The Parks McClellan algorithm: a scalable approach for designing FIR filters

Silviu Filip under the supervision of N. Brisebarre and G. Hanrot (AriC, LIP, ENS Lyon)

PEQUAN Seminar, February 26, 2015

Digital Signal Processing

• became increasingly relevant over the past 4 decades:

 $\mathsf{ANALOG} \to \mathsf{DIGITAL}$

Digital Signal Processing

• became increasingly relevant over the past 4 decades:

$$ANALOG \rightarrow DIGITAL$$

- think of:
 - data communications (ex: Internet, HD TV and digital radio)
 - audio and video systems (ex: CD, DVD, BD players)
 - many more

Digital Signal Processing

• became increasingly relevant over the past 4 decades:

$$ANALOG \rightarrow DIGITAL$$

- think of:
 - data communications (ex: Internet, HD TV and digital radio)
 - audio and video systems (ex: CD, DVD, BD players)
 - many more

What are the 'engines' powering all these?

- \rightarrow we get two categories of filters
 - finite impulse response (FIR) filters non-recursive structure (i.e. $a_k = 0, k = 1, ..., M$)
 - infinite impulse response (IIR) filters recursive structure (i.e. $\exists k \text{ s.t. } a_k \neq 0$)

- \rightarrow we get two categories of filters
 - finite impulse response (FIR) filters non-recursive structure (i.e. $a_k = 0, k = 1, ..., M$)
 - infinite impulse response (IIR) filters recursive structure (i.e. $\exists k \text{ s.t. } a_k \neq 0$)
- ightarrow natural to work in the **frequency** domain

- \rightarrow we get two categories of filters
 - finite impulse response (FIR) filters H is a **polynomial**
 - infinite impulse response (IIR) filters H is a rational fraction
- → natural to work in the **frequency** domain

H is the **transfer function** of the filter

Steps:

- 1. derive a concrete mathematical representation of the filter
 - → use theory of minimax approximation

Steps:

- 1. derive a concrete mathematical representation of the filter
 - → use theory of minimax approximation
- 2. quantization of the filter coefficients using fixed-point or floating-point formats
 - → use tools from algorithmic number theory (euclidean lattices)

Steps:

- 1. derive a concrete mathematical representation of the filter
 - → use theory of minimax approximation
- 2. quantization of the filter coefficients using fixed-point or floating-point formats
 - → use tools from algorithmic number theory (euclidean lattices)
- 3. hardware synthesis of the filter

Steps:

- 1. derive a concrete mathematical representation of the filter
 - → use theory of minimax approximation
- 2. quantization of the filter coefficients using fixed-point or floating-point formats
 - → use tools from algorithmic number theory (euclidean lattices)
- 3. hardware synthesis of the filter

Today's focus: first step for FIR filters

• large class of filters, with a lot of desirable properties

Usual representation:
$$H(\omega) = \sum_{k=0}^{n} h_k \cos(\omega k)$$

• large class of filters, with a lot of desirable properties

Usual representation:
$$H(\omega) = \sum_{k=0}^n h_k \cos(\omega k) = \sum_{k=0}^n h_k T_k (\cos(\omega))$$
 \rightarrow if $x = \cos(\omega)$, view H in the basis of Chebyshev polynomials

• large class of filters, with a lot of desirable properties

Usual representation: $H(\omega) = \sum_{k=0}^n h_k \cos(\omega k) = \sum_{k=0}^n h_k T_k (\cos(\omega))$ \rightarrow if $x = \cos(\omega)$, view H in the basis of Chebyshev polynomials Specification:

• large class of filters, with a lot of desirable properties

Usual representation:
$$H(\omega) = \sum_{k=0}^{n} h_k \cos(\omega k) = \sum_{k=0}^{n} h_k T_k (\cos(\omega))$$

 \rightarrow if $x = \cos(\omega)$, view H in the basis of Chebyshev polynomials

$$H(\omega) = \sum_{k=0}^{8} h_k \cos(\omega k)$$

Optimal FIR design with real coefficients

The problem: Given a closed real set $F\subseteq [0,\pi]$, find an approximation $H(\omega)=\sum_{k=0}^n h_k\cos(\omega k)$ of degree at most n for a continuous function $D(\omega),\omega\in F$ such that

$$\delta = \|E(\omega)\|_{\infty,F} = \max_{\omega \in F} |W(\omega) (H(\omega) - D(\omega))|$$

is minimal.

