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Digital Signal Processing

became increasingly relevant over the past 4 decades:

ANALOG→ DIGITAL

think of:
data communications (ex: Internet, HD TV and digital radio)
audio and video systems (ex: CD, DVD, BD players)
many more

What are the ’engines’ powering all these?
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Digital filters

→ we get two categories of filters
finite impulse response (FIR) filters
infinite impulse response (IIR) filters

→ natural to work in the frequency domain
H is the transfer function of the filter
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Digital filters

→ we get two categories of filters
finite impulse response (FIR) filters
H is a polynomial
infinite impulse response (IIR) filters
H is a rational fraction

→ natural to work in the frequency domain
H is the transfer function of the filter
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The filtering toolchain

Steps:
1. derive a concrete mathematical representation of the filter
→ use theory of minimax approximation

2. quantization of the filter coefficients using fixed-point or floating-point
formats
→ use tools from algorithmic number theory (euclidean lattices)

3. hardware synthesis of the filter

Today’s focus: first step for FIR filters
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Finite Impulse Response (FIR) filters

large class of filters, with a lot of desirable properties

Usual representation: H(ω) =
∑n

k=0 hk cos(ωk)

=
∑n

k=0 hkTk(cos(ω))

→ if x = cos(ω), view H in the basis of Chebyshev polynomials
Specification:

H(ω) =

8∑
k=0

hk cos(ωk)
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Optimal FIR design with real coefficients

The problem: Given a closed real set F ⊆ [0, π], find an approximation
H(ω) =

∑n
k=0 hk cos(ωk) of degree at most n for a continuous function

D(ω), ω ∈ F such that

δ = ‖E(ω)‖∞,F = max
ω∈F
|W (ω) (H(ω)−D(ω))|

is minimal.
W - real valued weight function, continuous and positive over F .
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Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem
The unique solution H(ω) =

∑n
k=0 hk cos(ωk) has an error function E(ω), for

which there exist n+ 2 values ω0 < ω1 < · · · < ωn+1, belonging to F , such that

E(ωi) = −E(ωi+1) = ±δ,

for i = 0, . . . , n and δ = ‖E(ω)‖∞,F .

→ well studied in Digital Signal Processing literature
1972: Parks and McClellan
→ based on a powerful iterative approach from Approximation Theory:

1934: Remez
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The Parks-McClellan design method: Motivation

Why work on such a problem?
one of the most well-known filter design methods
no concrete study about its numerical behavior in practice
need for high degree (n > 500) filters + existing implementations
not able to provide them (e.g. MATLAB, SciPy, GNURadio)
useful for attacking the coefficient quantization problem
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The Parks-McClellan design method: Example
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The Parks-McClellan design method: Steps

10 / 33



Step 1: Choosing the n+ 2 initial references

Traditional approach: take the n+ 2 references uniformly from F
→ can lead to convergence problems

→ want to start from better approximations
Existing approaches: most are not general enough and/or costly to execute

Our approach: extrema position extrapolation from smaller filters

→ although empirical, this reference scaling idea is rather robust in practice
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Step 1: Choosing the n+ 2 initial references

Examples

+ comparison with uniform initialization

1. degree n = 520 unit weight filter with passband [0, 0.99π] and stopband
centered at π
→ removal of harmonic interference inside signals

2. degree n = 53248 lowpass filter with passband
[
0, 1

8192π
]
and stopband[

3
8192π, π

]
→ design of efficient wideband channelizers for software radio systems

Example 1 Example 2
Degree Iterations Degree Iterations

520 12/3 53248 NC1/3

Advantages:
reduced number of iterations
improved numerical behavior

1our implementation did not converge when using uniform initialization
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The Parks-McClellan design method: Steps

13 / 33



Step 2: Computing the current error function E(ω) and δ

Amounts to solving a linear system in h0, . . . , hn and δ.
1 cos(ω0) · · · cos(nω0)

1
W (ω0)

...
...

...
...

