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1 Introduction

Reachability analysis, also known as exhaustive simulation or state space generation,

is a powerful formal method for detecting errors in such concurrent and distributed

systems that have a �nite state space. It su�ers from the so called state space explo-

sion problem, however: the state space of the system can be far too large with respect

to the time and other resources needed to inspect all states in the space. Fortunately,

errors can be detected in a variety of cases without inspecting all reachable states

of the system. Techniques alleviating the state space explosion problem have been

designed. Among such techniques, Valmari's stubborn set method [16, 17, 18, 19, 20]

is one of the most promising.

On-the-�y veri�cation of a property means that the property is veri�ed during state

space generation, in contrary to the traditional approach where properties are veri�ed

after state space generation. As soon as it is known whether the property holds, the

generation of the state space can be stopped. Since an erroneous system can have

a much larger state space than the intended correct system, it is important to �nd

errors as soon as possible. On the other hand, even in the case that all states become

generated, the overhead caused by on-the-�y veri�cation, compared to non-on-the-�y

veri�cation, is often negligible.

Pr/T-nets [6, 10] are a widely used model for concurrent and distributed systems.

PROD, a Pr/T-net reachability analysis tool, has been developed by a group of re-

searchers of Digital Systems Laboratory and students of Helsinki University of Tech-

nology. On-the-�y veri�cation of linear time temporal properties [5, 9] with the aid

of the stubborn set method has been implemented in PROD. Branching time temporal

properties [2, 5, 15] can be veri�ed, too, though only after state space generation and

without the stubborn set method.

PROD's net description language is the C preprocessor language extended with net

description directives. A net description is compiled into an executable reachability

graph generator program. PROD consists of a net description language preprocessor

prpp, a reachability graph generator program, a program called strong computing

the strongly connected components of the graph, a graph query program probe, and

a batch program prod. (PROD is the whole tool, prod a part of it.)

In addition, there is an interconnection between PRODand the ARA tool [21]. ARA is

a LOTOS reachability analysis tool developed in the Technical Research Centre of

Finland. The interconnection between PROD and ARA consists of a program called

araprod and a set of options for the reachability graph generator program of a net.

The rest of this manual has been organized as follows. An introductory example of

the usage of PROD is given in Section 2. The net description language is presented

in Section 3, except the on-the-�y veri�cation directives. Section 4 is devoted to

on-the-�y veri�cation. The reachability graph inspection program, probe, and the

batch program, prod, are presented in Sections 5 and 6, respectively. Finally, Section

7 explains how the subprograms of PROD can be run.
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2 Getting started

This section gives an introductory example of the usage of PROD. We shall model the

classical problem of dining philosophers which has been introduced by Edsger W.

Dijkstra. The quoted description of the problem is from [3].

�We now turn to the problem of the Five Dining Philosophers. The life of a philoso-

pher consists of an alternation of thinking and eating:

cycle begin think;

eat

end

Five philosophers, numbered from 0 through 4 are living in a house where the table

is laid for them, each philosopher having his own place at the table:

[[A �gure has been omitted.]]

Their only problem� besides those of philosophy� is that the dish served is a very

di�cult kind of spaghetti, that has to be eaten with two forks. There are two forks

next to each plate, so that presents no di�culty; as a consequence, however, no two

neighbours may be eating simultaneously.

A very naive solution associates with each fork a binary semaphore with the initial

value =1 (indicating that the fork is free) and, naming in each philosopher these

semaphores in a local terminology, we could think the following solution for the

philosopher's life adequate

cycle begin think;

P(left-hand fork); P(right-hand fork);

eat;

V(left-hand fork); V(right-hand fork);

end

[[The quotation ends.]]�

The following �gure presents a Pr/T-net model of the problem of dining philosophers.

The generalizationof the problem of �ve philosophers into a problemof n philosophers

is obvious. We have chosen to number the philosophers from 1 through n, instead of 0

through n� 1. Below the �gure, we have the same net written in PROD's description

language. (You do not have to rewrite the net because it is included in the PROD

package. See page 54 for more information.) The number of philosophers, n, is �xed

by the net preprocessor program prpp. The default value for n is �ve. One can

specify any other value by giving prpp an option of the form `-Dn=value'.
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<1> + ... + <n>

<1> + ... + <n>

thinking

forks

putLeft

takeLeft

takeRight

putRight

eating
<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<(x m
od n) + 1>

<(x m
od n) + 1>

withLeftwithRight

#ifndef n

#define n 5

#endif

#define LEFT(x) (x)

#define RIGHT(x) (1 + ((x) % n))

#place thinking lo(<.1.>) hi(<.n.>) mk(<.1..n.>)

#place forks mk(<.1..n.>)

#place withLeft lo(<.1.>) hi(<.n.>)

#place eating lo(<.1.>) hi(<.n.>)

#place withRight lo(<.1.>) hi(<.n.>)

#trans takeLeft

in { thinking: <.ph.>; forks: <.LEFT(ph).>; }

out { withLeft: <.ph.>; }

#endtr

#trans takeRight

in { forks: <.RIGHT(ph).>; withLeft: <.ph.>; }

out { eating: <.ph.>; }

#endtr

#trans putLeft

in { eating: <.ph.>; }

out { withRight: <.ph.>; forks: <.LEFT(ph).>; }

#endtr

#trans putRight

in { withRight: <.ph.>; }

out { thinking: <.ph.>; forks: <.RIGHT(ph).>; }

#endtr
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By using macros, we can avoid the e�ort of repeating a complicated expression.

RIGHT(x) is the right-hand and, for uniformity, LEFT(x) the left-hand fork of

philosopher x.

A non-empty initial marking of a place is denoted by `mk'. `<.' is the left and `.>'

the right angle bracket. `<.1..n.>' means `
P

n

i=1
<.i.>'. Without the operator `..',

we would have to write a sum such as `<.1.>+<.2.>+ <.3.>+<.4.>+<.5.>' explicitly.

The `hi(<.n.>)' de�nition denies the corresponding place all tuples with a value

more than n. The meaning of `lo' is analogous. In this particular net, `lo' and

`hi' seem somewhat unnecessary because there would not ever be any of the denied

tuples anyway. The reason for these restrictions on this net is to make the net easily

unfoldable into a P/T-net. The place `forks' needs neither `lo' nor `hi' because the

restrictions on the other places are su�cient to determine the `somewhere enabled'

transition instances. A transition instance is `somewhere enabled' if it is enabled at

some, not necessarily reachable, marking that respects the `lo' and `hi' restrictions.

We now consider the generation and inspection of a reachability graph. Let ph.net

be a �le containing the above net description. The �rst thing to do is to create

the reachability graph generator program. We create it as follows. The number of

philosophers is 5, i.e. the default value.

kva@mimas.hut.fi 1: prod ph.init

We then generate the full reachability graph.

kva@mimas.hut.fi 2: ph

For completeness, we compute the strongly connected components of the graph.

kva@mimas.hut.fi 3: strong ph

We can now inspect the graph. We �rst observe that the graph has one terminal

node and two strongly connected components. From this we conclude that all nodes

except the terminal node are reachable from each other.

kva@mimas.hut.fi 4: probe ph

0#statistics

Number of nodes: 242

Number of arrows: 805

Number of terminal nodes: 1

Number of nodes that have been completely processed: 242

Number of strongly connected components: 2

Number of nontrivial terminal strongly connected components: 0

We then see that the terminal node corresponds to a terminal marking where each

philosopher holds his left-hand fork. We also see that one of the shortest paths to

the marking is such that the philosophers take their left-hand forks in the order in

which they are numbered.
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0#sets

Strongly connected components: %%0..%%1

Special sets:

%0: ** terminal nodes **

0#query volatile verbose bspan(true) %0

PATH

Node 0, belongs to strongly connected component %%1

thinking: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>

forks: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>

Arrow 0: transition takeLeft, precedence class 0

ph = 1

Node 1, belongs to strongly connected component %%1

thinking: <.2.> + <.3.> + <.4.> + <.5.>

forks: <.2.> + <.3.> + <.4.> + <.5.>

withLeft: <.1.>

Arrow 0: transition takeLeft, precedence class 0

ph = 2

Node 6, belongs to strongly connected component %%1

thinking: <.3.> + <.4.> + <.5.>

forks: <.3.> + <.4.> + <.5.>

withLeft: <.1.> + <.2.>

Arrow 0: transition takeLeft, precedence class 0

ph = 3

Node 21, belongs to strongly connected component %%1

thinking: <.4.> + <.5.>

forks: <.4.> + <.5.>

withLeft: <.1.> + <.2.> + <.3.>

Arrow 0: transition takeLeft, precedence class 0

ph = 4

Node 51, belongs to strongly connected component %%1

thinking: <.5.>

forks: <.5.>

withLeft: <.1.> + <.2.> + <.3.> + <.4.>

Arrow 0: transition takeLeft, precedence class 0

ph = 5

Node 91, belongs to strongly connected component %%0

withLeft: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>

------------------------------------------------

1 paths

------------------------------------------------

0#quit

The generation of the full reachability graph is wasteful if we are interested in terminal

markings only. It is much better to use the stubborn set method. For any net,

the stubborn set method �nds all reachable terminal markings. In the following,

we generate a reduced reachability graph by using the stubborn set method. The

reduced graph is considerably smaller than the full reachability graph. It can be

shown [16] that in the case of n philosophers, the full reachability graph has 3n � 1

nodes and n(2 � 3n�1 � 1) arrows whereas the stubborn set method easily constructs
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a reduced graph of 3n2 � 3n+ 2 nodes and 4n2 � 3n arrows only.

kva@mimas.hut.fi 5: ph -s

kva@mimas.hut.fi 6: probe ph

0#statistics

Number of nodes: 62

Number of arrows: 85

Number of terminal nodes: 1

Number of nodes that have been completely processed: 62

Strongly connected components have not been computed

0#quit

The detection of terminal markings is the most simple application of the stubborn set

method. We shall see some more advanced applications in Section 4. PROD has also

two other reductive reachability graph generation methods, the sleep set method and

the symmetry method, that can be used in certain cases. The description of graph

generation options in Section 7.3 explains the applicability and usage of the di�erent

reachability graph generation methods of PROD.

When you have �nished your analysis, you can do as follows, in order to remove the

�les created during the analysis.

kva@mimas.hut.fi 7: prod ph.clean

3 The net description language

As said in Section 1, PROD's net description language is the C preprocessor language

extended with net description directives. A net description is compiled into an ex-

ecutable reachability graph generator program. The �rst part of the compilation is

performed by prpp, the net description language preprocessor of PROD. Given a net

description, prpp produces a source �le for a C compiler. In addition, prpp produces

some other �les needed in the generation and inspection of a reachability graph.

This section presents the net description language. However, the directives related

to on-the-�y veri�cation are not considered until in Section 4.

3.1 Syntax conventions

� Bolded parts of statements are written into net description �le as such.

� italic parts of syntax are replaced by parameters given in statement description

part.

� Square brackets, [ ], mean that items inside the square brackets are optional.

� Three consecutive dots, ..., stand for repetition.
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3.1.1 Identi�ers

Identi�ers begin with a letter, an underscore (� �) or a dollar (�$�), and may continue

with a number of letters, digits, underscores or dollars. Identi�ers are case-sensitive.

3.1.2 Line continuation

The end of a logical line is the ending delimiter for some directives in the net descrip-

tion language. A logical line consists of one or more physical lines in such a way that

each of the physical lines, except the last one, ends with a backslash. The following is

an example of how we can make a declaration in a single logical line without having

to make it in a single physical line.

#place cci_slave_empty lo(<.0, 0.>) \

hi(<.MAX_CCI_SLAVE, MAX_CCI_SLAVE_QUEUE.>) \

mk(<.0..MAX_CCI_SLAVE, 0..MAX_CCI_SLAVE_QUEUE.>)

3.2 Places

Pr/T-net places are declared with the following syntax.