W - real valued weight function, continuous and positive over F.

Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem

The unique solution $H(\omega) = \sum_{k=0}^{n} h_k \cos(\omega k)$ has an error function $E(\omega)$, for which there exist n+2 values $\omega_0 < \omega_1 < \cdots < \omega_{n+1}$, belonging to F, such that

$$E(\omega_i) = -E(\omega_{i+1}) = \pm \delta,$$

for $i = 0, \ldots, n$ and $\delta = ||E(\omega)||_{\infty, F}$.

Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem

The unique solution $H(\omega) = \sum_{k=0}^{n} h_k \cos(\omega k)$ has an error function $E(\omega)$, for which there exist n+2 values $\omega_0 < \omega_1 < \cdots < \omega_{n+1}$, belonging to F, such that

$$E(\omega_i) = -E(\omega_{i+1}) = \pm \delta,$$

for $i = 0, \ldots, n$ and $\delta = ||E(\omega)||_{\infty, F}$.

- → well studied in Digital Signal Processing literature
- 1972: Parks and McClellan
- \rightarrow based on a powerful iterative approach from Approximation Theory:
 - 1934: Remez

The Parks-McClellan design method: Motivation

Why work on such a problem?

- one of the most well-known filter design methods
- no concrete study about its numerical behavior in practice
- need for high degree (n>500) filters + existing implementations not able to provide them (e.g. MATLAB, SciPy, GNURadio)
- useful for attacking the coefficient quantization problem

The Parks-McClellan design method: Steps

Traditional approach: take the n+2 references uniformly from ${\cal F}$

 \rightarrow can lead to convergence problems

Traditional approach: take the n+2 references uniformly from F

- → can lead to convergence problems
- \rightarrow want to start from better approximations

Existing approaches: most are not general enough and/or costly to execute

Traditional approach: take the n+2 references uniformly from F

- → can lead to convergence problems
- \rightarrow want to start from better approximations

Existing approaches: most are not general enough and/or costly to execute

Our approach: extrema position extrapolation from smaller filters

→ although empirical, this **reference scaling** idea is rather robust in practice

Examples

- 1. degree n=520 unit weight filter with passband $[0,0.99\pi]$ and stopband centered at π
 - ightarrow removal of harmonic interference inside signals
- 2. degree n=53248 lowpass filter with passband $\left[0,\frac{1}{8192}\pi\right]$ and stopband $\left[\frac{3}{8192}\pi,\pi\right]$
 - ightarrow design of efficient wideband channelizers for software radio systems

Examples + comparison with uniform initialization

- 1. degree n=520 unit weight filter with passband $[0,0.99\pi]$ and stopband centered at π
 - \rightarrow removal of harmonic interference inside signals
- 2. degree n=53248 lowpass filter with passband $\left[0,\frac{1}{8192}\pi\right]$ and stopband $\left[\frac{3}{8192}\pi,\pi\right]$ \rightarrow design of efficient wideband channelizers for software radio systems

Example 1		Example 2	
Degree	Iterations	Degree	Iterations
520	12/3	53248	NC ¹ / 3

Advantages:

- reduced number of iterations
- improved numerical behavior

¹our implementation did not converge when using uniform initialization

The Parks-McClellan design method: Steps

Step 2: Computing the current error function $E(\omega)$ and δ

Amounts to solving a linear system in h_0, \ldots, h_n and δ .

$$\begin{bmatrix} 1 & \cos(\omega_0) & \cdots & \cos(n\omega_0) & \frac{1}{W(\omega_0)} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \cos(\omega_n) & \cdots & \cos(n\omega_n) & \frac{(-1)^n}{W(\omega_n)} \\ 1 & \cos(\omega_{n+1}) & \cdots & \cos(n\omega_{n+1}) & \frac{(-1)^{n+1}}{W(\omega_{n+1})} \end{bmatrix} \begin{bmatrix} h_0 \\ \vdots \\ h_n \\ \delta \end{bmatrix} = \begin{bmatrix} D(\omega_0) \\ \vdots \\ D(\omega_n) \\ D(\omega_{n+1}) \end{bmatrix}$$

