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Digital Signal Processing
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Digital Signal Processing

@ became increasingly relevant over the past 4 decades:

ANALOG — DIGITAL

e think of:

e data communications (ex: Internet, HD TV and digital radio)
e audio and video systems (ex: CD, DVD, BD players)
e many more

What are the 'engines’ powering all these?
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Digital filters

Digital Filter

Y(w) = X(w)H(w),w € [0,7]

— we get two categories of filters

o finite impulse response (FIR) filters
H is a polynomial

o infinite impulse response (IIR) filters
H is a rational fraction

— natural to work in the frequency domain
H is the transfer function of the filter
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The filtering toolchain

Steps:

1. derive a concrete mathematical representation of the filter
— use theory of minimax approximation
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The filtering toolchain

Steps:

1. derive a concrete mathematical representation of the filter
— use theory of minimax approximation

2. quantization of the filter coefficients using fixed-point or floating-point
formats
— use tools from algorithmic number theory (euclidean lattices)

3. hardware synthesis of the filter

Today's focus: first step for FIR filters
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Finite Impulse Response (FIR) filters

@ large class of filters, with a lot of desirable properties

Usual representation: H(w) = >"7_, hx cos(wk)
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@ large class of filters, with a lot of desirable properties

Usual representation: H(w) = >"1_, hx cos(wk) = Y 1_ hiTk(cos(w))
— if £ = cos(w), view H in the basis of Chebyshev polynomials
Specification:

146
1
1-0
8
w) = Z hy, cos(wk)
k=0
6 L
0,
—0
0 wp Wy T

passband transition band stopband

5 / 33



Optimal FIR design with real coefficients

The problem: Given a closed real set F' C [0, 7], find an approximation
H(w) = > _o hi cos(wk) of degree at most n for a continuous function
D(w),w € F such that

0 = [|1EW)lloo,p = max |W(w) (H(w) — D(w))|

is minimal.
W - real valued weight function, continuous and positive over F'.
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Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem

The unique solution H(w) = Y ;_, hi cos(wk) has an error function E(w), for
which there exist n + 2 values wg < wy < -+ < wp41, belonging to F, such that

E(w;) = —E(wiy1) = £6,

fori=0,...,n and § = HE(UJ)”OOF
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Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem

The unique solution H(w) = Y ;_, hi cos(wk) has an error function E(w), for
which there exist n + 2 values wg < wy < -+ < wp41, belonging to F, such that

E(w;) = —E(wiy1) = £6,

fori=0,...,n and § = HE(UJ)”OOF

— well studied in Digital Signal Processing literature
1972: Parks and McClellan

— based on a powerful iterative approach from Approximation Theory:
1934: Remez
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The Parks-McClellan design method: Motivation

Why work on such a problem?
@ one of the most well-known filter design methods
@ no concrete study about its numerical behavior in practice

@ need for high degree (n > 500) filters + existing implementations
not able to provide them (e.g. MATLAB, SciPy, GNURadio)

o useful for attacking the coefficient quantization problem
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The Parks-McClellan design method: Example
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Initial guess for n + 2 references
wo <wp <...<Wnpti

1

Determine current ¢ and E(w)
E(wi) = W(wi)(H(wi) = D(wi)) = (=1)0

Compute new n + 2 alternating
largest local extrema of E(w)

no

yes

’Compute filter coeﬁicients‘

The Parks-McClellan design method: Steps

Step 1

Step 2

Step 3

Alternation Theorem satisfied?

Step 4
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Step 1: Choosing the n + 2 initial references

Traditional approach: take the n + 2 references uniformly from F
— can lead to convergence problems
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Step 1: Choosing the n + 2 initial references

Traditional approach: take the n + 2 references uniformly from F
— can lead to convergence problems

— want to start from better approximations
Existing approaches: most are not general enough and/or costly to execute

Our approach: extrema position extrapolation from smaller filters

Degree L’Z—LJ

Degree n

Z; Ti+1 Li4-2
| | |
| | |
/ _ TitTig / _ Tip1tTi42
Tojy1 = 5 Toip3 =~ 3
| ] | ] |
| | | | |

! !/ . / — .
Lo; = Ty Lojro = Tit+l Lojt+a = Tit2

— although empirical, this reference scaling idea is rather robust in practice
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Step 1: Choosing the n + 2 initial references

Examples

1. degree n = 520 unit weight filter with passband [0,0.997] and stopband
centered at 7
— removal of harmonic interference inside signals

2. degree n = 53248 lowpass filter with passband [

ez 7]
8192 s o . . )
— design of efficient wideband channelizers for software radio systems

, 81927r] and stopband
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Step 1: Choosing the n + 2 initial references

Examples + comparison with uniform initialization

1. degree n = 520 unit weight filter with passband [0,0.997] and stopband
centered at 7
— removal of harmonic interference inside signals

2. degree n = 53248 lowpass filter with passband [ and stopband

> , 5195 7)
35z, 7] o . . _
— design of efficient wideband channelizers for software radio systems

Example 1 Example 2
Degree lterations | Degree Iterations
| 520 12/3 | 53248 NC'/3 |