#place place-name [ lo(lower-limit) ] [ hi(upper-limit) ] [ mk(initial-marking) ]

� Place-name is a unique identi�er for a place.

� Lower-limit, upper-limit and initial-marking have the same syntax asmarking in

Section 3.9.2. If lower-limit, upper-limit or initial-marking contains the name

of some already de�ned place, the name refers to the initial marking of the

place. (So, a name of a place in a limit does not refer to any limit of the place.

If you want to parameterize a limit expression to be used in several places, you

should use macros.)

If lj is the jth �eld in a tuple of arity n in the value of lower-limit, the place cannot

contain tuples of arity n where the jth �eld is less than lj .

For example, �lo(<.3.>+<.2,4.>)� has the e�ect that the �eld of a unary tuple cannot

be less than 3, the �rst �eld of a binary tuple cannot be less than 2, and the second

�eld of a binary tuple cannot be less than 4. (Note that

�lo(<.2.>+<.3.>+<.1,4.>+<.2,3.>)� has exactly the same e�ect as

�lo(<.3.>+<.2,4.>)�.)

Correspondingly, if hj is the jth �eld in a tuple of arity n in the value of upper-limit,

the place cannot contain tuples of arity n where the jth �eld is greater than hj .

For example, �hi(<.6.>+<.4,8.>)� has the e�ect that the �eld of a unary tuple

cannot be greater than 6, the �rst �eld of a binary tuple cannot be greater than

4, and the second �eld of a binary tuple cannot be greater than 8. (Note that
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�hi(<.6.>+<.7.>+<.4,9.>+<.5,8.>)� has exactly the same e�ect as

�hi(<.6.>+<.4,8.>)�.)

If there is no mk, the initial marking of the place is empty.

A place declaration must �t in one logical line.

In the below example, every possible binary tuple of cci_slave_empty occurs exactly

once in the initial marking.

#place cci_slave_empty lo(<.0, 0.>) \

hi(<.MAX_CCI_SLAVE, MAX_CCI_SLAVE_QUEUE.>) \

mk(<.0..MAX_CCI_SLAVE, 0..MAX_CCI_SLAVE_QUEUE.>)

If the macros MAX_CCI_SLAVE and MAX_CCI_SLAVE_QUEUE have values 1 and 2, re-

spectively, then the initial marking could be rewritten in the following long form:

mk(<.0,0.>+<.0,1.>+<.0,2.>+<.1,0.>+<.1,1.>+<.1,2.>)

3.3 Transitions

Transitions are declared with the following syntax. Note that all parts, except the

name of the transition, are optional.

#trans transition-name [ fd(list ) ]
[ in {place-name : input-expression; ...} ]

[ out {place-name : output-expression; ...} ]

[ gate gate-expression; ]
[ comp C-block ]

#endtr

� Transition-name is an identi�er for transition name. Each transition name

must be unique.

� List is a list of variables. No variable can occur more than once in the list. Vari-

ables not occurring in any input-expression or ouput-expression of the transition

are not allowed.

� Place-name is an identi�er for an existing place.

� Input-expression is a multituple expression of the form described in Section

3.9.3. A variable is an input variable of a transition if and only if it oc-

curs in some input expression of the transition. Input variables are of type

unsigned long. An input tuple is strong if and only if it has a non-zero con-

stant multiplier or no multiplier. An input variable is strong with respect to

an input tuple if and only if the tuple has a �eld that contains the name and

nothing but the name of the variable. If an input variable x is not strong with

respect to any strong input tuple, x must be strong with respect to all those

input tuples that contain x, and x must neither occur in any strong input tu-

ple nor in any multiplier of any input tuple. (This condition is su�cient for

uni�ability.)



� 9 �

� Output-expression is a multituple expression of the form described in Section

3.9.3. A variable is an output variable of a transition if and only if it is not

an input variable of the transition and occurs in some output expression of the

transition. Output variables are of type unsigned long. The above variable

restrictions do not apply to output expressions.

� Gate-expression is an integer-valued expression of the C language and can con-

tain variables, function calls and (square bracket style) array references. How-

ever, output variables are not allowed.

� C-block is a block written in the C language, beginning and ending with a brace.

We strongly suggest that you do not de�ne unnecessary variables. A variable can be

considered unnecessary if its value is constant or can uniquely be expressed by means

of other variables. Unnecessary input variables may cause di�culties if you want to

use the stubborn set method or any method that requires an unfolding of the net.

(See Section 7.3.)

The fd variables are meaningful only if the net has at least one �#prec� declaration.

We shall return to these variables in Section 3.4.

The comp block is executed once for each input variable value combination corre-

sponding to the markings of the input places, satisfying the gates and respecting the

output place limits. (An input variable value combination satis�es a gate if and only

if the value of the expression of the gate is not 0 when evaluated with that combina-

tion.) The block has four special macros: the nullary macros Accept(), Visible()

and Invisible(), and the unary macro Precedence(class). These macros can be

called in the same way as functions that have no return value. The comp block can

be omitted if there is no output variable. Then the e�ect is as if the following had

been given: comp { Accept(); }.

An instance of the transition is enabled if and only if the instance is accepted by

Accept(). The output variables, if such exist, should be set before used, thus at

least before the �rst Accept(). The Accept() macro accepts an instance if and only

if the instance respects the output place limits.

A place limit violation that prevents a transition instance from being enabled is no

error. The reason is that the e�ciency of unfolding is considered more important

than the detection of non-catastrophic questionable features in the net description.

(From one point of view, the C language as such is questionable because you can do

almost anything in C.) The following example motivates this choice.

#trans t

in { p: <.x.>; ... }

gate ...;

out { q: <.x.>; ... }

comp { ... }

#endtr

Let's assume that the above t transition is to be unfolded. Clearly, the limits of p

give us some range for x. However, if we get a smaller range by utilizing the limits
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of q, we may get a signi�cant reduction in the time needed for unfolding. (Note that

x is not necessarily the only input variable of t.) To put it bluntly, unfolding is the

only reason for place limits in the net description language. Place limits were chosen

to the language instead of explicit transition variable limits because the latter would

lead to unnecessarily long net descriptions.

A transition instance can be made visible or invisible by calling the macros Visible()

and Invisible(). (These two macros are meaningful only in non-on-the-�y veri�ca-

tion. Otherwise they are not available. See sections 4.1 and 4.5.) Depending on how

the reachability graph generation program is called, either all transition instances

are visible by default or all transition instances are invisible by default. Visibility

information is essential when option �-A� or �-C� is given to the reachability graph

generator. The visibility or invisibility should be chosen before those Accept() calls

that concern the intended transition instances.

For example, all instances of the below i transition are invisible. To get a meaning to

this transition, you can imagine that a process x makes an internal move from a state

to another. With i, process 0 can move from 3 to 2 and from 7 to 6. Respectively,

process 2 can move from 2 to 1, from 3 to 2, from 3 to 4, from 4 to 1, etc.

#trans i

in { p: <.x, y.>; }

out { p: <.x, z.>; }

gate (x == 0) || (x == 2);

comp { Invisible();

if (x != 0) goto g0;

if (y == 3) { z = 2; Accept(); goto end; }

if (y == 7) { z = 6; Accept(); }

goto end;

g0: ;

if (y == 2) { z = 1; Accept(); goto end; }

if (y == 3) { z = 2; Accept(); z = 4; Accept(); goto end; }

if (y == 4) { z = 1; Accept(); goto end; }

if (y == 5) { z = 4; Accept(); z = 6; Accept(); goto end; }

if (y == 6) { z = 1; Accept(); goto end; }

if (y == 7) { z = 6; Accept(); z = 8; Accept(); goto end; }

if (y == 8) { z = 1; Accept(); goto end; }

if (y == 9) { z = 2; Accept(); z = 8; Accept(); }

end: ; }

#endtr

Transition instances are attached to precedence classes by calling the Precedence

macro. (This macro is meaningful only if there is at least one �#prec� declaration.

Otherwise it is not available. See Section 3.4.) Precedence takes a single argument

which is some precedence class. The default class is 0. The precedence class should

be chosen before those Accept() calls that concern the intended transition instances.

We now demonstrate the usage of non-constant tuple multipliers in arc expressions.

We start from a net that does not have such multipliers. The below net, practically

identical to a net given in [6], is a model of a simple resource management scheme.

However, we are here more interested in its syntax than its semantics.
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#define N 3

#define L 2

#enum S, E

#place A lo(<.1.>) hi(<.L.>) mk(<.1..L.>)

#place C lo(<.1.>) hi(<.L.>)

#place I lo(<.1.>) hi(<.N.>) mk(<.1..N.>)

#place R lo(<.1, E.>) hi(<.N, S.>)

#place U lo(<.1, E, 1, 1.>) hi(<.N, S, L, L.>)

#place W lo(<.1, E.>) hi(<.N, S.>)

#trans t1

in { I: <.x.>; }

out { W: <.x, m.>; }

comp(m) { Accept(E); Accept(S); }

#endtr

#trans t2

in { A: <.r1.> + <.r2.>; W: <.x, E.>; }

out { U: <.x, E, r1, r2.>; }

#endtr

#trans t3

in { A: <.r.>; W: <.x, S.>; }

out { U: <.x, S, r, r.>; }

#endtr

#trans t4

in { U: <.x, E, r1, r2.>; }

out { C: <.r1.> + <.r2.>; R: <.x, E.>;}

#endtr

#trans t5

in { U: <.x, S, r, r.>; }

out { C: <.r.>; R: <.x, S.>; }

#endtr

#trans t6

in { R: <.x, m.>; }

out { I: <.x.>; }

#endtr

#trans t7

in { C: <.r.>; }

out { A: <.r.>; }

#endtr

Using the merging technique presented in [6], the above transitions t4 and t5 can be

replaced by a single transition, t4_5, as follows:

#trans t4_5

in { U: <.x, m, r, r2.>; }

out { C: <.r.> + (m == E)<.r2.>; R: <.x, m.>;}

#endtr

Moreover, by taking a full advantage of the merging technique, the transitions t2

and t3 can be replaced by a single transition, t2_3, as follows:
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#trans t2_3

in { A: <.r.> + (m == E)<.r2.>; W: <.x, m.>; }

out { U: (m == E)<.x, m, r, r2.> + (m != E)<.x, m, r, r.>; }

gate (m == E) || (r2 == 1);

#endtr

The only purpose of the above gate is to eliminate redundant transition instances.

Without the gate, any value greater than or equal to 1 and less than or equal to L

would have been valid for r2 in the case m != E. (The limits of the A place determine

the bounds of r2.)

3.4 Precedences

If the net description contains �#prec� declarations then the static priority method

[11, 19, 22] is applied in the generation of the reachability graph.

Let transition instances x and y be enabled at a marking M of the net. (The case

where y is x is included in this consideration.) Let a be the precedence class of x

and b the precedence class of y. The instance y is not �red at M if a has a priority

over b, the length of the fd list of y is the same as the length of the fd list of x, and

for each i, the variable in the ith position in the fd list of y has the same value as

the variable in the ith position in the fd list of x.

By default, all transition instances are in the precedence class 0. No class has any

priority over the class 0. The class 0 has no priority over any class. Fd lists are

empty by default.

Unfortunately, the static priority method does not automatically preserve any prop-

erty of the net. Therefore, an error message is given if the method is attempted to

be used in on-the-�y veri�cation. (On-the-�y veri�cation is described in Section 4.)

On the other hand, as can be seen from Section 7.3, the generator of the reachability

graph refuses to use reductive reachability graph generation methods (other than the

static priority method) if there is any precedence declaration.