→ solving system directly: can be numerically unstable

Step 2: Computing the current error function $E(\omega)$ and δ

Amounts to solving a linear system in h_0, \ldots, h_n and δ .

$$\begin{bmatrix} 1 & \cos(\omega_0) & \cdots & \cos(n\omega_0) & \frac{1}{W(\omega_0)} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \cos(\omega_n) & \cdots & \cos(n\omega_n) & \frac{(-1)^n}{W(\omega_n)} \\ 1 & \cos(\omega_{n+1}) & \cdots & \cos(n\omega_{n+1}) & \frac{(-1)^{n+1}}{W(\omega_{n+1})} \end{bmatrix} \begin{bmatrix} h_0 \\ \vdots \\ h_n \\ \delta \end{bmatrix} = \begin{bmatrix} D(\omega_0) \\ \vdots \\ D(\omega_n) \\ D(\omega_{n+1}) \end{bmatrix}$$

- → solving system directly: can be numerically unstable
- → Parks & McClellan's idea: use **barycentric** form of Lagrange interpolation

Problem: p polynomial with $\deg p\leqslant n$ interpolates f at points x_k , i.e.,

$$p(x_k) = f_k, k = 0, \dots, n$$

Problem: p polynomial with $\deg p \leqslant n$ interpolates f at points x_k , i.e.,

$$p(x_k) = f_k, k = 0, \dots, n$$

→ schoolbook solution:

$$p(x) = \sum_{k=0}^{n} f_k \ell_k(x), \qquad \ell_k(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$$

Cost: $O(n^2)$ operations for evaluating p(x), each time

Problem: p polynomial with $\deg p \leqslant n$ interpolates f at points x_k , i.e.,

$$p(x_k) = f_k, k = 0, \dots, n$$

→ schoolbook solution:

$$p(x) = \sum_{k=0}^{n} f_k \ell_k(x), \qquad \ell_k(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$$

Cost: $O(n^2)$ operations for evaluating p(x), each time Can we do better?

YES \rightarrow the barycentric form of p:

$$p(x) = \frac{\sum_{k=0}^{n} \frac{w_k}{x - x_k} f_k}{\sum_{k=0}^{n} \frac{w_k}{x - x_k}}, \qquad w_k = \frac{1}{\prod_{i \neq k} (x_k - x_i)}$$

Cost: $O(n^2)$ operations for computing the weights w_k (done once) + O(n) operations for evaluating p(x)

→ we get:

$$\delta = \frac{\sum_{k=0}^{n+1} w_k D(\omega_k)}{\sum_{k=0}^{n+1} \frac{(-1)^k w_k}{W(\omega_k)}}, \qquad w_k = \frac{1}{\prod_{i \neq k} (x_k - x_i)}$$

and

$$H(\omega) = \frac{\sum_{k=0}^{n+1} \frac{w_k}{x - x_k} c_k}{\sum_{k=0}^{n+1} \frac{w_k}{x - x_k}},$$

where $x = \cos(\omega), x_k = \cos(\omega_k)$ and $c_k = D(\omega_k) - (-1)^k \frac{\delta}{W(\omega_k)}$.

Why should we use it?

→ numerically stable if the family of interpolation nodes used has a small Lebesgue constant [Higham2004;Mascarenhas&Camargo2014]

The Lebesgue constant: specific for each grid of points; measures the quality of a polynomial interpolant with respect to the function to be approximated

Why should we use it?

