the appropriate condition in transition I_emit.
Here is the modified model.

page 17



Exercise & Case Study (Telecom Systems)

Class
   It is 1..4;
 Domain
   Dom is <It, It>;
Var
   i,j, r in It;

FMCb
1

I_rec2

[r=i]

wait_msg It

Gto

S_tout

R_tout

1

T_out

loss_m

MSG It

PMC It ACK

RMC It

listen

<It.all>

It

wait_cable
It

wait_ack
Dom

I_ask

I_refused

[i=j]

I_emit

[(i=j) and
(r<>i)]

I_free

I_rec1
[r=i]

AMC It

FMC It

cable_used

It

cable_free

1

C_provide

C_free
[i=j]

C_refuse

I_reemit

loss_a

msgl
<It.all> It

<r>

<r>

<i,r>
<i,r>

<r>

<i>

<i>

<j>

<i>

<i>

<j> <j>

<i> <i>

<i>

<i>

<i,r>

<i,r>

<i>

<i>

<i>

<r>

<r>

<j>

<j>

<i>

<i>

<i>

<i>

<r>

<i>

<i>

<i>

<r>

Question 30
How can you express in PROD that, if a client <i> sends a message to a given client
j ≠ i, it has to get an acknowledge.

Answer: We can provide, for a given i, the set of queries that fit the different values
for j. Here is an example for i= 1:

«query verbose AG(IfThen (wait_ack == <.1,2.>, AF (FMC == <.1.>)))
query verbose AG(IfThen (wait_ack == <.1,3.>, AF (FMC == <.1.>)))
query verbose AG(IfThen (wait_ack == <.1,4.>, AF (FMC == <.1.>)))»

For all queries, PROD finds that it is OK. While there is no deadlock. This property
should be OK.

Question 31
Somebody is asking about the fairness of the protocol : it means that no interlocutor
gets into starvation. Use PROD to demonstrate that it can happens.

Answer: if a client decides to send a message, it should send an AMC signal to the
controller and then eventually get into the state FMC (he frees the main cable). The
PROD query is :

«query verbose AG(IfThen (AMC == <.1.>, AF (FMC == <.1.>)))»

The answer is NO. The process is not fair.

Question 32
It is suggested that interlocutors are not correctly modeled. When a request for the main
cable is refused, it should systematically try to re-emit it (it may currently change its
mind, which appears to be strange). Change the model to take into consideration this
new aspect and apply the same query to prove that this protocol is really not fair.

Answer : You have to double the transition I_ask into I_ask1 and I_ask2. I_ask1
corresponds to the decision. I_ask2 correspond to systematic retries when the main
cable is refused. Please note place loop_em as a postcondition of I_rec2.

page 18



MATCH school - Jaca, Sept 1998

I_ask2
loop_em
It

FMCb1

I_rec2

[r=i]

wait_msg It

Gto

S_tout

R_tout

1

T_out

loss_m

MSG It

PMC It ACK

RMC It

listen

<It.all>

It

wait_cable
It

wait_ack
Dom

I_ask1

I_refused

[i=j]

I_emit

[(i=j) and
(r<>i)]

I_free

I_rec1
[r=i]

Class
   It is 1..4;
 Domain
   Dom is <It, It>;
Var
   i,j, r in It;

AMC It

FMC It

cable_used

It

cable_free

1

C_provide

C_free
[i=j]

C_refuse

I_reemit

loss_a

msgl
<It.all>

It
<r>

<r>

<i,r>

<i,r>

<r>

<i>
<i>

<j>

<i>

<i>

<j> <j>

<i> <i>

<i>

<i>

<i,r>

<i,r>

<i>

<i>

<i>

<r>

<r>

<j>

<j>

<i>

<i>

<i>

<i>

<r>

<i>

<i>

<r>

<i><i>

<i>

<i>

The model is not fair while the «query verbose AG(IfThen (AMC == <.1.>, AF (FMC
== <.1.>)))» does not provide a path.

Question 33
To be fair, the controller must sort demands. Model this new controller behavior and
apply the previous query to check the fairness of the system.

Answer: You add two places Cpt1 and Cpt2 that emulate a round robin strategy. Please
have a look on the guard of transitions C_free and C_refuse.

Cpt2
It

<1> Cpt1
It

<1>

msgl
<It.all>

It

loss_a

I_reemit

C_refuse
[x=y]

C_free
[i=j]

C_provide
[x=y]

cable_free

1

cable_used

It

FMC It

AMC Dom

Class
   It is 1..4;
 Domain
   Dom is <It, It>;
Var
   i,j, r in It;

I_rec1
[r=i]

I_free

I_emit

[(i=j) and
(r<>i)]

I_refused

[i=j]

I_ask1

wait_ack
Dom

wait_cable
It

listen

<It.all>

It

RMC It

ACKPMC It

MSG It

loss_m

T_outR_tout

1

S_tout

Gto

wait_msg It
I_rec2

[r=i]

FMCb
1

loop_em
It

I_ask2<i>

<i>

<i,x> <i>

<x>

<x++1>

<r>

<i>

<i>

<r>

<i,x>

<i>

<i>

<i>

<j>

<j>

<r>

<r>

<i>

<i>

<i>

<i,r>

<i,r>

<i>

<i>

<i><i>

<j><j>

<i>

<i>

<j>

<i,x>

<i,x>

<r>

<i,r>

<i,r>

<r>

<r>

<x>

<y>
<y>

<x++1>

<x++1> <x++1>

In this model, the safe bus controller is safe.

page 19



Exercise & Case Study (Telecom Systems)

Annex :

some information about the way to
express PROD commands

The table above summarize some useful queries to play with PROD (expert mode).
Please remind that all nodes in the reachability graph are numbered. The initial marking
is node #0. When PROD results are displayed on the historic window, you get the
identification number of the corresponding states in the reachability graph.

The “verbose” option provides you with detailed information. If you omit it, you will
only get the identification number of nodes in the reachability graph.

PROD Query Meaning

query [verbose] node ($1 = $2) provides all the states in the reachability
graph for which place $1 has marking $2 .
Remind that a non colored token is noted <..>
in prod.

query [verbose]node (card($1) >
$2)

provides all the states in the reachability
graph for which place $1 has more than $2
token(s). You can also use other operations
(<, ==, >=, <=, !=).

goto $1
query true
goto $2
query [verbose]bspan (true) %1

provides the shortest state between nodes $2
and $1 in the reachability graph.

query [verbose]node ((c1) and
(c2))

provides all the states in the reachability
graph that respect conditions c1 and condition
c2. You can do the same with or.

query [verbose]AG4 (IfThen ($1, AF5

($2)))
Are all  states in the reachability graph that
respect condition $1 eventually leads a states
that respect condition $2.

look $1 Display the marking corresponding to node
$1 in the reachability graph.

Tokens in PROD are represented as follow :
- <..> for non colored tokens
- <.x.> where x is a value for colored tokens
- <.x1,...,xn.> for composed colored tokens (x i are values of the appropriate color

classes)

4 AG can also be written HenceforthOnAllBranches in some PROD configurations.
5 AF can also be writtent EventuallyOnAllBranches in some PROD configurations.

page 20