Precedences between precedence classes are declared with the following syntax. Note

that precedence classes, except 0, have symbolic names, and it is impossible to try

to a�ect the status of the 0 class.

#prec precedence-class precedence-operator precedence-class

� Precedence-class is the symbolic name of the precedence class. Symbolic names

have numerical values. The values are of type unsigned int and start from 1.

The order of class numbers has absolutely nothing to do with the precedence

relation.

� Precedence-operator is one of <, >, <<, >>.

A precedence declaration must �t in one logical line.

The following list explains the meaning of these operators.
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� a < b

The class b has a priority over the class a.

� a > b

The class a has a priority over the class b.

� a << b

If v is b or b < v or b < : : : < v then v has a priority over a.

� a >> b

If v is b or v < b or v < : : : < b then a has a priority over v.

Below we have an example of a precedence declaration.

#prec A >> B > C > D

The class A has a priority over B, C and D. The class B has a priority over C but

not over D. The class C has a priority over D.

3.5 Macros

Macros can be de�ned in the following two ways, and also by using �-D� options in

the command line of prpp. (See Section 7.2.)

#de�ne identi�er symbol-string

#de�ne identi�er(identi�er,...,identi�er) symbol-string

A macro de�nition must �t in one logical line.

Macros become expanded in the same way as in the C preprocessor language, except

that some parts in the net description are expected to be free of any occurrences of

macros. However, integer-valued expressions can always be hidden behind macros.

Unde�nitions can be given in the following way, and also by using �-U� options in

the command line of prpp. (See Section 7.2.)

#undef identi�er

prpp writes de�nitions and unde�nitions of macros in order of appearance into a

de�nition �le. (Command line de�nitions and unde�nitions appear �rst of all.) By

loading the de�nition �le user may utilize these de�nitions when inspecting a reacha-

bility graph of the net with probe. If the name of the net description �le is mynet.net

then the name of the de�nition �le is mynet.def.

3.6 Synonyms

A synonym resembles a macro without parentheses. However, the value of a synonym

is determined automatically and is always some number of type unsigned long. In

addition, when probe displays a tuple �eld or a transition variable value correspond-

ing to a synonym, it displays the name of the synonym.

Synonyms are de�ned by lines of the following form.
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#enum identi�er [ , identi�er ... ]

The values of the synonyms are determined as follows: The value of the �rst de�ned

synonym is the greatest element of unsigned long. If the value of the kth de�ned

synonym is x, then the value of the (k+ 1)th de�ned synonym is x� 1.

This numbering is good for the following reasons.

� The values of synonyms do not form a gap in the middle of the set of the

numbers of type unsigned long. This is useful in the hopefully rare cases

where probe displays the name of a synonym while you expect it to display a

number.

� You can insert other declarations between synonym declarations without af-

fecting the values of the synonyms.

� You can implement an increasing numbering by reversing the list that you have

in mind.

3.7 Conditional compilation

The followingdirectives can be used for conditional compilation: �#ifdef�, �#ifndef�

�#if�, �#else�, and �#endif�. They are just like in the C preprocessor language,

except that the argument of �#if� is an expression of the form described in Section

3.9.1. If such expression contains the name of some already de�ned place, the name

refers to the initial marking of the place.

3.8 File inclusion

Files can be included by the �#include� directive just like in the C preprocessor

language. Directories to be searched can be speci�ed by using �-I� options in the

command line of prpp. (See Section 7.2.)

3.9 Integer and marking expressions

This section presents the syntax and semantics of those integer and marking expres-

sions that were used in sections 3.2 and 3.3.

3.9.1 Integer expressions

simple expression ::=

� card ( marking )

This means the cardinality, i.e. the number of tuples, of the marking. Every

occurrence of a tuple is counted. (The syntax and semantics of marking are

presented in Section 3.9.2.)
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For example, the value of card(3<..>+2<.0.>+<.4,5.>) is 6.

� ( expression )

This has the value of expression. (The syntax and semantics of expression are

presented later in this section.)

� �eld[expression]

This is meaningful only as a subexpression of the rightmost operand of �:�. (See

Section 3.9.2.) Let M be the value of the leftmost operand of the innermost

such �:�. If the value of expression is i, then �eld[expression] means the

(i + 1)th �eld of some tuple of M . (The leftmost �eld is the �rst �eld.) An

error message is displayed if the arity of some tuple in M is less than i+ 1.

� digits

This means the number obtained by considering digits, a string of decimal

digits, a decimal number of type unsigned long.

expression ::=

� simple expression

� marking == marking

The value of this is 1 if the markings are equal. Otherwise the value is 0. (The

syntax and semantics of marking are presented in Section 3.9.2.)

� marking != marking

The value of this is 1 if the markings are not equal. Otherwise the value is 0.

� marking <= marking

The value of this is 1 if every tuple of the leftmost marking occurs at least

equally many times in the rightmost marking. Otherwise the value is 0.

For example, �<.1.> <= <.0.> + <.1.>� and �<..> + 2<.0.> <= <..> + 3<.0.>�

have the value 1, whereas �<.0.> <= <.1.>� and �<..> + 2<.1.> <= 4<.1.>�

have the value 0.

� marking >= marking

The value of �A >= B� is equal to the value of �B <= A�.

� marking < marking

The value of �A < B� is equal to the value of �(A <= B) && (A != B)�. Note

that the value of �A < B� is not necessarily equal to the value of �!(A >= B)�.

For example, both �<.0.> < <.1.>� and �<.0.> >= <.1.>� have the value 0.

� marking > marking

The value of �A > B� is equal to the value of �B < A�.

� op expression

Here op is �-�, �!� or �~�. The value is determined just like in the C language.
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� expression op expression

Here op is �*�, �/�, �%�, �+�, �-�, �>>�, �<<�, �<�, �<=�, �>�, �>=�, �==�,

�!=�, �&�, �|�, �^�, �&&�, or �||�. The value is determined just like in the C

language.

� expression ? expression : expression

The value of this determined just like in the C language.

3.9.2 Marking expressions

range ::=

� expression

The value of this is fxg where x is the value of the expression.

� expression .. expression

The value of this is fz 2 unsigned long j x � z � yg where x is the value of

the leftmost expression and y is the value of the rightmost expression.

For example, the value of �0..2� is f0; 1; 2g, whereas the value of �1..0� is the

empty set.

� ( range )

This has the value of range.

rangelist ::=

� range

The value of this is a list of one element that is the value of range.

� rangelist , range

The value of this is the list obtained by inserting the only element of the value

of range to the tail of the value of rangelist.

For example, the value of �0..2, 3, 4..5� is the list �f0; 1; 2g; f3g; f4; 5g�.

simple marking ::=

� place

This means the marking of place.

� empty

This means the empty marking.
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� <. rangelist .>

This means the marking �x12A1
: : :�x

n
2A

n
hx

1
; : : : ; xni where n is the length

and Ak the kth element of the value of rangelist. Note that the marking is

empty if some Ak is empty.

For example, <.1..4.>. means �4

i=1
hii, <.1..2, 2..4.> means �2

i=1
�4

j=2
hi; ji,

and <.1..2, 5..4.> means the empty marking.

� <. .>

This means the marking hi.

� ( marking )

This has the value of marking.

marking ::=

� simple marking

� marking & marking

This means the intersection of the leftmost and the rightmost marking. The

number of occurrences of a tuple in the result is the minimum ofm and n where

m is the number of occurrences of the tuple in the leftmost marking and n is

the number of occurrences of the tuple in the rightmost marking.

For example, the value of �(5<..>+<.0.>+<.1.>) & (3<..>+<.0.>+<.2.>)� is

3hi+ h0i.

� marking + marking

This means the sum of the leftmost and the rightmost marking. The number of

occurrences of a tuple in the result ism+n wherem is the number of occurrences

of the tuple in the leftmost marking and n is the number of occurrences of the

tuple in the rightmost marking.

For example, the value of �(5<..>+<.0.>+<.1.>) + (3<..>+<.0.>+<.2.>)� is

8hi+ 2h0i+ h1i+ h2i.

� marking - marking

The number of occurrences of a tuple in the result is m � n where m is the

number of occurrences of the tuple in the leftmost marking and n is the number

of occurrences of the tuple in the rightmost marking. However, ifm is less than

n then the tuple does not occur in the result at all.

For example, the value of �(5<..>+<.0.>+<.1.>) - (3<..>+<.0.>+<.2.>)� is

2hi+ h1i.

� simple marking : simple expression

The number of occurrences of a tuple in the result is 0 if the value of sim-

ple expression is 0. Otherwise the tuple occurs as many times in the result as

in the value of simple marking.

For example, (<.3,2.>+<.4,5.>+<.5,3.>+<.2,4,3.>):(�eld[0] < �eld[1])

means h4; 5i+ h2; 4; 3i.
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� simple expression simple marking

The number of occurrences of a tuple in the result is m times n where m is the

value of simple expression and n is the number of occurrences of the tuple in

the value of simple marking.

For example, the value of �3(<..>+2<.0.>)� is 3hi+ 6h0i.

3.9.3 Multituple expressions

In Section 3.3, we used the notion of a multituple expression. It is somewhat di�erent

from the notion of a marking expression that was de�ned in Section 3.9.2.

A multituple expression is of the form

[n
1
] single-tuple-expression [ + [ [n

2
] single-tuple-expression ... ] ]

where single-tuple-expression is of the form

<.[ a
1
, a

2
, ...].>

As before, the arity of a tuple can be anything, and the type of a tuple multiplier or

�eld is unsigned long. However, now a tuple multiplier or a �eld is an expression of

the C language and can contain variables, function calls and (square bracket style)

array references.

For example, �<.a[x].> + <.x,y.> + f(x,y)<..>� is a valid multituple expression

if the elements of the a array and the return values of the f function are integer

numbers. (They do not have to be of the unsigned long type because a cast to

unsigned long is done anyway.)

4 On-the-�y veri�cation

As said in Section 1, on-the-�y veri�cation of a property means that the property is

veri�ed during state space generation, in contrary to the traditional approach where

properties are veri�ed after state space generation. As soon as it is known whether

the property holds, the generation of the state space can be stopped.

In PROD, there are essentially two approaches to on-the-�y veri�cation: a tester ap-

proach, described in sections 4.1, 4.2, 4.3 and 4.4, and a formula approach, described

in sections 4.5, 4.6 and 4.7. (You do not have to rewrite the nets considered in sec-

tions 4.4, 4.6 and 4.7 because these nets are included in the PROD package. See page

54 for more information.)

4.1 Veri�cation with a tester

The tester approach in PROD is based on the approach presented by Valmari [20]. A

tester in a Pr/T-net is a unique place together with the arcs connected to the place.

At any reachable marking, the tester place contains exactly one tuple, and such tuple
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is unary. The value inside the tuple is the state of the tester. An action is a transition

instance, i.e. a transition with a single combination of values of the variables of the

transition. An action is visible if and only if the action is connected to the tester

place, i.e. there is at least one arc between the tester place and the transition of the

action in such a way that the expression on the arc has a nonempty value. (In an

arc expression of PROD, a tuple can be multiplied by a non-constant expression.)

We can now associate special meanings with the states of the tester and proceed as in

[20]. The algorithm there is directly applicable to the generation of the reachability

graph of the net since a reachable marking of the net can be imagined to be a pair of

the state of the tester and the state of the actual system. If stubborn sets are wanted,

they are computed by a Petri net oriented algorithm which satis�es the conditions

mentioned in [20]. The stubborn set method is chosen at the reachability graph

generation phase by an option exactly in the same way as in the case of non-on-the-

�y veri�cation.