 \rightarrow numerically stable if the family of interpolation nodes used has a small Lebesgue constant [Higham2004;Mascarenhas&Camargo2014]

The Lebesgue constant: specific for each grid of points; measures the quality of a polynomial interpolant with respect to the function to be approximated

ightarrow from **empirical observation**, the families of points used inside the Parks-McClellan algorithm (Step 1 + Step 3) usually converge to sets of points with **small** Lebesgue constant

The Parks-McClellan design method: Steps

Step 3: Finding the local extrema of $E(\omega)$

Traditional approach: evaluate $E(\omega)$ on a dense grid of uniformly distributed points (in practice it is usually 16n)

- → can sometimes fail to find all the extrema
- → need for a more robust alternative

Chebyshev-proxy rootfinders [Boyd2006,Boyd2013]

Chebyshev companion matrix

Chebyshev-proxy rootfinders [Boyd2006,Boyd2013]

 \rightarrow numerically stable for finding the real roots of $f_m(x)$ located inside [-1,1] Cost: around $10m^3$ operations according to [Boyd2013]

Important questions:

- What value is suitable for m? Depends on f. Can be computed adaptively (like inside the Chebfun² MatlabTM package)
- Can the computational cost be reduced? YES. To $O(m^2)$. Through interval subdivision OR direct quadratic solvers.

²http://www.chebfun.org/

Key idea: use the *trigonometric form* of f_m (i.e. $x=\cos(\omega), \omega \in [0,\pi]$)

Key idea: use the *trigonometric form* of f_m (i.e. $x = \cos(\omega), \omega \in [0, \pi]$)

- \rightarrow several alternatives [Boyd2006] for finding the roots of f_m :
 - k-m subdivision algorithms: split $[0,\pi]$ into m uniform subintervals + degree k Chebyshev interpolation on each subinterval **Cost estimate:** $22000m + 42m^2$ operations, for k = 13 ("tredecic"

subdivision)

Key idea: use the *trigonometric form* of f_m (i.e. $x = \cos(\omega), \omega \in [0, \pi]$)

- \rightarrow several alternatives [Boyd2006] for finding the roots of f_m :
 - k-m subdivision algorithms: split $[0,\pi]$ into m uniform subintervals + degree k Chebyshev interpolation on each subinterval Cost estimate: $22000m + 42m^2$ operations, for k = 13 ("tredecic" subdivision)
 - linear-with-cubic solve algorithm: adaptive interval subdivision + cubic interpolation + zero-free interval testing Cost estimate: $400m^2$ operations, for problems with O(m) simple roots

Key idea: use the *trigonometric form* of f_m (i.e. $x = \cos(\omega), \omega \in [0, \pi]$)

- \rightarrow several alternatives [Boyd2006] for finding the roots of f_m :
 - k-m subdivision algorithms: split $[0,\pi]$ into m uniform subintervals + degree k Chebyshev interpolation on each subinterval Cost estimate: $22000m + 42m^2$ operations, for k = 13 ("tredecic" subdivision)
 - linear-with-cubic solve algorithm: adaptive interval subdivision + cubic interpolation + zero-free interval testing
 - Cost estimate: $400m^2$ operations, for problems with O(m) simple roots

Which one to use? → problem-dependent

Interval subdivision: Our problem

local extrema of $E(\omega) \to {\bf roots}$ of $E'(\omega)$

What we know, at each iteration:

- $E(\omega)$ usually has very close to n+2 local extrema inside F
- placement information for the local extrema

Interval subdivision: Our problem

local extrema of $E(\omega) \to {f roots}$ of $E'(\omega)$

What we know, at each iteration:

- $E(\omega)$ usually has very close to n+2 local extrema inside F
- placement information for the local extrema

Our approach: k-n-type subdivision with non-uniform subintervals

Interval subdivision: Our solution

Why use it?

- works very well in practice
- k=4 is usually sufficient \rightarrow small computational cost
- no need for zero-free interval testing
- embarrassingly parallel approach

Direct quadratic solvers

- \rightarrow investigated in a number of recent articles.
- \rightarrow tend to be faster than classic QR/QZ schemes for n > 80.

Direct quadratic solvers

- \rightarrow investigated in a number of recent articles.
- \rightarrow tend to be faster than classic QR/QZ schemes for n > 80.

Some questions:

- How do such methods compare to subdivision approaches?
- When is it worthwhile to use them with Chebyshev basis expansions?
- Can they be easily parallelized?