Advantages:
@ reduced number of iterations

@ improved numerical behavior

Lour implementation did not converge when using uniform initialization
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Initial guess for n + 2 references
wo <wp <...<Wnpti

1

Determine current ¢ and E(w)
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Step 2: Computing the current error function E(w) and ¢

Amounts to solving a linear system in hg, ..., h, and J.
1 cos(wg) -+ cos(nwp) m ho D(wo)
1 cos(wn) -+ cos(nwy) ISV_(L):) hol D(wy)
1 cos(wni1) -+ cos(nwpyr) % 0 D(wn+1)

— solving system directly: can be numerically unstable
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Step 2: Computing the current error function E(w) and ¢

Amounts to solving a linear system in hg, ..., h, and J.
1 cos(wg) -+ cos(nwp) m ho D(wo)
1 cos(wn) -+ cos(nwy) Ig,_(zj):) hol D(wy)
1 cos(wni1) -+ cos(nwpyr) 151/_(2::11) 0 D(wn+1)

— solving system directly: can be numerically unstable
— Parks & McClellan’s idea: use barycentric form of Lagrange interpolation
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Barycentric Lagrange interpolation

Problem: p polynomial with degp < n interpolates f at points x, i.e.,

p(xk):fkvkzoavn
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Problem: p polynomial with degp < n interpolates f at points x, i.e.,

p(xk):fkvkzoavn

— schoolbook solution:

pa) =Y filsle), b= [ S0
o k 7

i=0,i#k

Cost: O(n?) operations for evaluating p(z), each time
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Barycentric Lagrange interpolation

Problem: p polynomial with degp < n interpolates f at points x, i.e.,

p(xk):fkvkzoavn

— schoolbook solution:

n

pl@) =Y fulsle), @)= J[
o k 7

i=0,i#k

Cost: O(n?) operations for evaluating p(z), each time
Can we do better?
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Barycentric Lagrange interpolation

YES — the barycentric form of p:

n

Wi,
> Jr
r — Tk

k=0
pla)="—F—, wp=

>
— T — Tk

k=0

1

Hi;ék(xk — )

Cost: O(n?) operations for computing the weights wy, (done once) + O(n)

operations for evaluating p(x)
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Barycentric Lagrange interpolation

— we get:

and

> wiD(w)
k=0 wi 1
Sy (o0
= W(wk)
n+1
wy,
Zaz o
— T — T
Hw) ==
>
=0 Tr — Tg
where z = cos(w), 7} = cos(wy) and ¢ = D(wy) — (=1)¥ i
) Tk k & k W(won)”

n+1
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Barycentric Lagrange interpolation

Why should we use it?
— numerically stable if the family of interpolation nodes used has a small
Lebesgue constant [Higham2004;Mascarenhas& Camargo2014]

The Lebesgue constant: specific for each grid of points; measures the quality of
a polynomial interpolant with respect to the function to be approximated

18 / 33



Barycentric Lagrange interpolation

Why should we use it?
— numerically stable if the family of interpolation nodes used has a small
Lebesgue constant [Higham2004;Mascarenhas& Camargo2014]

The Lebesgue constant: specific for each grid of points; measures the quality of

a polynomial interpolant with respect to the function to be approximated

— from empirical observation, the families of points used inside the
Parks-McClellan algorithm (Step 1 + Step 3) usually converge to sets of points
with small Lebesgue constant
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Initial guess for n + 2 references
wo <wp <...<Wnpti

1

Determine current ¢ and E(w)
E(wi) = W(wi)(H(wi) = D(wi)) = (=1)0

Compute new n + 2 alternating
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no
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’Compute filter coeﬁicients‘
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Step 3: Finding the local extrema of E(w)

Traditional approach: evaluate E(w) on a dense grid of uniformly distributed
points (in practice it is usually 16n)

— can sometimes fail to find all the extrema

— need for a more robust alternative
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Chebyshev-proxy rootfinders [Boyd2006,Boyd2013]

f(z)
WOlation
roots of f(x)
are eigenvalues Tm(@) =30 anTh(2)
QR/QZ eigerm
-0 1 -
1 1
2 0 2
1 0 1
2 2
1
2
_% a2 1_Gm-2 _dm-
L 2ap,, 20, 20, 2 20, 20, 1

Chebyshev companion matrix
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Chebyshev-proxy rootfinders [Boyd2006,Boyd2013]

— numerically stable for finding the real roots of f,,(z) located inside [—1, 1]
Cost: around 10m? operations according to [Boyd2013]

Important questions:

@ What value is suitable for m?
Depends on f. Can be computed adaptively (like inside the Chebfun?
Matlab™ package)

@ Can the computational cost be reduced?

YES. To O(m?). Through interval subdivision OR direct quadratic
solvers.