The tester is declared as follows:

#tester place-name [ reject(multiset) ] [ deadlock(multiset) ] \

[ livelock(multiset) ] [ in�nite(multiset) ]

Here we have the name of the tester place, the set of reject states, the set of deadlock

monitor states, the set of livelock monitor states, and the set of in�nite path monitor

states. A state of the tester can be in one, in more than one, or in none of these

sets. multiset can be considered a marking, and the syntax of multiset is the same as

the syntax of marking, given in Section 3.9.2. For any number a; a is a reject state

(deadlock monitor state, livelock monitor state, in�nite monitor state, respectively) if

and only if <.a.> occurs at least once in the value of themultiset of reject (deadlock,
livelock, in�nite, respectively).

A tester declaration must �t in one logical line.

The generation of the reachability is automatically stopped and a report is displayed

whenever

� a reject state is encountered,

� a deadlock monitor state is encountered and no transition is enabled at the

corresponding marking,

� a livelock monitor state is encountered and a loop of invisible actions through

the corresponding marking has been found, or

� an in�nite path monitor state is encountered and such loop through the cor-

responding marking has been found that the action immediately following the

marking in the loop is visible.

Note that the above list gives the full semantics of these states. If a deadlock means an

undesirable reachable marking where no transition is enabled, then deadlock monitor

states specify what is undesirable. Correspondingly, if a livelockmeans an undesirable

reachable non-progress loop, then livelock monitor states specify what is undesirable.
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(As usual, an execution of an action makes progress if and only if the action is visible.)

In�nite path monitor states specify what kind of progress loops are undesirable.

Reject states specify markings that are undesirable as such.

4.2 Detection of deadlocks

Let's assume that you have a net with no tester and no #verify. If you want to

know whether the net has some reachable marking where no transition is enabled,

all you need to do is to add the following two lines to the end of the net and then

proceed as if your purpose was to generate a reachability graph.

#place tester lo(<.0.>) hi(<.0.>) mk(<.0.>)

#tester tester deadlock(<.0.>)

If there is some reachable marking where no transition is enabled, then you will get

a message about one such marking, and the generation of the reachability graph is

stopped automatically.

4.3 Detecting unexpected multiplicities

Let's again assume that you have a net with no tester and no #verify. Let's further

assume that you want to know if some unary tuple occurs more than once in a place

p in some reachable marking. As in the previous section, you can add a tester to the

net. In this case, you can add the following to the end of the net description:

#place tester lo(<.0.>) hi(<.1.>) mk(<.0.>)

#tester tester reject(<.1.>)

#trans bad

in { p: 2<.x.>; tester: <.0.>; } out { p: 2<.x.>; tester: <.1.>; }

#endtr

If some unary tuple occurs more than once in p in some reachable marking, then you

will get a message about one such marking, and the generation of the reachability

graph is stopped automatically.

4.4 The dining philosophers revisited

We now return to the dining philosopher example of Section 2. We demonstrate the

usage of a livelock monitor state in the case where there are 1994 philosophers. The

stubborn set method is used in the example, otherwise we could not manage with so

many philosophers. Our goal is to check if there exists a reachable loop where the

nth philosopher holds his left-hand fork, that is whether the system can move is such

a way that philosopher n never gets his right-hand fork and thus starves. The only

visible actions are those instances of takeLeft and takeRight where x is equal to

n. As one might guess, the reachability graph generator �nds a loop of the speci�ed
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kind. The probe part of the example is included for completeness. We suggest that

the reader returns to that part of the example after reading the description of probe.

<1> + ... + <n>

<1> + ... + <n>

thinking

forks

putLeft

takeLeft

takeRight

putRight

eating
<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<(x m
od n) + 1>

<(x m
od n) + 1>

withLeftwithRight <0>

(x == n)<0>

(x == n)<1>

(x == n)<1>

(x == n)<0>

tester

kva@mimas.hut.fi 1: cat dining.net

#define n 1994

#define LEFT(x) (x)

#define RIGHT(x) (1 + ((x) % n))

#place thinking lo(<.1.>) hi(<.n.>) mk(<.1..n.>)

#place forks mk(<.1..n.>)

#place withLeft lo(<.1.>) hi(<.n.>)

#place eating lo(<.1.>) hi(<.n.>)

#place withRight lo(<.1.>) hi(<.n.>)

#place tester lo(<.0.>) hi(<.1.>) mk(<.0.>)

#tester tester livelock(<.1.>)

#trans takeRight

in { forks: <.RIGHT(x).>; withLeft: <.x.>;

tester: (x == n)<.1.>; }

out { eating: <.x.>; tester: (x == n)<.0.>; }

#endtr

#trans takeLeft

in { thinking: <.x.>; forks: <.LEFT(x).>;

tester: (x == n)<.0.>; }

out { withLeft: <.x.>; tester: (x == n)<.1.>; }

#endtr

#trans putLeft

in { eating: <.x.>; }

out { withRight: <.x.>; forks: <.LEFT(x).>; }

#endtr
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#trans putRight

in { withRight: <.x.>; }

out { thinking: <.x.>; forks: <.RIGHT(x).>; }

#endtr

kva@mimas.hut.fi 2: prod dining.init

kva@mimas.hut.fi 3: dining -s

Livelock reached

Loop 1994 [1> 1996 [0> 1997 [0> 1999 [0> 1994

For more information, start "probe dining" and look at the set %1

kva@mimas.hut.fi 4: probe dining

0#goto 1994

1994#calc withLeft

<.1994.>

1994#succ arrow 1

Arrow 1: transition takeLeft, precedence class 0

x = 1

to node 1996

------------------------------------------------

1994#next 1

1996#succ arrow 0

Arrow 0: transition takeRight, precedence class 0

x = 1

to node 1997

------------------------------------------------

1996#next 0

1997#succ arrow 0

Arrow 0: transition putLeft, precedence class 0

x = 1

to node 1999

------------------------------------------------

1997#next 0

1999#succ arrow 0

Arrow 0: transition putRight, precedence class 0

x = 1

to node 1994

------------------------------------------------

1999#quit

4.5 Linear time temporal properties

Linear time temporal properties [5, 9] can be veri�ed on-the-�y by including a line

of the form �#verify formula;� in the net. Then prpp automatically constructs a

corresponding tester, not requiring help from the user. A formula is of the form �ex-

pression�, �not A�, �A and B�, �A or B�, �A implies B�, �eventually A�, �henceforth

A�, �A until B�, or �A unless B� where �A� and �B� are formulas and �expression�

is of the form described in Section 3.9.1.



� 23 �

prpp constructs a tester with in�nite path monitor states. The name of the tester

place is t_e_s_t_e_r. prpp adds a transition called i_n_i_t_i_a_l_i_z_e to the

net, and then this transition is the only enabled transitionat the initialmarking. prpp

eliminates terminating �ring sequences by adding a transition called d_u_m_m_y to

the net. This transition is enabled if and only if no other transition is enabled.

In the context where no terminating �ring sequence exists, verifying a formula means

showing that each in�nite �ring sequence starting from the initial marking satis�es

the formula. The rules of satisfaction are as follows. (They correspond to rules

given in [5].) An in�nite �ring sequence satis�es a formula if and only if the in�nite

sequence of markings corresponding to the �ring sequence satis�es the formula. Let

then u be an in�nite sequence of markings.

� The sequence u satis�es �expression� if and only if the value of the expression

is not 0 at the �rst marking of u.

� The sequence u satis�es �not A� if and only if u does not satisfy �A�.

� The sequence u satis�es �A and B� if and only if u satis�es �A� and �B�.

� The sequence u satis�es �A or B� if and only if u satis�es �A� or �B�.

� The sequence u satis�es �A implies B� if and only if u satis�es �B� or does not

satisfy �A�.

� The sequence u satis�es �eventually A� if and only if some in�nite su�x of u

satis�es �A�.

� The sequence u satis�es �henceforth A� if and only if every in�nite su�x of u

satis�es �A�.

� The sequence u satis�es �A until B� if and only if there exist a �nite (possibly

empty) sequence v of markings and an in�nite sequence w of markings in such

a way that u is vw, w satis�es �B�, and for every su�x v0 of v, v0w satis�es

�A�.

� The sequence u satis�es �A unless B� if and only if u satis�es �henceforth A�

or �A until B�.

The generation of the reachability graph is automatically stopped and a report is

displayed whenever an in�nite �ring sequence starting from the initial marking and

not satisfying the formula is found.

If a subformula contains no temporal operator (�eventually�, �henceforth�, �until�

or �unless�), then, for e�ciency reasons, it is often good to use �!� instead of �not�,

�&&� instead of �and�, �||� instead of �or�, and �<=� instead of �implies� in the

subformula.

The stubborn set method can be used in the veri�cation of a linear time temporal

formula. However, PROD must then compute an upper estimate of the set of transition

instances that can directly change the truth values of the non-temporal subformulas.

(A formula is temporal if and only if it contains some �eventually�, �henceforth�, �un-

til� or �unless�.) The estimate computed by PROD consists exactly of those transition
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instances that are connected to the places mentioned in the formula. Consequently,

you should try to minimize the number of such transition instances. Unlike in Section

4.1, here we use the simple rule that a transition instance is connected to a place if

and only if there is at least one arc between the place and the high level transition

in question. If every transition instance is in connection with one or more places

mentioned in the formula, then the stubborn set method does not alleviate the state

space explosion at all.

We need the notion of visibility in Section 7. The de�nition of visibility given in

Section 4.1 is not applicable to the veri�cation of a linear time temporal formula.

The following de�nition is applicable: a transition instance is visible if and only if it

is connected to some place mentioned in the formula.

4.6 A bu�er example

The following example, inspired by [14], is a model of a FIFO bu�er. The size of the

bu�er is n. The place p_1 has the tuple hi if the �rst position of the bu�er is empty.

Otherwise p_1 has no tuple. For each i between 2 and n, the place p has the tuple

hii if and only if the ith position of the bu�er is empty. The place q_2 has the tuple

hi if the second position of the bu�er is occupied. Otherwise q_2 has no tuple. The

place q_21 has the tuple hi if the 21st position of the bu�er is occupied. Otherwise

q_21 has no tuple. For each i less than 2 or between 4 and 20 or greater than 21,

the place q has the tuple hii if and only if the ith position of the bu�er is occupied.

#ifndef n

#define n 25

#endif

#place p_1 mk(<..>)

#place p lo(<.2.>) hi(<.n.>) mk(<.2..n.>)

#place q lo(<.1.>) hi(<.n.>)

#place q_2

#place q_21

#trans t1

in { p_1: <..>; }

out { q: <.1.>; }

#endtr

#trans t2

in { p: <.2.>; q: <.1.>; }

out { p_1: <..>; q_2: <..>; }

#endtr

#trans t3

in { p: <.3.>; q_2: <..>; }

out { p: <.2.>; q: <.3.>; }

#endtr

#trans t21

in { p: <.21.>; q: <.20.>; }

out { p: <.20.>; q_21: <..>; }

#endtr
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#trans t22

in { p: <.22.>; q_21: <..>; }

out { p: <.21.>; q: <.22.>; }

#endtr

#trans u

in { p: <.x.>; q: <.x - 1.>; }

gate ((x >= 4) && (x <= 20)) || (x >= 23);

out { p: <.x - 1.>; q: <.x.>; }

#endtr

#trans v

in { q: <.n.>; }

out { p: <.n.>; }

#endtr

#verify eventually((p_1 != empty) && (q_2 == empty) && (q_21 != empty));

The argument of the above #verify is a linear time temporal formula stating that

every in�nite behaviour of the bu�er goes through some con�guration where the

�rst and the second position are empty and the 21st position is occupied. From the

following we see that the formula does not hold.

kva@mimas.hut.fi 4: prod verfifo.init

kva@mimas.hut.fi 5: verfifo

Illegal infinite path found

Loop 641 [0> 615 [0> 617 [0> [[ output removed ]] [0> 640 [0> 641

For more information, start "probe verfifo" and look at the set %1

The above succeeds without the stubborn set method, but if n is greater than 25,

it is best to use the stubborn set method. Then n can be, say, 3000. (Run prpp

without the �-u� option if you want n to be 3000.)