The Parks-McClellan design method: Steps

Step 4: Recover coefficients of $H(\omega)$ upon convergence

 \rightarrow can use the Inverse Discrete Fourier Transform

Step 4: Recover coefficients of $H(\omega)$ upon convergence

- → can use the Inverse Discrete Fourier Transform
- \rightarrow implement it using Clenshaw's algorithm for computing linear combinations of Chebyshev polynomials (numerically robust approach)

Cost: $O(n^2)$ arithmetic operations

Some remarks about convergence

Notation:

 H^* - final minimax filter

 ${\cal H}_k$ - the filter computed at the k-th iteration of the Parks-McClellan algorithm

Some remarks about convergence

Notation:

 H^* - final minimax filter

 ${\cal H}_k$ - the filter computed at the k-th iteration of the Parks-McClellan algorithm

 \rightarrow theoretically, **linear** convergence is always possible [Cheney1966], i.e.

$$\max_{\omega \in F} |W(\omega)(H^*(\omega) - H_k(\omega))| \leqslant A\theta^k,$$

for some A > 0 and $\theta \in (0,1)$.

Some remarks about convergence

Notation:

 H^* - final minimax filter

 ${\cal H}_k$ - the filter computed at the k-th iteration of the Parks-McClellan algorithm

 \rightarrow theoretically, **linear** convergence is always possible [Cheney1966], i.e.

$$\max_{\omega \in F} |W(\omega)(H^*(\omega) - H_k(\omega))| \leqslant A\theta^k,$$

for some A > 0 and $\theta \in (0, 1)$.

 \rightarrow if $D(\omega)$ twice differentiable and $E^*(\omega)=W(\omega)(D(\omega)-H^*(\omega))$ equioscillates exactly n+2 times, we have **quadratic** convergence [Veidinger1960]

 \rightarrow written in C++

- \rightarrow written in C++
- \rightarrow small number of external dependencies:
 - Eigen;
 - Intel TBB;
 - MPFR.

- \rightarrow written in C++
- \rightarrow small number of external dependencies:
 - Eigen;
 - Intel TBB;
 - MPFR.
- ightarrow optional parallelism with OpenMP

- \rightarrow written in C++
- \rightarrow small number of external dependencies:
 - Eigen;
 - Intel TBB;
 - MPFR.
- ightarrow optional parallelism with OpenMP
- \rightarrow comes in three flavors:
 - double
 - long double
 - MPFR

Our implementation: Results

Examples:

- 1. degree n=100 unit weight filter with passband $[0,0.4\pi]$ and stopband $[0.5\pi,\pi]$
- 2. degree n=100 unit weight filter with passbands $[0,0.2\pi],[0.6\pi,\pi]$ and stopband $[0.3\pi,0.5\pi]$
- 3. degree n=520 unit weight filter with passband $[0,0.99\pi]$ and stopband centered at π
- 4. degree n=53248 lowpass filter with passband $\left[0,\frac{1}{8192}\pi\right]$ and stopband $\left[\frac{3}{8192}\pi,\pi\right]$

Our implementation: Results

 \rightarrow running times (in seconds) on a 3.6 GHz 64-bit Intel Xeon(R) E5-1620

Problem	Uniform (sequential)	GNURadio	MATLAB	SciPy
Example 1 $(n=100)$	0.0112	NC	0.1491	0.3511
Example 2 $(n=100)$	0.0395	NC	NC	NC
Example 3 $(n=520)$	0.3519	NC	NC	NC
Example 4 $(n=53248)$	NC	NC	NC	NC
Example (degree)	Uniform (sequential)	Uniform (parallel)	Scaling (sequential)	Scaling (parallel)
Example 1 $(n = 100)$	0.0112	0.0073	0.0147	0.011
Example 2 $(n = 100)$	0.0395	0.0274	0.0339	0.0275
Example 3 $(n = 520)$	0.3519	0.2251	0.0982	0.0716
Example 4 $(n = 53248)^3$	NC	NC	537.8	162.6

 $^{^{3}\}mbox{used}$ the long double version of our code

Perspectives

Conclusion:

- improved the practical behavior of a well known polynomial approximation algorithm for filter design
 - \rightarrow use numerically stable barycentric Lagrange interpolation + rootfinders without sacrifices in efficiency
- this new approach can take huge advantage of parallel architectures

Future work:

- provide a complete toolchain for constructing FIR filters (approximation + quantification + hardware synthesis)
- tackle the IIR filter setting (rational fraction)
 - non-linear problem
 - constraints: poles located inside the unit circle