1 cos(ωn) · · · cos(nωn)
(−1)n
W (ωn)

1 cos(ωn+1) · · · cos(nωn+1)
(−1)n+1

W (ωn+1)



h0
...
hn
δ

 =


D(ω0)

...
D(ωn)
D(ωn+1)


→ solving system directly: can be numerically unstable

→ Parks & McClellan’s idea: use barycentric form of Lagrange interpolation
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Barycentric Lagrange interpolation

Problem: p polynomial with deg p 6 n interpolates f at points xk, i.e.,

p(xk) = fk, k = 0, . . . , n

→ schoolbook solution:

p(x) =
n∑

k=0

fk`k(x), `k(x) =
n∏

i=0,i6=k

x− xi
xk − xi

Cost: O(n2) operations for evaluating p(x), each time
Can we do better?
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Barycentric Lagrange interpolation

YES → the barycentric form of p:

p(x) =

n∑
k=0

wk

x− xk
fk

n∑
k=0

wk

x− xk

, wk =
1∏

i 6=k(xk − xi)

Cost: O(n2) operations for computing the weights wk (done once) + O(n)
operations for evaluating p(x)
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Barycentric Lagrange interpolation

→ we get:

δ =

n+1∑
k=0

wkD(ωk)

n+1∑
k=0

(−1)kwk

W (ωk)

, wk =
1∏

i6=k(xk − xi)

and

H(ω) =

n+1∑
k=0

wk

x− xk
ck

n+1∑
k=0

wk

x− xk

,

where x = cos(ω), xk = cos(ωk) and ck = D(ωk)− (−1)k δ

W (ωk)
.
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Barycentric Lagrange interpolation

Why should we use it?
→ numerically stable if the family of interpolation nodes used has a small
Lebesgue constant [Higham2004;Mascarenhas&Camargo2014]

The Lebesgue constant: specific for each grid of points; measures the quality of
a polynomial interpolant with respect to the function to be approximated

→ from empirical observation, the families of points used inside the
Parks-McClellan algorithm (Step 1 + Step 3) usually converge to sets of points
with small Lebesgue constant
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The Parks-McClellan design method: Steps
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Step 3: Finding the local extrema of E(ω)

Traditional approach: evaluate E(ω) on a dense grid of uniformly distributed
points (in practice it is usually 16n)
→ can sometimes fail to find all the extrema
→ need for a more robust alternative

20 / 33



Chebyshev-proxy rootfinders [Boyd2006,Boyd2013]
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Chebyshev-proxy rootfinders [Boyd2006,Boyd2013]

→ numerically stable for finding the real roots of fm(x) located inside [−1, 1]
Cost: around 10m3 operations according to [Boyd2013]

Important questions:
What value is suitable for m?
Depends on f . Can be computed adaptively (like inside the Chebfun2

MatlabTMpackage)
Can the computational cost be reduced?
YES. To O(m2). Through interval subdivision OR direct quadratic
solvers.

2http://www.chebfun.org/
22 / 33
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Interval subdivision

Key idea: use the trigonometric form of fm (i.e. x = cos(ω), ω ∈ [0, π])

→ several alternatives [Boyd2006] for finding the roots of fm:
k-m subdivision algorithms: split [0, π] into m uniform subintervals +
degree k Chebyshev interpolation on each subinterval
Cost estimate: 22000m+ 42m2 operations, for k = 13 ("tredecic"
subdivision)

linear-with-cubic solve algorithm: adaptive interval subdivision + cubic
interpolation + zero-free interval testing
Cost estimate: 400m2 operations, for problems with O(m) simple roots

Which one to use? → problem-dependent

23 / 33



Interval subdivision

Key idea: use the trigonometric form of fm (i.e. x = cos(ω), ω ∈ [0, π])

→ several alternatives [Boyd2006] for finding the roots of fm:
k-m subdivision algorithms: split [0, π] into m uniform subintervals +
degree k Chebyshev interpolation on each subinterval
Cost estimate: 22000m+ 42m2 operations, for k = 13 ("tredecic"
subdivision)

linear-with-cubic solve algorithm: adaptive interval subdivision + cubic
interpolation + zero-free interval testing
Cost estimate: 400m2 operations, for problems with O(m) simple roots

Which one to use? → problem-dependent

23 / 33



Interval subdivision

Key idea: use the trigonometric form of fm (i.e. x = cos(ω), ω ∈ [0, π])

→ several alternatives [Boyd2006] for finding the roots of fm:
k-m subdivision algorithms: split [0, π] into m uniform subintervals +
degree k Chebyshev interpolation on each subinterval
Cost estimate: 22000m+ 42m2 operations, for k = 13 ("tredecic"
subdivision)

linear-with-cubic solve algorithm: adaptive interval subdivision + cubic
interpolation + zero-free interval testing
Cost estimate: 400m2 operations, for problems with O(m) simple roots