The above net may seem unnecessarily complicated because we have tried to minimize

the number of transition instances connected to the places mentioned in the formula.

We have done this because of the stubborn set method. (See Section 4.5.)

4.7 Dekker's algorithm

We now show that Dekker's solution to the critical section problem in the case of two

processes [3] is free of starvation if neither of the processes is left without processor

time forever. The quoted description of Dekker's solution is from [27].
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�There are two processes P
1
and P

2
, two boolean-valued variables b

1
and b

2
whose

initial values are false, and a variable k which may take the values 1 and 2 and

whose initial value is arbitrary. The ith process (i = 1; 2) may be described as

follows (where j is the index of the other process):

while true do
begin

<noncritical section>;

bi := true;
while bj do

if k = j then begin

bi := false;
while k = j do skip;
bi := true

end;
<critical section>;

k := j;

bi := false

end;

Note that Pi indicates its wish to execute its critical section by setting bi to true;

note also the rôle of the variable k. [[The quotation ends.]]�

The below net, dekker.net, corresponds to the above algorithm. You can see the

correspondence by comparing the names of the places and transitions to the above

algorithm. We have chosen the initial value of the variable k of the above algorithm

to be 1, but the case where the initial value is 2 is symmetric. To be able to show

freeness of starvation, we have included the scheduler place in the net. Due to the

choose_i transition, all scheduling alternatives whatsoever are taken into account.

We thus use the same approach as [9].

#place noncritical lo(<.1.>) hi(<.2.>) mk(<.1..2.>)

#place wait_set_b_i lo(<.1.>) hi(<.2.>)

#place wait_read_b_j lo(<.1.>) hi(<.2.>)

#place wait_read_k lo(<.1.>) hi(<.2.>)

#place wait_clear_b_i lo(<.1.>) hi(<.2.>)

#place wait_read_k_again lo(<.1.>) hi(<.2.>)

#place wait_set_b_i_again lo(<.1.>) hi(<.2.>)

#place wait_enter lo(<.1.>) hi(<.2.>)

#place critical lo(<.1.>) hi(<.2.>)

#place wait_set_k lo(<.1.>) hi(<.2.>)

#place wait_clear_b_i_again lo(<.1.>) hi(<.2.>)

#place b lo(<.1, 0.>) hi(<.2, 1.>) mk(<.1..2, 0.>)

#place k lo(<.1.>) hi(<.2.>) mk(<.1.>)

#place scheduler lo(<.0.>) hi(<.2.>) mk(<.0.>)

#verify (henceforth(eventually(scheduler == <.1.>) and

eventually(scheduler == <.2.>))) implies

henceforth(((wait_set_b_i >= <.1.>) implies

(eventually (wait_set_k >= <.1.>))) and

((wait_set_b_i >= <.2.>) implies
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(eventually (wait_set_k >= <.2.>))));

#trans choose_i

in { scheduler: <.0.>; }

out { scheduler: <.i.>; }

comp { i = 1; Accept(); i = 2; Accept(); }

#endtr

#trans do_noncritical

in { noncritical: <.i.>; scheduler: <.i.>; }

out { noncritical: <.i.>; scheduler: <.0.>; }

#endtr

#trans desire

in { noncritical: <.i.>; scheduler: <.i.>; }

out { wait_set_b_i: <.i.>; scheduler: <.0.>; }

#endtr

#trans set_b_i

in { wait_set_b_i: <.i.>; b: <.i, 0.>; scheduler: <.i.>; }

out { wait_read_b_j: <.i.>; b: <.i, 1.>; scheduler: <.0.>; }

#endtr

#trans read_b_j_true

in { wait_read_b_j: <.i.>; b: <.3 - i, 1.>; scheduler: <.i.>; }

out { wait_read_k: <.i.>; b: <.3 - i, 1.>; scheduler: <.0.>; }

#endtr

#trans read_b_j_false

in { wait_read_b_j: <.i.>; b: <.3 - i, 0.>; scheduler: <.i.>; }

out { wait_enter: <.i.>; b: <.3 - i, 0.>; scheduler: <.0.>; }

#endtr

#trans read_k_eq_j

in { wait_read_k: <.i.>; k: <.3 - i.>; scheduler: <.i.>; }

out { wait_clear_b_i: <.i.>; k: <.3 - i.>; scheduler: <.0.>; }

#endtr

#trans read_k_ne_j

in { wait_read_k: <.i.>; k: <.i.>; scheduler: <.i.>; }

out { wait_read_b_j: <.i.>; k: <.i.>; scheduler: <.0.>; }

#endtr

#trans clear_b_i

in { wait_clear_b_i: <.i.>; b: <.i, 1.>; scheduler: <.i.>; }

out { wait_read_k_again: <.i.>; b: <.i, 0.>; scheduler: <.0.>; }

#endtr

#trans read_k_again_eq_j

in { wait_read_k_again: <.i.>; k: <.3 - i.>; scheduler: <.i.>; }

out { wait_read_k_again: <.i.>; k: <.3 - i.>; scheduler: <.0.>; }

#endtr

#trans read_k_again_ne_j

in { wait_read_k_again: <.i.>; k: <.i.>; scheduler: <.i.>; }

out { wait_set_b_i_again: <.i.>; k: <.i.>; scheduler: <.0.>; }

#endtr

#trans set_b_i_again

in { wait_set_b_i_again: <.i.>; b: <.i, 0.>; scheduler: <.i.>; }

out { wait_read_b_j: <.i.>; b: <.i, 1.>; scheduler: <.0.>; }



� 28 �

#endtr

#trans enter

in { wait_enter: <.i.>; scheduler: <.i.>; }

out { critical: <.i.>; scheduler: <.0.>; }

#endtr

#trans exit

in { critical: <.i.>; scheduler: <.i.>; }

out { wait_set_k: <.i.>; scheduler: <.0.>; }

#endtr

#trans set_k

in { wait_set_k: <.i.>; k: <.z.>; scheduler: <.i.>; }

out { wait_clear_b_i_again: <.i.>; k: <.3 - i.>; scheduler: <.0.>; }

#endtr

#trans clear_b_i_again

in { wait_clear_b_i_again: <.i.>; b: <.i, 1.>; scheduler: <.i.>; }

out { noncritical: <.i.>; b: <.i, 0.>; scheduler: <.0.>; }

#endtr

The argument of the above #verify is a linear time temporal formula stating that if

the scheduler chooses both processes in�nitely many times in an in�nite execution,

then any request for entering a critical section will be ful�lled in the execution, i.e.

the process which made the request will enter and exit its critical section. The

formula holds which can be seen from the fact that the reachability graph becomes

generated without any �illegal in�nite path� message.

kva@mimas.hut.fi 1: prod dekker.init

kva@mimas.hut.fi 2: dekker

kva+mimas.hut.fi 3:

It is not very restrictive to require that the scheduler should choose both processes

in�nitely many times in an in�nite execution. If a process does not want to do

anything else than do_noncritical, it does not have to. If we remove the #verify#

declaration and then add the two �deadlock detection lines� of Section 4.2 to the end

of the net, we see that at each reachable marking of the new net, modified.net, at

least one transition is enabled. (Otherwise the reachability graph generator would

complain.)

kva@mimas.hut.fi 3: prod modified.init

kva@mimas.hut.fi 4: modified

kva+mimas.hut.fi 5:

From this it follows that for any scheduling, whenever a process is chosen, the process

can actually do something. Knowing that the formula mentioned above holds, we

can now conclude that there is no possibility for starvation if neither of the processes

is left without processor time forever.

An interested reader may compare these results to the results presented in [4, 27]. The

non-liveness results in [4, 27] are based on somewhat weak scheduling assumptions
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such as the following: whenever a process is chosen, the process can actually do

something. (As can be seen from the above, any scheduling satis�es this assumption

as far as Dekker's algorithm is concerned.)

5 The query program probe

This section is devoted to the inspection of a reachability graph. If we have a reach-

ability graph, we can inspect it with the probe program.

Let's �rst explain some terms. A node in the reachability graph corresponds to a

reachable marking of the net. An arrow corresponds to a �red transition instance.

The set of immediate successor arrows of a node depends on the graph generation

method. By default, the set of immediate successor arrows corresponds to all enabled

transition instances.

A node is terminal if no transition instance is enabled at the corresponding marking

or if a reject state occurs in the marking. (See Section 4.1.) A node has been

processed completely if and only if the graph generator program has checked the node

and created all of its immediate successor arrows. Note that the lack of immediate

successor arrows does not necessarily mean that the node would be terminal. At

some marking, some graph generation method can intentionally leave all enabled

transition instances without being �red.

A graph is strongly connected if and only if for each two nodes, there is a path from

one to the other. (Since `for each two nodes' is symmetrical, there is a path in

the opposite direction, too.) A strongly connected component of a graph is such a

strongly connected subgraph of the graph that is not a subgraph of any other strongly

connected subgraph of the graph. It follows that each node of a graph is in one and

only one strongly connected component of the graph. Strongly connected component

B of a graph is an immediate successor of strongly connected component A of the

graph if and only if there is a real arrow from A to B in the graph and A is di�erent

from B. A strongly connected component of a graph is terminal if and only if it

has no immediate successor. A terminal strongly connected component of a graph is

trivial if and only it is a terminal node or the whole graph.

5.1 Command line conventions

5.1.1 Command prompt

probe is an interactive program though it is possible to run it in a batch style. probe

displays the number of the current node of the graph in a command prompt. When

the program is started it displays the prompt

0#

which states that the current node of the graph is node number 0, which represents

the initial marking of the net.



� 30 �

5.1.2 Line continuation

A command must �t in one logical line. A logical line consists of one or more physical

lines in such a way that each of the physical lines, except the last one, ends with a

backslash. We have thus exactly the same line continuation convention as in the net

description language. (See Section 3.1.2.)

5.1.3 Comments in a command line

Comments can be included in a command line simply by quoting them between �/*�

and �*/� as in the C language. Comments can be nested and enclose multiple lines,

even without any backslash.

5.1.4 Multiple commands in a command line

Multiple commands can be typed on a single command line by separating them with

�#�. probe displays the results of commands in the same order as they were given

in the command line.

However this does not a�ect the use of literal commands. (See section 5.2.) For

example:

define looksucc look#succ

de�nes macro looksucc, which expands to command sequence look # succ.

5.1.5 Interruption

You can interrupt the execution of a command by pressing CTRL-C. Unfortunately,

in MS-DOS the keyboard interruption may be impossible if there is no screen output.

5.1.6 Verbosity

The user can de�ne the verbosity level of commands. Verbosity options are mute,

verbose and superverbose. The number of verbosity levels is four because the default

verbosity level is distinct. The default is more than mute but less than verbose.

5.2 Literal commands

probe literal commands form a special set of commands in the sense that they do not

go through macro expansion, they cannot be used in macro de�nitions, they must

appear at the beginning of the line, and they always continue to the end of the whole

command line.
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de�ne name body

de�ne name (arguments) body

De�nes the macro (or constant) named name. The body of the macro is given in

body and possible arguments in arguments.

The body of the macro can be anything. The name of the macro cannot be a reserved

word in probe.