’http://www.chebfun.org/
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Interval subdivision

Key idea: use the trigonometric form of f,, (i.e. x = cos(w),w € [0, 7])
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Interval subdivision

Key idea: use the trigonometric form of f,, (i.e. x = cos(w),w € [0, 7])

— several alternatives [Boyd2006] for finding the roots of f,,:

o k-m subdivision algorithms: split [0, 7] into m uniform subintervals +
degree k Chebyshev interpolation on each subinterval
Cost estimate: 22000m + 42m? operations, for k = 13 ("tredecic"
subdivision)

o linear-with-cubic solve algorithm: adaptive interval subdivision + cubic
interpolation + zero-free interval testing
Cost estimate: 400m? operations, for problems with O(m) simple roots

Which one to use? — problem-dependent
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Interval subdivision: Our problem

local extrema of F(w) — roots of E'(w)
What we know, at each iteration:

o FE(w) usually has very close to n + 2 local extrema inside F

@ placement information for the local extrema
’
W42

Wi Wi4-2

O Wit
W41 Wi+3
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Interval subdivision: Our problem

local extrema of F(w) — roots of E'(w)
What we know, at each iteration:

o FE(w) usually has very close to n + 2 local extrema inside F

@ placement information for the local extrema
’
W42
Wi Wi4-2
N 0
- =0

O Wit
W41 Wi+3

Our approach: k-n-type subdivision with non-uniform subintervals
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Interval subdivision: QOur solution

Why use it?
o works very well in practice
@ k = 4 is usually sufficient — small computational cost
@ no need for zero-free interval testing

@ embarrassingly parallel approach
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Direct quadratic solvers

— investigated in a number of recent articles.
— tend to be faster than classic QR/QZ schemes for n > 80.
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Direct quadratic solvers

— investigated in a number of recent articles.
— tend to be faster than classic QR/QZ schemes for n > 80.

Some questions:
@ How do such methods compare to subdivision approaches?
@ When is it worthwhile to use them with Chebyshev basis expansions?

@ Can they be easily parallelized?
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Initial guess for n + 2 references
wo <wp <...<Wnpti

1

Determine current ¢ and E(w)
E(wi) = W(wi)(H(wi) = D(wi)) = (=1)0

Compute new n + 2 alternating
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Step 4: Recover coefficients of H(w) upon convergence

— can use the Inverse Discrete Fourier Transform
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Step 4: Recover coefficients of H(w) upon convergence

— can use the Inverse Discrete Fourier Transform

— implement it using Clenshaw’s algorithm for computing
linear combinations of Chebyshev polynomials (numerically
robust approach)

Cost: O(n?) arithmetic operations
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Some remarks about convergence

Notation:
H* - final minimax filter
Hy, - the filter computed at the k-th iteration of the Parks-McClellan algorithm
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Some remarks about convergence

Notation:
H* - final minimax filter
Hy, - the filter computed at the k-th iteration of the Parks-McClellan algorithm

— theoretically, linear convergence is always possible [Cheney1966], i.e.

max [W(w)(H" (w) — He(w))| < A6*,

for some A > 0and § € (0,1).
— if D(w) twice differentiable and E*(w) = W(w)(D(w) — H*(w)) equioscillates
exactly n + 2 times, we have quadratic convergence [Veidinger1960]
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— written in C4+
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Our implementation

— written in C4++

— small number of external dependencies:

@ Eigen,;
@ Intel TBB;
@ MPFR.

— optional parallelism with OpenMP
— comes in three flavors:

@ double
@ long double
@ MPFR
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Our implementation: Results

Examples:
1. degree n = 100 unit weight filter with passband [0, 0.47] and stopband
[0.57, 7]
2. degree n = 100 unit weight filter with passbands [0,0.27], [0.67, 7] and
stopband [0.37,0.57]

3. degree n = 520 unit weight filter with passband [0,0.997] and stopband
centered at 7

4. degree n = 53248 lowpass filter with passband [0, 7557] and stopband

(st 7]
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Our implementation: Results

— running times (in seconds) on a 3.6 GHz 64-bit Intel Xeon(R) E5-1620

Problem Uniform GNURadio MATLAB  SciPy
(sequential)
Example 1 (n = 100) 0.0112 NC 0.1491  0.3511
Example 2 (n = 100) 0.0395 NC NC NC
Example 3 (n = 520) 0.3519 NC NC NC
Example 4 (n = 53248) NC NC NC NC
Example (degree) Uniform Uniform Scaling Scaling
(sequential)  (parallel)  (sequential) (parallel)
Example 1 (n = 100) 0.0112 0.0073 0.0147 0.011
Example 2 (n = 100) 0.0395 0.0274 0.0339 0.0275
Example 3 (n = 520) 0.3519 0.2251 0.0982 0.0716
Example 4 (n = 53248)3 NC NC 537.8 162.6

3used the long double version of our code
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Perspectives

Conclusion:
@ improved the practical behavior of a well known polynomial approximation

algorithm for filter design
— use numerically stable barycentric Lagrange interpolation + rootfinders

without sacrifices in efficiency
@ this new approach can take huge advantage of parallel architectures

Future work:
@ provide a complete toolchain for constructing FIR filters (approximation +
quantification + hardware synthesis)
o tackle the IIR filter setting (rational fraction)

e non-linear problem
e constraints: poles located inside the unit circle
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