Which one to use? → problem-dependent

23 / 33



Interval subdivision

Key idea: use the trigonometric form of fm (i.e. x = cos(ω), ω ∈ [0, π])

→ several alternatives [Boyd2006] for finding the roots of fm:
k-m subdivision algorithms: split [0, π] into m uniform subintervals +
degree k Chebyshev interpolation on each subinterval
Cost estimate: 22000m+ 42m2 operations, for k = 13 ("tredecic"
subdivision)

linear-with-cubic solve algorithm: adaptive interval subdivision + cubic
interpolation + zero-free interval testing
Cost estimate: 400m2 operations, for problems with O(m) simple roots

Which one to use? → problem-dependent

23 / 33



Interval subdivision: Our problem

local extrema of E(ω) → roots of E′(ω)
What we know, at each iteration:

E(ω) usually has very close to n+ 2 local extrema inside F
placement information for the local extrema

Our approach: k-n-type subdivision with non-uniform subintervals
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Interval subdivision: Our solution

Why use it?
works very well in practice
k = 4 is usually sufficient → small computational cost
no need for zero-free interval testing
embarrassingly parallel approach

25 / 33



Direct quadratic solvers

→ investigated in a number of recent articles.
→ tend to be faster than classic QR/QZ schemes for n > 80.

Some questions:
How do such methods compare to subdivision approaches?
When is it worthwhile to use them with Chebyshev basis expansions?
Can they be easily parallelized?
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The Parks-McClellan design method: Steps
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Step 4: Recover coefficients of H(ω) upon convergence

→ can use the Inverse Discrete Fourier Transform

→ implement it using Clenshaw’s algorithm for computing
linear combinations of Chebyshev polynomials (numerically
robust approach)

Cost: O(n2) arithmetic operations
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Some remarks about convergence

Notation:
H∗ - final minimax filter
Hk - the filter computed at the k-th iteration of the Parks-McClellan algorithm

→ theoretically, linear convergence is always possible [Cheney1966], i.e.

max
ω∈F
|W (ω)(H∗(ω)−Hk(ω))| 6 Aθk,

for some A > 0 and θ ∈ (0, 1).
→ if D(ω) twice differentiable and E∗(ω) =W (ω)(D(ω)−H∗(ω)) equioscillates
exactly n+ 2 times, we have quadratic convergence [Veidinger1960]
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Our implementation

→ written in C++

→ small number of external dependencies:
Eigen;
Intel TBB;
MPFR.

→ optional parallelism with OpenMP
→ comes in three flavors:

double

long double

MPFR
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Our implementation: Results

Examples:
1. degree n = 100 unit weight filter with passband [0, 0.4π] and stopband

[0.5π, π]

2. degree n = 100 unit weight filter with passbands [0, 0.2π], [0.6π, π] and
stopband [0.3π, 0.5π]

3. degree n = 520 unit weight filter with passband [0, 0.99π] and stopband
centered at π

4. degree n = 53248 lowpass filter with passband
[
0, 1

8192π
]
and stopband[

3
8192π, π

]
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Our implementation: Results

→ running times (in seconds) on a 3.6 GHz 64-bit Intel Xeon(R) E5-1620

Problem Uniform GNURadio MATLAB SciPy
(sequential)

Example 1 (n = 100) 0.0112 NC 0.1491 0.3511
Example 2 (n = 100) 0.0395 NC NC NC
Example 3 (n = 520) 0.3519 NC NC NC
Example 4 (n = 53248) NC NC NC NC

Example (degree) Uniform Uniform Scaling Scaling
(sequential) (parallel) (sequential) (parallel)

Example 1 (n = 100) 0.0112 0.0073 0.0147 0.011
Example 2 (n = 100) 0.0395 0.0274 0.0339 0.0275
Example 3 (n = 520) 0.3519 0.2251 0.0982 0.0716
Example 4 (n = 53248)3 NC NC 537.8 162.6

3used the long double version of our code
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Perspectives

Conclusion:
improved the practical behavior of a well known polynomial approximation
algorithm for filter design
→ use numerically stable barycentric Lagrange interpolation + rootfinders
without sacrifices in efficiency
this new approach can take huge advantage of parallel architectures

Future work:
provide a complete toolchain for constructing FIR filters (approximation +
quantification + hardware synthesis)
tackle the IIR filter setting (rational fraction)

non-linear problem
constraints: poles located inside the unit circle
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