After a macro has been de�ned, it can be used as a part of any other command in

probe simply by typing its name to command line.

defs name*

This displays the de�nitions of the named macros. If abbreviations are supplied,

defs displays all possible completions. If no name is supplied, defs displays the

de�nitions of all de�ned macros.

undef name*

Unde�nes named macros.

undefall

Unde�nes all de�ned macros.

help subject

This is an on-line help on the subject. If an abbreviation is supplied, all possible com-

pletions are listed. (If the abbreviation is complete but not unique, a full description

of the complete subject is displayed.) The command help with no argument displays

all possible subjects.

load name

This loads a command �le name and executes the commands in it.

If �le name does not exist and PRODPATH environment variable has been de�ned,

probe looks for $PRODPATH/name (%PRODPATH%\name in MS-DOS). name can contain

directory parts (and a drive identi�er in MS-DOS).
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5.3 Ordinary commands

The following is the description of commands currently known to probe.

prev

We backtrack to the previous node. The previous node is the node from which we

came to the current node by next command.

sgsucc scomp

This displays information about the successor components of the strongly connected

component scomp. (See the description of scomp in Section 5.4.2.)

sgpred scomp

This displays information about the predecessor components of the strongly con-

nected component scomp. (See the description of scomp in Section 5.4.2.)

calc expression

This evaluates and displays the value of the expression. (See the description of

expression in Section 5.4.1.)

calc marking

This evaluates and displays the value of the marking. (See the description of marking

in Section 5.4.1.)

clear set

This deletes the reviewable set. (See the description of set in Section 5.4.2.)

clearall

This deletes all non-special reviewable sets. (There may be some special reviewable

sets that have been built automatically in the beginning of the probesession.)
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termcomps

This displays information about the nontrivial terminal strongly connected compo-

nents in the reachability graph. (A terminal node or a strongly connected reachability

graph is a trivial terminal strongly connected component.)

The preds option causes probe to display information about the predecessor compo-

nents for each component.

allcomps

This displays information about all strongly connected components in the reachability

graph.

The preds option causes probe to display information about the predecessor com-

ponents for each component. Similary the succs option causes probe to display

information about the successor components for each component.

build set operation

This computes the value of set operation and displays the result. If volatile option

is not supplied, a reviewable set is built from the value. (See the description of

set operation in Section 5.4.2.)

goto expression

This sets the current node equal to the node pointed by the expression.

look expression

This displays the marking at the node pointed by the expression.

look

This displays the marking at the current node.

pred expression

This displays the informationof predecessor arrows of the node pointed by expression.
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pred

This displays the information of predecessor arrows of the current node or the node

pointed by expression.

query formula

This displays the value of formula. If the volatile option is not supplied, a reviewable

set is built from the value. (See the description of formula in Section 5.4.4.) The

search can be interrupted by pressing CTRL-C. Then only such paths are displayed or

put into the reviable set that were found before the search was interrupted. Unfortu-

nately, in MS-DOS the keyboard interruption may be impossible if there is no screen

output.

query node formula

This is similar to the plain query command except that all nodes in the graph are

visited, and for each node, the value of formula is displayed and, if a reviewable set

is built, the paths in the value are put into the reviable set.

quit

Quits probe program. Returns control back to calling programs.

showends set operation

This displays informationabout the end nodes of the paths in the value of set operation.

(See the description of set operation in Section 5.4.2.)

The showends command can be used with options preds and succs. The preds

option causes probe to display information about the predecessor nodes and arrows

for each node. Similary the succs option causes probe to display information about

the successor nodes and arrows for each node. Options can be combined and they

can be typed before or after the actual command.

showends all

This is like the above showends except that information is displayed about all nodes
in the graph.

shrink set

This shrinks set so that only the path end nodes remain.
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statistics

This displays the statistical information on the reachability graph. The statistical

information contains the number of nodes, arrows, terminal nodes, handled nodes,

strongly connected components and nontrivial terminal strongly connected compo-

nents.

next expression

This moves from the current node to the target node of arrow pointed by expression.

The target node becomes the new current node.

succ expression

This displays the information about the successor arrows of the node pointed by

expression.

succ

This displays the information about the successor arrows of the current node.

succ node arrow number

This displays the information about the de�ned arrow from the de�ned node. The

node is de�ned by node and the arrow by number. Both node and number must be

valid expressions.

succ arrow expression

This displays the information about the arrow from the current node. The number

of arrow is de�ned by expression.

sets

This displays a list of the reviewable sets. For each reviewable set, the number of the

set is listed together with the command which produced the set.

5.4 Expressions, formulas and such

5.4.1 Expressions

simple expression ::=
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� variable

This has the value of variable in the transition instance in question. Note that

any identi�er occuring in the argument of a transition in the argument of �re

is assumed to be the name of some variable whereas any identi�er anywhere

else is assumed to be either the name of some transition or place. (See the

description of �ring class in Section 5.4.3.)

� preclass

The value of this is the precedence class of the transition instance in question.

To avoid meaningless expressions, preclass can only occur in the argument of

�re.

� faithful

If the transition instance in question produces the successor marking, faithful is

1. Otherwise faithful is 0 and the instance produces a marking equivalent but

not equal to the successor marking. If symmetry method has not been used,

each transition instance produces the successor marking. To avoid meaningless

expressions, faithful can only occur in the argument of �re.

� .

The value of this is the number of the current node in the reachability graph.

Note that unlike the evaluation node, the current node is constant during the

search.

� card ( marking )

This is just like in Section 3.9.1, and so are the following three expressions.

� ( expression )

� �eld [expression ]

� integer

expression ::= [[ Consult from Section 3.9.1. ]]

marking ::= [[ Consult from Section 3.9.2. ]]

5.4.2 Sets

set ::=

� % simple expression

The value of this is the set of paths in %n where n is the value of sim-

ple expression at the marking corresponding to the evaluation node. The set

%n is the reviewable set which has the number n.

� ( set )

This has the value of set.
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scomp ::=

� %% simple expression

The value of this is the set of paths in %%n where n is the value of sim-

ple expression at the marking corresponding to the evaluation node. Each

path in %%n has one node and nothing else. The nodes in %%(n+ 1)th strongly

connected component of the reachability graph.

� ( scomp )

This has the value of scomp.

set operation ::=

� ( set operation )

� set

� scomp

� set operation | set operation

The value of this is the union of the values of the set operations.

� set operation + set operation

The value of this is the union of the values of the set operations.

� set operation & set operation

The value of this is the intersection of the values of the set operations.

� set operation - set operation

The value of this is the set of those paths that are in the value of the leftmost

set operation but not in the value of the rightmost set operation.

5.4.3 Firing classes

�ring class ::=

� transition (expression)

The value of this is the set of those instances of transition for which the value

of expression is not 0. Note that any identi�er occuring in the argument of

�re is assumed to be either the name of some transition or variable whereas

any identi�er anywhere else is assumed to be the name of some place. (See the

description of simple expression in Section 5.4.1.)

� ( �ring class )

This has the value of �ring class.
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� ! �ring class

The value of this is the set of those transition instances that are not in the

value of �ring class.

� �ring class || �ring class

The value of this is the union of the values of the �ring classes.

� �ring class && �ring class

The value of this is the intersection of the values of the �ring classes.

5.4.4 Formulas

atomic formula ::=

� @ expression

The value of this formula is a set S of paths determined as follows. Let x be

the evaluation node andM the marking corresponding to x. If the number of x

is equal to the value of expression at M , then S is fxg. Otherwise S is empty.

� set operation

The value of this formula is a set S of paths determined as follows. Let x be the

evaluation node. If x is the end node of some path in the value of set operation,

then S is fxg. Otherwise S is empty.

� expression

The value of this formula is a set S of paths determined as follows. Let x be

the evaluation node and M the marking corresponding to x. If the value of

expression at M is not 0, then S is fxg. Otherwise S is empty.

formula ::=

� ( formula )

This has the value of formula.

� atomic formula

� false

The value of this is the empty set.

� true

The value of this is fxg where x is the evaluation node.

� not formula

The value of this is a set S of paths determined as follows. Let x be the

evaluation node. If the value of formula in x is empty, then S is fxg. Otherwise

S is empty.
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� step formula

The value of this is is the minimal set S of paths determined as follows. Let x

be the evaluation node. The following holds for all immediate successor arrows

y of x. Let x0 be the target node of y. Let S0 be the value of formula in x0.

For each path p in S0, xyp is in S.

� �re ( �ring class ) formula

The value of this is is the minimal set S of paths determined as follows. Let

x be the evaluation node. The following holds for those immediate successor

arrows y of x that correspond to transition instances in the value of �ring class.

Let x0 be the target node of y. Let S0 be the value of formula in x0. For each

path p in S0, xyp is in S.

� bpath ( formula,formula ) formula

The value of this is is the minimal set S of paths determined as follows. Let x

be the evaluation node. Let � be the leftmost, � the middle and  the rightmost

formula.

The following holds for each �nite loopless path p starting from x. Let x0 be

the end node of p. Let q be the pre�x of p for which qx0 is p. Let S0 be the

value of  in x0. If the value of � is nonempty in every node of q, then for each

path p0 in S0, qp0 is in S.

The following holds for each �nite loop-ended path r starting from x and having

only one loop. If the value of � is nonempty in every node of r and the value

of � is nonempty in the node starting the loop, then r is in S.

� dpath ( formula,formula ) formula

As far as the result of the evaluation is concerned, dpath has exactly the same

e�ect as bpath. The di�erence between dpath and bpath is that in the case

of dpath, the search is performed in a �depth �rst� order, whereas in the

case of bpath, the search is performed in a �breadth �rst� order. Note that

in a �breadth �rst� search, short paths are found before long paths. On the

other hand, a �breadth �rst� search often consumes much more space than a

corresponding �depth �rst� search.

� bspan ( formula ) formula

This is similar to bpath with a false middle formula except that alterna-

tive paths are ignored and, consequently, the search is faster. Note that in

a �breadth �rst� search, the �rst path found to a node is one of the shortest

paths to the node.

� dspan ( formula,formula ) formula

This is similar to dpath except that alternative paths are ignored and, conse-

quently, the search is faster.

� formula and formula

The value of this is a set S of paths determined as follows. Let x be the

evaluation node. If the value of the leftmost formula in x is not empty, then S

is the value of the rightmost formula in x. Otherwise S is empty.
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� formula or formula

The value of this is the union of the values of the formulas in the evaluation

node.

5.5 probe in on-the-�y veri�cation

If on-the-�y veri�cation has found an error and asks you to look at the set %1,

the following two commands su�ce. We avoided them in Section 4.4 just to avoid

unnecessary long output.

build volatile verbose %1

query volatile verbose bspan(true) %1

The former shows the error which is always a single path. The latter shows one of

the shortest paths to the error.

5.6 probe in non-on-the-�y veri�cation

In non-on-the-�y veri�cation, it may be useful to ask the following before doing

anything else.

defs

statistics

sets

Let's repeat what was said in sections 5.2, 5.3 and 5.3. The defs command without

arguments displays the de�nitions of all de�ned macros. The statistics command

displays the statistical information on the reachability graph. The statistical informa-

tion contains the number of nodes, arrows, terminal nodes, handled nodes, strongly

connected components and nontrivial terminal strongly connected components. The

sets command displays a list of the reviewable sets. For each reviewable set, the

number of the set is listed together with the command which produced the set.

The following is an example where a property is veri�ed by searching for counterex-

amples. If p and q are places, you may ask

query volatile node \

not not dspan(((p + q) : (field[0] > 5)) != empty, true) false

Then you see all those nodes that start some loops where the following holds for each

node x in the loops: the marking corresponding to x is such that the leftmost �eld of

some tuple in p or q is greater than 5. The property you are verifying is that there

is no such loop.

Let's assume that the property does not hold and one of the nodes mentioned in the

output of the above command has the number 99. To see some loops of the above

kind, you can use the following commands.



� 41 �

goto 99

query dspan(((p + q) : (field[0] > 5)) != empty, true) false

The output is non-verbose, but you are informed that a reviewable set %n has been

built. Let's assume that n is 2. Then the following gives more information about the

loops.

build volatile verbose %2

As you can see from the above example, non-on-the-�y veri�cation is somewhat

complicated. We strongly suggest that you try on-the-�y veri�cation before trying

non-on-the-�y veri�cation.

5.7 Connection to CTL

The following de�nitions implement the operators of CTL [2, 5, 15]. We use the not
operator to avoid unnecessary searches. The value of a CTL formula is either empty

or a set containing the evaluation node and nothing else. It is straightforward to

show that a CTL formula holds in the sense de�ned in [2, 5, 15] if and only if the

value of the formula is nonempty.

#define Not(f) (not (f))

#define And(f1, f2) (not not ((f1) and (f2)))

#define Or(f1, f2) (not ((not (f1)) and not (f2)))

#define IfThen(f1, f2) (not ((f1) and not (f2)))

#define NextOnSomeBranch(f) (not not step (f))

#define NextOnAllBranches(f) (not step not (f))

#define UntilOnSomeBranch(f1, f2) (not not dspan(f1, false) (f2))

#define UntilOnAllBranches(f1, f2) (not dspan(not (f2), true) \

((not ((step true) and (f1))) and not (f2)))

#define EventuallyOnSomeBranch(f) (not not dspan(true, false) (f))

#define EventuallyOnAllBranches(f) (not dspan(not (f), true) \

((not step true) and not (f)))

#define HenceforthOnSomeBranch(f) (not not dspan(not (f), true) \

((not step true) and not not (f)))

#define HenceforthOnAllBranches(f) (not dspan(true, false) (not (f)))

You do not have to rewrite these macros because they are already in the ctl.prb

�le. You can use �load ctl.prb� to get these macros de�ned if they have not been

de�ned yet.

6 The batch program prod

The generation of the reachability graph for a Pr/T-net with PROD system consists

of several phases. The purpose of the prodbatch program is to avoid repetition of

frequently needed long commands. Commands are collected in a special command

�le. The default command �le, used in the examples of this manual, has the name

prodfile. You can copy this �le for yourself and then modify it.
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6.1 The syntax of a command �le

A basic block in a command �le of prod is of the following form.

$*.action:

command

command

...

...

;

If the action part of the command matches the su�x of the target given in the

command line (see -t target from above) then the command section is performed.

The �:� delimits the end of the action su�x. The command section is terminated

by ;.

Line continuation

A command must �t in one logical line. A logical line consists of one or more physical

lines in such a way that each of the physical lines, except the last one, ends with a

backslash. We have thus exactly the same line continuation convention as in the net

description language. (See Section 3.1.2.)

Conditional commands

You can specify commands to be executed conditionally as follows.

$IF (argument operator argument)

[ commands ]

$ELSE

[ commands ]

$FI

The $IF part of the command is performed if the conditional expression given $IF

statement is evaluated true, otherwise the $ELSE part of the command is performed.

The above operator is either �!=� or �==�. The $IF..$ELSE..$FI constructs can

be nested.

Macros

Macros are de�ned in the following way.

$(MACRO_NAME) = macro_value

A later occurrence of $(MACRO NAME) is then replaced by macro value.
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Prede�ned macros $*, $@

prod provides two prede�ned macros, $* and $@. $* represents the individual base

name of a particular action. (A base name denotes the pre�x before the �.�.) $@

represents the complete action name. (An action name denotes the �pre�x.su�x�

combination).

Silent commands and status ignoration

By default, prod shows each command before execution. However, commands pre-

ceded by �@� are not shown.

By default, prod exits if any executed command exits with a non-zero status. How-

ever, prod ignores a non-zero status of any command preceded by �-�.

�@� and �-� can be used together in any order.

Comments

Comments in a command �le start with a pound, �#�, and last to the end of the

logical line. However, two consecutive pounds, �##�, do not start a comment but are

interpreted as one literal pound.

6.2 An example

The examples in this manual can be reproduced with the aid of the following com-

mand �le.

$(CURDIR)=./#

$(DELETE)=/bin/rm -f#

$(LINK)=cc -g -o#

$(O)=.o#

$(PROD)=/home/kva/public/prod/#

$(PRBIN)=$(PROD)bin/#

$(PRINCL)=$(PROD)include#

$(PRLIB)=$(PRBIN)lib/#

$(COMPILE)=cc -c -DOWNALLOC -DUNIX -g -I$(PRINCL)#

$(X)=#

$*.init:

@$(PRBIN)prpp -DUNIX -I$(PRINCL) -L -u2000 $*.net

@$(COMPILE) $*.c

@$(DELETE) $*$(X)

@$(LINK) $*$(X) $*$(O) $(PRLIB)*$(O)

;

$*.probe:
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@$(PRBIN)probe -. -lctl.prb -l$*.def $*.gph

;

$*.clean:

@$(DELETE) $*.adr

@$(DELETE) $*.dra

@$(DELETE) $*.aws

@$(DELETE) $*.wsa

@$(DELETE) $*.c

@$(DELETE) $*.dat

@$(DELETE) $*.def

@$(DELETE) $*.err

@$(DELETE) $*$(X)

@$(DELETE) $*.fld

@$(DELETE) $*.gph

@$(DELETE) $*.phg

@$(DELETE) $*.hsh

@$(DELETE) $*.shh

@$(DELETE) $*.pre

@$(DELETE) $*.stk

@$(DELETE) $*.tks

@$(DELETE) $*$(O)

6.3 prod in MS-DOS

The above description implicitly assumed that prod was used in UNIX. In MS-DOS,

prod does not execute the commands of the command �le. Instead, it outputs

tmp.bat, an MS-DOS batch �le which is to be executed after the execution of prod.

tmp.bat is called without parameters. The execution of tmp.bat after prod in MS-DOS

has the same e�ect as the execution of prod in UNIX.

7 The subprograms of PROD

This section explains how the subprograms of PROD can be run.

7.1 prod

As said in Section 6, the purpose of the prod batch program is to avoid repetition

of frequently needed long command. The command line of prod is of the following

form.

prod [-m macro=value]... [-p file] [[-t] target]...

The command line options are described below.

� -m macro=value

$(macro) is an abbreviation of value in the command �le of prod.
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� -p �le

�le is used instead of prodfile, the default command �le.

If �le does not exist and PRODPATH environment variable has been de�ned,

prod looks for $PRODPATH/�le (%PRODPATH%\�le in MS-DOS). �le can contain

directory parts (and a drive identi�er in MS-DOS).

� -t target

If target has the su�x �.su�x� and the command �le contains a block having

the name �$*.su�x�, the commands in the block are executed. �-t� can be

omitted if the �rst character in target is not �-�.

7.2 prpp

prpp reads the net description �le and produces a correspondingC �le. The command

line of prpp is of the following form.

prpp [-AaCL] [-u integer] [-D macro=value]...

[-U macro]... [-I directory]... [-t] file

The command line options are described below.

� -A

Each comment is replaced by a single space character in the resulting C �le.

By default each comment is replaced by the empty string.

� -a

If this option is used, prpp does not allow tuples of di�erent arity in a place,

not even in di�erent markings.

� -C

Comments are preserved as such.

� -L

�#line� directives are written into appropriate positions in the resulting C �le.

The purpose is to make error messages point to the net description �le when

possible.

� -u integer

The di�erence between the highest and the lowest value of a transition input

variable cannot be more than integer. prpp decides the transition input variable

ranges from the place tuple limits. This option is needed if the net is to be

unfolded later.

� -D macro=value

macro is an abbreviation of value in the net description �le. The �=value� can

be omitted. A plain �-D macro� is equivalent to �-D macro=1�.



� 46 �

� -U macro

If macro has been de�ned earlier on the command line, it becomes unde�ned.

This makes sense, for example, when the de�nition has been hidden behind a

macro in the command �le of prod.

� -I directory

directory becomes the �rst directory in the list of directories to be checked when

an #include line has been encountered in the net description �le.

� -t �le

�le contains the net description. �le can be given without the �.net� su�x.

�-t� can be omitted if the �rst character in �le is not �-�.

7.3 The reachability graph generator

If the net description �le is mynet.net, mynet is the executable reachability graph

generator program produced by prpp, C compiler, and linker. The command line of

the graph generator program is of the following form.

mynet.exe [-.BCcDdEefiSsuVvxyz] [-b n] [-g n] [-m n] [-r n]

The command line options are described below. When we describe some reachability

graph generation method, we may use the expression �correct and complete in on-

the-�y veri�cation�. By �correct� we mean that any error reported by the method

is an actual error of the type speci�ed in the net description. By �complete� we

mean that if there are one or more errors of the type speci�ed in the net description,

then exactly one such error is reported. We do not require more reports because in

on-the-�y veri�cation, the generation of the reachability graph is stopped whenever

an error is found.

� -.

For every tenth node that has been processed completely, a dot is displayed

on the screen. However, in the case of the sleep set method (the �-S� option),

the number of poppings from the search stack is counted instead. The �-.�

option is especially useful in MS-DOS where the keyboard interruption may be

impossible without screen output.

� -A As a side e�ect, an LTS (labelled transition system) �le is produced for the

ARA tool [21]. The LTS is equal to the reachability graph with the exception

that the nodes of the LTS contain no information. The name of an arc in

the LTS is derived from the corresponding transition instance. However, if the

instance is invisible, the name is simply �i�. (See sections 3.3, 4.1 and 4.5 to

know what is meant by a visible transition instance.) ARA can visualize an

LTS or check whether two LTS's are CFFD-equivalent [21]. If the name of

the net is mynet.net, the name of the LTS �le is mynet.lts. Option �-A� is

ignored if the �-c� option is given.
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� -B

During reachability graph generation, the set of computed states is kept in a

BDD (binary decision diagram) [1]. The current implementation merely in-

creases the time and space consumed during generation, but an e�cient imple-

mentation may be available in the future.

� -C

A CFFD-preserving version of the stubborn set method [19, 24] is used, and the

reachability graph is generated in a �depth �rst� order. CFFD-preservation

uses information about the visibility of transition instances. See sections 3.3,

4.1 and 4.5 to know what is meant by a visible transition instance. The CFFD-

preserving stubborn set method preserves all CFFD properties and is correct

and complete in on-the-�y veri�cation. However, the graph generator complains

and refuses to use the stubborn set method if the net description contains some

#prec declaration. The net is unfolded before graph generation. �-C� has

also the e�ect of �-s�, so �-C� without �-d� chooses the incremental algorithm,

and �-C� with �-d� chooses the deletion algorithm. In the veri�cation of a

linear time temporal formula, the stubborn set method is automatically CFFD-

preserving, so �-s� and �-C� have then no e�ective di�erence.

� -c

The generation of the reachability graph is continued. (See Section 7.3.1.)

� -D

The reachability graph is generated in a �depth �rst� order. By default, the

order is �breadth �rst�.

� -d

The stubborn set method is applied using the deletion algorithm [17, 18, 23].

The stubborn set method preserves all reachable terminal markings and is

correct and complete in on-the-�y veri�cation. However, the graph generator

complains and refuses to use the stubborn set method if the net description

contains some #prec declaration. The net is unfolded before graph generation.

�-d� overrides �-s�.

� -e

The symmetry method (the equivalent marking method) [12, 13, 24] is used.

The symmetry method preserves all reachable terminal markings in such a way

that for each reachable terminal markingM , some symmetry mapsM to some

marking occurring in the generated reachability graph. Moreover, any marking

occurring in the generated reachability graph is actually reachable from the

initial marking. However, the graph generator complains and refuses to use the

symmetry method if the net description contains some #tester, #verify or

#prec declaration, or if the sleep set method (�-S�) or the CFFD-preserving

stubborn set method (�-C�) is to be used. The graph generator uses every place

symmetry, i.e. every such place mapping that corresponds to some symmetry.

Unfortunately, the computation of the place symmetries may take long.
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� -E

This option is like �-e� except that only such symmetries are accepted where

the initial marking is symmetric. A marking is symmetric if and only if no

symmetry maps the marking to any other marking. From the symmetricity of

the initial marking it follows that if a marking M is reachable from the initial

marking and if some symmetry maps M to a marking M 0, then M
0 is also

reachable from the initial marking. �-E� overrides �-e�.

� -f

This option is like �-D� except that arrows are linked to each other in a di�erent

way, thus making the query program probe display the successor arrows of a

node in a decreasing order.

� -i

All transition instances are invisible by default. (This option is meaningful

only in non-on-the-�y veri�cation. Otherwise it is ignored. See sections 3.3,

4.1 and 4.5 to know what is meant by a visible transition instance.) Otherwise

they would be visible by default. Visibility information is essential when option

�-A� or �-C� is given.

� -S

The sleep set method [7, 8, 23, 25, 26, 28] is used. The sleep set method alone as

well as the combination of the sleep set method and the stubborn set method

preserve all reachable terminal markings and are correct and complete in on-

the-�y veri�cation. However, the graph generator complains and refuses to use

the sleep set method if the net description contains some #verify or #prec

declaration, or if there is some livelock monitor state or in�nite path monitor

state, or if the CFFD-preserving stubborn set method is to be used. The net

is unfolded before graph generation. �-S� has also the e�ect of �-f�.

� -s

The stubborn set method is applied using the incremental algorithm (�the al-

gorithm using strongly connected components�) [16, 18]. The stubborn set

method preserves all reachable terminal markings and is correct and complete

in on-the-�y veri�cation. However, the graph generator complains and refuses

to use the stubborn set method if the net description contains some #prec

declaration. The net is unfolded before graph generation.

� -u

The net is unfolded before graph generation. By default the generation proceeds

on the Pr/T-net level by deciding the values of the transition variables according

to the inputs of the transitions.

� -V

If the symmetry method is used, then each place symmetry, except the identity

mapping, is displayed. �-V� overrides �-v�.

� -v

If the symmetry method is used, then each generator of the group of place

symmetries, except the identity mapping, is displayed.
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� -x

This option has an e�ect only together with the incremental algorithm of the

stubborn set method. The incremental algorithm chooses the disabling low

level place of a disabled transition instance randomly. By default the �rst one

is selected.

� -y

This option has an e�ect only together with the incremental algorithm of the

stubborn set method. The incremental algorithm starts from the �rst enabled

transition instance and chooses the �rst stubborn set found. By default all

enabled transition instances are visited and a stubborn set having the least

number of enabled transition instances is chosen. (The collection of sets from

which the winner is chosen may be a minor subset of the collection of all

stubborn sets.)

� -z

This option has an e�ect only together with the stubborn set method. If the

deletion algorithm is used, the deletion algorithm chooses the candidate to be

deleted randomly, instead of always trying to delete the �rst possible candidate.

If the incremental algorithm is used, the incremental algorithm works as in

case of �-y� except that the algorithm starts from a randomly selected enabled

transition instance, instead of the �rst enabled transition instance. However,

�-z� is ignored if the CFFD-preserving incremental algorithm is used. �-z�

overrides �-y�.

� -b n

The size of the hash table used in graph generation is the greatest prime number

less than or equal to 2n. The default value of n is 10. The hash table is

segmented in such a way that n can be greater than 16 even in MS-DOS.

� -g n

When n nodes become completely processed, the generation of the reachability

graph is stopped as soon as possible. (In the case of the �-c� option, the nodes

that have earlier been processed completely are not counted.) This option has

a di�erent meaning if the sleep set method (the �-S� option) is used. Then n

refers to the number of poppings from the search stack.

� -m n

The reachability graph is kept in memory. Otherwise the graph �les would

be manipulated directly. If the net decription �le is mynet.net, then bytes

are reserved for mynet.gph (n bytes), mynet.aws (n bytes) and mynet.adr

(1+(unsigned)((n�1)=k) bytes where k is an internal constant). In the case of

the sleep set method, bytes are reserved for mynet.stk, too (n bytes). If a linear

time temporal formula is veri�ed, then bytes are reserved for also mynet.phg (n

bytes), mynet.wsa (n bytes) and mynet.dra (as many bytes as for mynet.adr).

If the number of bytes reserved for a �le turns out to be insu�cient, direct

manipulation of the �le is started.
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� -r n

n is used as a seed number for the random number generator. The default value

of n is 1. However, if �-c� has been given, the default value is determined in

such a way that the preceding interruption in graph generation does not a�ect

the pseudo-random sequence of the random number generator.

7.3.1 Interrupting the generation

The generation of a reachability graph can be interrupted. If the generation takes

place in the foreground or if you are in MS-DOS, all you need to do is to press the

control key and the C key simultaneously. (If the generation takes place in the back-

ground, you can execute �kill -2 pid� where pid is the number of the generator

process.) You can later continue the generation by calling the generator program

with the �-c� option.

In UNIX, you have an alternative way to interrupt the generation. If the generation

takes place in the foreground, you can press the control key and the Z key simulta-

neously. (If the generation takes place in the background, you can try �kill -18

pid�. The success of this command is not guaranteed, but the authors of this manual

do not know anything better.) If you then want to continue the generation, you can

use the fg (or bg) command of the C shell to continue the run of the generation

job. (Alternatively, you can try �kill -19 pid�, but as above, the success is not

guaranteed.)

There may be an observable delay between your interrupt action and the actual

interrupt of the generation. There is no guaranteed upper bound for the delay.

7.4 strong

strong computes the strongly connected components of the reachability graph. The

command line of strong is of the following form.

strong [-G] [-t] graph

The command line options are described below.

� -G

The reachability graph is kept in memory throughout the computation of the

strongly connected components. Otherwise the graph �les would be manipu-

lated directly.

� -t graph

If the net description �le is mynet.net, graph should be either mynet.gph or

mynet. �-t� can be omitted if the �rst character in graph is not �-�.
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7.5 probe

probe is a program for inspecting the reachability graph. The command line of probe

is of the following form.

probe [-deGiMq.] [-h file] [-l file]... [-w n] [-t] graph

The command line options are described below.

� -d

Error messages are directed to the standard error output �ow, instead of the

standard ordinary output �ow.

� -e

Everything read from the standard input �ow is �redisplayed� on the screen.

This makes sense when the standard input �ow is actually a �le.

For example command

probe -e mynet.gph < commandfile > logfile

produces a complete log corresponding to the commands in commandfile.

� -G

The reachability graph is kept in memory throughout the probe session. Oth-

erwise the graph �les would be manipulated directly. �-G� overrides �-M�.

� -i

Everything read from a command �le is displayed on the screen.

� -M

Strongly connected components are kept in memory. By default a component

is read from a �le when needed, with the exception that getting the number

of the strongly connected component containing a given node does not require

such reading.

� -q

No prompt is displayed.

� -.

In the context of �query mute�, a dot is displayed for every tenth accepted path.

This option is especially useful in MS-DOS where the keyboard interruption may

be impossible without screen output.

� -h �le

�le is the help �le, instead of probhelp, the default help �le.

If �le does not exist and PRODPATH environment variable has been de�ned,

probe looks for $PRODPATH/�le (%PRODPATH%\�le in MS-DOS). �le can contain

directory parts (and a drive identi�er in MS-DOS).
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� -l �le

The commands in �le are executed at the beginning of the run of probe.

If �le does not exist and PRODPATH environment variable has been de�ned,

probe looks for $PRODPATH/�le (%PRODPATH%\�le in MS-DOS). name can contain

directory parts (and a drive identi�er in MS-DOS).

� -w n

When markings, paths on the default verbosity level, or strongly connected

components are displayed, the maximum length of a line is n. The default

value of n is 79.

� -t graph

If the net description �le is mynet.net, graph should be either mynet.gph or

mynet. �-t� can be omitted if the �rst character in graph is not �-�.

7.6 araprod

araprod computes the parallel composition [19] of given labelled transition systems

(LTS's) and hides given actions. The composition is computed by constructing a

Petri net, generating a reachability graph, and interpreting the graph as an LTS.

On-the-�y veri�cation of the kind presented in Section 4.1 is also possible, and then

the net in question is the net corresponding to the parallel composition of the LTS's.

The construction of the net is such that every state of the LTS presenting the tester

becomes a state of the tester in the sense de�ned in Section 4.1. The command line

of araprod is of the following form.

araprod [-.BCcDdEefSsxyz] [-b n] [-g n] [-h hidefile]...

[-M monitorfile] [-m n] -o outputfile [-r n]

[-T testerfile] [[-t] ltsfile]...

The command line options are described below.

� -h hide�le

The actions mentioned in the �le hide�le are hidden. (However, actions are not

hidden if on-the-�y veri�cation has been chosen by options �-M� and �-T�.)

The format of the �le is the following: any string of the form

[A-Za-z_$][A-Za-z0-9_$]* is considered an action name except when inside

a comment. A comment begins with two consecutive minus characters, --, and

continues to the end of the line. Otherwise line breaks are treated like space

characters and tabulators.

� -o output�le

The computed LTS is put into the �le output�le. The format of ARA [21] is

used. The su�x �.lts� is added to the name output�le i� output�le does not

already have that su�x. An ordinary PROD net desription is put into a �le

having the same name as output�le but with the su�x �.net�. On the other

hand, araprod also produces the reachability graph, so there is no need to

compile the net description. Instead, one can directly inspect the graph by

probe or compute the strongly connected components of the graph by strong.
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� -M monitor�le

If options �-M� and �-T� are issued, araprod performs on-the-�y veri�cation.

The �le monitor�le lists the monitor states of the tester. There are four sets of

monitor states: reject states, deadlock monitor states, livelock monitor states,

and in�nite path monitor states. The meaning of these sets was described in

Section 4.1. The format of the �le monitor�le is

[ REJECTS

[ integer [ .. integer] ]

...

END_REJECTS ]

[ DEADLOCKS

[ integer [ .. integer] ]

...

END_DEADLOCKS ]

[ LIVELOCKS

[ integer [ .. integer] ]

...

END_LIVELOCKS ]

[ INFINITES

[ integer [ .. integer] ]

...

END_INFINITES ]

Line breaks are included in the format. A block enclosed by �[� and �]� is

optional. �...� means that there can be arbitrarily many lines of the kind of

the previous line. A comment begins with two consecutive minus characters,

--, and continues to the end of the line. �..� is a range operator like in prpp.

�a .. b� means that all values greater than or equal to a and less than or equal

to b are included.

� -T tester�le

If options �-M� and �-T� are issued, araprod performs on-the-�y veri�cation.

The �le tester�le contains the LTS of the tester. The format of ARA [21] is

required. No su�x in the name tester�le can be omitted since an LTS �le can

have any name. If it is not wanted to compose the tester LTS with itself in the

parallel composition, the name of the tester LTS should not be repeated in the

command line of araprod. (Every occurrence of the name means a separate

component.)

� -t lts�le

The �le lts�le contains one LTS. The format of ARA [21] is required. No su�x

in the name lts�le can be omitted since an LTS �le can have any name. �-t�

can be omitted if the �rst character in the name lts�le is not �-�. If it is not

wanted to compose an LTS with itself in the parallel composition, the name

of the LTS should not be repeated in the command line of araprod. (Every

occurrence of the name means a separate component.)
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The other options are exactly like in Section 7.3. Graph generation can be interrupted

and continued as described in Section 7.3, except that araprod is in the place of

mynet.
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How to get PROD

PROD is free of charge and can be obtained using ftp. The ftp site is saturn.hut.fi
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